Vai al contenuto principale
Se prosegui nella navigazione del sito, ne accetti le politiche:
  • Privacy Policy
Accetto
x
Moodle Sapienza Moodle Sapienza

Moodle Sapienza

  • Home
  • Corsi
    I miei corsi
    Categorie Corsi
    Cerca
    Informazioni utili
  • Altro
Italiano ‎(it)‎
Deutsch ‎(de)‎ English ‎(en)‎ Español - Internacional ‎(es)‎ Italiano ‎(it)‎ العربية ‎(ar)‎
Ospite
Login
Moodle Sapienza
Home Corsi Minimizza Espandi
I miei corsi Categorie Corsi Cerca Informazioni utili

Blocchi

Salta Informazione sull'utilizzo dei materiali didattici

Informazione sull'utilizzo dei materiali didattici

Tutti i diritti relativi ai materiali didattici e ai contenuti presenti in piattaforma sono riservati a Sapienza e ai suoi autori.
È consentito l'uso personale dello stesso da parte degli studenti e del personale Sapienza ai fini di formazione o studio.
Ne è vietata nel modo più assoluto la diffusione, duplicazione, cessione, trasmissione, distribuzione a terzi o al pubblico pena le sanzioni applicabili per legge.

Salta SUPPORTO

SUPPORTO

Per essere supportati nella manutenzione dei corsi e per qualsiasi chiarimento sul funzionamento di Moodle i docenti possono inviare una mail a: supportoelearningsapienza@mtouch.it

Documentazione Moodle

Chimica Farmaceutica e Tossicologica I

Chimica Farmaceutica e Tossicologica I

  1. Home
  2. Corsi
  3. Lauree triennali, magistrali, a ciclo unico
  4. Farmacia e Medicina
  5. Area Farmaceutica
  6. Lauree Magistrali a ciclo unico
  7. Chimica e Tecnologia Farmaceutiche
  8. III Anno II Semestre
  9. Farma 1
  10. Informazioni sull'Insegnamento per gli studenti in Corso
  11. Materiale Didattico Per Tutti gli AA

Materiale Didattico Per Tutti gli AA

Aggregazione dei criteri

Pubblicazioni Scientifiche Usate per compilare le lezioni

    • Sezione 1.0 Sezione 1.0
      • 1.5.1.0.0.0.0.1955.A notation for the study of certain stereochemical problems.pdf 1.5.1.0.0.0.0.1955.A notation for the study of certain stereochemical problems.pdf
      • 1.5.1.0.0.0.0.Wedge and Dash Notation for 3D Chemical Structures.pdf 1.5.1.0.0.0.0.Wedge and Dash Notation for 3D Chemical Structures.pdf
      • 1.5.1.0.0.0.0.Wikipedia.Ball-and-stick_model.pdf 1.5.1.0.0.0.0.Wikipedia.Ball-and-stick_model.pdf
      • 1.5.1.0.0.0.0.Wikipedia.Fischer_projection.pdf 1.5.1.0.0.0.0.Wikipedia.Fischer_projection.pdf
      • 1.5.1.0.0.0.0.Wikipedia.Newman_projection.pdf 1.5.1.0.0.0.0.Wikipedia.Newman_projection.pdf
      • 1.5.1.0.0.0.0.Wikipedia.Simplified_molecular-input_line-entry_system.pdf 1.5.1.0.0.0.0.Wikipedia.Simplified_molecular-input_line-entry_system.pdf
      • 1.5.1.0.0.0.0.Wikipedia.Skeletal_formula.pdf 1.5.1.0.0.0.0.Wikipedia.Skeletal_formula.pdf
      • 1.5.1.0.0.0.0.Wikipedia.wedge-and-dash.pdf 1.5.1.0.0.0.0.Wikipedia.wedge-and-dash.pdf
      • 1.5.1.5.0.0.0.2006.Biomolecules in the computer. Jmol to the rescue.pdf 1.5.1.5.0.0.0.2006.Biomolecules in the computer. Jmol to the rescue.pdf
      • 1.5.2.0.0.0.0.2006.The IUPAC International Chemical Identifier.pdf 1.5.2.0.0.0.0.2006.The IUPAC International Chemical Identifier.pdf
      • 1.5.2.0.0.0.0.2013.InChI - the worldwide chemical structure identifier standard.pdf 1.5.2.0.0.0.0.2013.InChI - the worldwide chemical structure identifier standard.pdf
      • 1.5.2.0.0.0.0.2021.InChI version 1.06. now more than 99.99_ reliable.pdf 1.5.2.0.0.0.0.2021.InChI version 1.06. now more than 99.99_ reliable.pdf
      • 1.5.2.0.0.0.0.InChI FAQ.pdf 1.5.2.0.0.0.0.InChI FAQ.pdf
      • 1.5.2.1.0.0.0.2000.JChemPaint - Using the Collaborative Forces of the Internet to Develop a Free Editor for 2D Chemical Structures.pdf 1.5.2.1.0.0.0.2000.JChemPaint - Using the Collaborative Forces of the Internet to Develop a Free Editor for 2D Chemical Structures.pdf
      • 1.5.2.2.0.0.0.2013.JSME. a free molecule editor in JavaScript.pdf 1.5.2.2.0.0.0.2013.JSME. a free molecule editor in JavaScript.pdf
      • 1.5.3.0.0.0.0.1988.SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules.pdf 1.5.3.0.0.0.0.1988.SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules.pdf
      • 1.5.3.0.0.0.0.1989.SMILES. 2. Algorithm for generation of unique SMILES notation.pdf 1.5.3.0.0.0.0.1989.SMILES. 2. Algorithm for generation of unique SMILES notation.pdf
      • 1.5.3.0.0.0.0.Daylight.Simplified_molecular-input_line-entry_system.pdf 1.5.3.0.0.0.0.Daylight.Simplified_molecular-input_line-entry_system.pdf
      • 1.5.4.0.0.0.0.2006.The IUPAC International Chemical Identifier.pdf 1.5.4.0.0.0.0.2006.The IUPAC International Chemical Identifier.pdf
      • 1.5.4.0.0.0.0.2013.InChI - the worldwide chemical structure identifier standard.pdf 1.5.4.0.0.0.0.2013.InChI - the worldwide chemical structure identifier standard.pdf
      • 1.5.4.0.0.0.0.Wikipedia.International_Chemical_Identifier.pdf 1.5.4.0.0.0.0.Wikipedia.International_Chemical_Identifier.pdf
      • 1.5.5.0.0.0.0.1992.Description of several chemical structure file formats.pdf 1.5.5.0.0.0.0.1992.Description of several chemical structure file formats.pdf
      • 1.5.5.0.0.0.0.wikipedia.Chemical_table_file.pdf 1.5.5.0.0.0.0.wikipedia.Chemical_table_file.pdf
      • 1.5.6.0.0.0.0.Introduction to Protein Data Bank Format.pdf 1.5.6.0.0.0.0.Introduction to Protein Data Bank Format.pdf
      • 1.5.6.0.0.0.0.PDB_Format_v33_A4.pdf 1.5.6.0.0.0.0.PDB_Format_v33_A4.pdf
      • 1.5.7.0.0.0.0.mol2_format.pdf 1.5.7.0.0.0.0.mol2_format.pdf
      • 1.5.8.0.0.0.0.2011.Open Babel. An open chemical toolbox.pdf 1.5.8.0.0.0.0.2011.Open Babel. An open chemical toolbox.pdf
      • 1.5.8.0.0.0.0.Wikipedia.Open_Babel.pdf 1.5.8.0.0.0.0.Wikipedia.Open_Babel.pdf
      • 1.6.1.0.0.0.0.2017.Protein Data Bank (PDB). The Single Global Macromolecular Structure Archive.pdf 1.6.1.0.0.0.0.2017.Protein Data Bank (PDB). The Single Global Macromolecular Structure Archive.pdf
      • 1.6.2.0.0.0.0.2004.UCSF Chimera--a visualization system for exploratory research and analysis.pdf 1.6.2.0.0.0.0.2004.UCSF Chimera--a visualization system for exploratory research and analysis.pdf
      • IntroductionJChemPaint.webm IntroductionJChemPaint.webm
      • jchempaint-3.3-1210.jar jchempaint-3.3-1210.jar
      • JSME_2020-12-26.zip JSME_2020-12-26.zip
      • MarvinSketchChemAxonChemicalDrawingTool.mp4 MarvinSketchChemAxonChemicalDrawingTool.mp4
      • QuickChemsketchTutorial.mkv QuickChemsketchTutorial.mkv
      • TutorialHowToBuildYourOwnMoleculeJSME.mkv TutorialHowToBuildYourOwnMoleculeJSME.mkv
    • Sezione 2.1 Sezione 2.1
      • 2.1.0.0.0.0.0.Farmaco.pdf 2.1.0.0.0.0.0.Farmaco.pdf
      • 2.1.0.0.0.0.0.Medication.pdf 2.1.0.0.0.0.0.Medication.pdf
    • Sezione 2.2 Sezione 2.2
      • 2.2.0.0.0.0.0..Historical review of medicinal plants_ usage.pdf 2.2.0.0.0.0.0..Historical review of medicinal plants_ usage.pdf
      • 2.2.0.0.0.0.0.2011.Il farmaco, 7000 anni di storia. Dal rimedio empirico alle biotecnologie.pdf 2.2.0.0.0.0.0.2011.Il farmaco, 7000 anni di storia. Dal rimedio empirico alle biotecnologie.pdf
      • 2.2.0.0.0.0.0.Wikipedia.De_materia_medica.pdf 2.2.0.0.0.0.0.Wikipedia.De_materia_medica.pdf
      • 2.2.0.0.0.0.0.Wikipedia.Materia_medica.pdf 2.2.0.0.0.0.0.Wikipedia.Materia_medica.pdf
    • Sezione 2.3 Sezione 2.3
      • 2.3.0.0.0.0.0.2004.The role of the medicinal chemist in drug discovery — then and now(1).pdf 2.3.0.0.0.0.0.2004.The role of the medicinal chemist in drug discovery — then and now(1).pdf
      • 2.3.0.0.0.0.0.2016.The Evolving Role of the Medicinal Chemist.pdf 2.3.0.0.0.0.0.2016.The Evolving Role of the Medicinal Chemist.pdf
      • 2.3.0.0.0.0.0.2016.The Evolving Role of the Medicinal Chemist(1).pdf 2.3.0.0.0.0.0.2016.The Evolving Role of the Medicinal Chemist(1).pdf
      • 2.3.0.0.0.0.0.2018.Improving the Efficiency of the Drug Development by Expanding the Scope of the Role of Medicinal Chemists in Drug Discovery.pdf 2.3.0.0.0.0.0.2018.Improving the Efficiency of the Drug Development by Expanding the Scope of the Role of Medicinal Chemists in Drug Discovery.pdf
      • 2.3.0.0.0.0.0.2018.Improving the Efficiency of the Drug Development by Expanding the Scope of the Role of Medicinal Chemists in Drug Discovery(1).pdf 2.3.0.0.0.0.0.2018.Improving the Efficiency of the Drug Development by Expanding the Scope of the Role of Medicinal Chemists in Drug Discovery(1).pdf
      • 2.3.0.0.0.0.0.2018.What Makes a Great Medicinal Chemist. A Personal Perspective.pdf 2.3.0.0.0.0.0.2018.What Makes a Great Medicinal Chemist. A Personal Perspective.pdf
      • 2.3.0.0.0.0.0.2018.What Makes a Great Medicinal Chemist. A Personal Perspective(1).pdf 2.3.0.0.0.0.0.2018.What Makes a Great Medicinal Chemist. A Personal Perspective(1).pdf
      • 2.3.0.0.0.0.0.Medicinal Chemistry - American Chemical Society.pdf 2.3.0.0.0.0.0.Medicinal Chemistry - American Chemical Society.pdf
      • 2.3.0.0.0.0.0.Medicinal Chemistry - American Chemical Society(1).pdf 2.3.0.0.0.0.0.Medicinal Chemistry - American Chemical Society(1).pdf
      • 2.3.0.0.0.0.0.The Medicinal Chemist Role in the World of AI - Proventa International.pdf 2.3.0.0.0.0.0.The Medicinal Chemist Role in the World of AI - Proventa International.pdf
      • 2.3.0.0.0.0.0.The Medicinal Chemist Role in the World of AI - Proventa International(1).pdf 2.3.0.0.0.0.0.The Medicinal Chemist Role in the World of AI - Proventa International(1).pdf
      • 2.3.0.0.0.0.0.The Practice of Medicinal Chemistry - Chapter 1.pdf 2.3.0.0.0.0.0.The Practice of Medicinal Chemistry - Chapter 1.pdf
      • 2.3.0.0.0.0.0.The Practice of Medicinal Chemistry - Chapter 1(1).pdf 2.3.0.0.0.0.0.The Practice of Medicinal Chemistry - Chapter 1(1).pdf
    • Sezione 2.4 Sezione 2.4
      • Sezione 2.4.1 Sezione 2.4.1
        • 2012.Natural products derived from plants as a source of drugs.pdf 2012.Natural products derived from plants as a source of drugs.pdf
        • 2016.Natural Products as a Vital Source for the Discovery of Cancer Chemotherapeutic and Chemopreventive Agents.pdf 2016.Natural Products as a Vital Source for the Discovery of Cancer Chemotherapeutic and Chemopreventive Agents.pdf
        • 2019.Natural Products as a Foundation for Drug Discovery.pdf 2019.Natural Products as a Foundation for Drug Discovery.pdf
        • 2020.Plant Endophytes and Epiphytes. Burgeoning Sources of Known and “Unknown” Cytotoxic and Antibiotic Agents.pdf 2020.Plant Endophytes and Epiphytes. Burgeoning Sources of Known and “Unknown” Cytotoxic and Antibiotic Agents.pdf
      • 2.4.0.0.0.0.0.1828.Ueber künstliche Bildung des Harnstoffs.pdf 2.4.0.0.0.0.0.1828.Ueber künstliche Bildung des Harnstoffs.pdf
      • 2.4.0.0.0.0.0.2017.Drug development. Lessons from nature.pdf 2.4.0.0.0.0.0.2017.Drug development. Lessons from nature.pdf
      • 2.4.0.0.0.0.0.Drug Development and Discovery _ CancerQuest.pdf 2.4.0.0.0.0.0.Drug Development and Discovery _ CancerQuest.pdf
      • 2.4.0.0.0.0.0.Guide-to-drug-discovery.pdf 2.4.0.0.0.0.0.Guide-to-drug-discovery.pdf
      • 2.4.0.0.0.0.0.Wikipedia.Organic_chemistry.pdf 2.4.0.0.0.0.0.Wikipedia.Organic_chemistry.pdf
      • 2.4.0.0.0.0.0.Wikipedia.Wöhler_synthesis.pdf 2.4.0.0.0.0.0.Wikipedia.Wöhler_synthesis.pdf
      • 2.4.1.0.0.0.0.2013.Natural products. A continuing source of novel drug leads.pdf 2.4.1.0.0.0.0.2013.Natural products. A continuing source of novel drug leads.pdf
      • 2.4.1.0.0.0.0.2015.Endophytic and epiphytic microbes as sources of bioactive agents.pdf 2.4.1.0.0.0.0.2015.Endophytic and epiphytic microbes as sources of bioactive agents.pdf
      • 2.4.1.0.0.0.0.2020.Natural Products as Sources of New Drugs over the Nearly Four Decades from 01-1981 to 09-2019.pdf 2.4.1.0.0.0.0.2020.Natural Products as Sources of New Drugs over the Nearly Four Decades from 01-1981 to 09-2019.pdf
      • 2.4.1.0.0.0.0.2020.Plant Endophytes and Epiphytes.pdf 2.4.1.0.0.0.0.2020.Plant Endophytes and Epiphytes.pdf
      • 2.4.2.0.0.0.0.1959.Synthesis of Penicillin. 6-Aminopenicillanic Acid in Penicillin Fermentations.pdf 2.4.2.0.0.0.0.1959.Synthesis of Penicillin. 6-Aminopenicillanic Acid in Penicillin Fermentations.pdf
      • 2.4.2.0.0.0.0.1994.Supercritical fluid extraction of taxol and baccatin III from needles of Taxus cuspidata.pdf 2.4.2.0.0.0.0.1994.Supercritical fluid extraction of taxol and baccatin III from needles of Taxus cuspidata.pdf
      • 2.4.2.0.0.0.0.1998.A New Synthesis of Taxol from Baccatin III.pdf 2.4.2.0.0.0.0.1998.A New Synthesis of Taxol from Baccatin III.pdf
      • 2.4.2.0.0.0.0.1998.Process for obtaining 10-deacetylbaccatin III.US5736366.pdf 2.4.2.0.0.0.0.1998.Process for obtaining 10-deacetylbaccatin III.US5736366.pdf
      • 2.4.2.0.0.0.0.1998.The discovery of heroin.pdf 2.4.2.0.0.0.0.1998.The discovery of heroin.pdf
      • 2.4.2.0.0.0.0.1999.A New Semisynthesis of Paclitaxel from Baccatin III.pdf 2.4.2.0.0.0.0.1999.A New Semisynthesis of Paclitaxel from Baccatin III.pdf
      • 2.4.2.0.0.0.0.1999.Synthesis of paclitaxel from baccatin III.US6307071.pdf 2.4.2.0.0.0.0.1999.Synthesis of paclitaxel from baccatin III.US6307071.pdf
      • 2.4.2.0.0.0.0.2000.The discovery of aspirin. a reappraisal.pdf 2.4.2.0.0.0.0.2000.The discovery of aspirin. a reappraisal.pdf
      • 2.4.2.0.0.0.0.2002.Monitoring of enzymatic hydrolysis of penicillin G by pyrolysis-negative ion mass spectrometry.pdf 2.4.2.0.0.0.0.2002.Monitoring of enzymatic hydrolysis of penicillin G by pyrolysis-negative ion mass spectrometry.pdf
      • 2.4.2.0.0.0.0.2006.Single-pot conversion of cephalosporin C to 7-aminocephalosporanic acid using cell-bound and support-bound enzymes.pdf 2.4.2.0.0.0.0.2006.Single-pot conversion of cephalosporin C to 7-aminocephalosporanic acid using cell-bound and support-bound enzymes.pdf
      • 2.4.2.0.0.0.0.2007.An Improved Manufacturing Process for the Antimalaria Drug Coartem. Part I.pdf 2.4.2.0.0.0.0.2007.An Improved Manufacturing Process for the Antimalaria Drug Coartem. Part I.pdf
      • 2.4.2.0.0.0.0.2007.The Echinocandins. Total and Semi-Synthetic Approaches in Antifungal Drug Discovery.pdf 2.4.2.0.0.0.0.2007.The Echinocandins. Total and Semi-Synthetic Approaches in Antifungal Drug Discovery.pdf
      • 2.4.2.0.0.0.0.2009.Single-pot conversion of cephalosporin C to 7-aminocephalosporanic acid in the absence of hydrogen peroxide.pdf 2.4.2.0.0.0.0.2009.Single-pot conversion of cephalosporin C to 7-aminocephalosporanic acid in the absence of hydrogen peroxide.pdf
      • 2.4.2.0.0.0.0.2014.Some Aspects in the Industrial Synthesis of Lactam Antibiotics.pdf 2.4.2.0.0.0.0.2014.Some Aspects in the Industrial Synthesis of Lactam Antibiotics.pdf
      • 2.4.2.0.0.0.0.2017.The aspirin story – from willow to wonder drug.pdf 2.4.2.0.0.0.0.2017.The aspirin story – from willow to wonder drug.pdf
      • 2.4.2.0.0.0.0.semisynthetic derivative (CHEBI_72588).pdf 2.4.2.0.0.0.0.semisynthetic derivative (CHEBI_72588).pdf
      • 2.4.2.0.0.0.0.Wikipedia.Semisynthesis.pdf 2.4.2.0.0.0.0.Wikipedia.Semisynthesis.pdf
      • 2.4.3.0.0.0.0.1936.Prontosil - TIME.pdf 2.4.3.0.0.0.0.1936.Prontosil - TIME.pdf
      • 2.4.3.0.0.0.0.2006.The First Miracle Drugs How the Sulfa Drugs Transformed Medicine.pdf 2.4.3.0.0.0.0.2006.The First Miracle Drugs How the Sulfa Drugs Transformed Medicine.pdf
      • 2.4.3.0.0.0.0.2015.Chemistry. Why synthesize.pdf 2.4.3.0.0.0.0.2015.Chemistry. Why synthesize.pdf
      • 2.4.3.0.0.0.0.2015.Reinventing Chemistry.pdf 2.4.3.0.0.0.0.2015.Reinventing Chemistry.pdf
      • 2.4.3.0.0.0.0.2020.Two-Phase Synthesis of Taxol.pdf 2.4.3.0.0.0.0.2020.Two-Phase Synthesis of Taxol.pdf
      • 2.4.3.0.0.0.0.Wikipedia.Paclitaxel_total_synthesis.pdf 2.4.3.0.0.0.0.Wikipedia.Paclitaxel_total_synthesis.pdf
      • 2.4.3.2.0.0.0.2015.Parallel Synthesis and Library Design.pdf 2.4.3.2.0.0.0.2015.Parallel Synthesis and Library Design.pdf
      • 2.4.3.2.0.0.0.2018.Current Parallel Solid-Phase Synthesis of Drug-like Oxadiazole and Thiadiazole Derivatives for Combinatorial Chemistry.pdf 2.4.3.2.0.0.0.2018.Current Parallel Solid-Phase Synthesis of Drug-like Oxadiazole and Thiadiazole Derivatives for Combinatorial Chemistry.pdf
      • 2.4.4.0.0.0.0.1963.Solid Phase Peptide Synthesis. I. The Synthesis of a Tetrapeptide.pdf 2.4.4.0.0.0.0.1963.Solid Phase Peptide Synthesis. I. The Synthesis of a Tetrapeptide.pdf
      • 2.4.4.0.0.0.0.1986.Solid phase synthesis.pdf 2.4.4.0.0.0.0.1986.Solid phase synthesis.pdf
      • 2.4.4.0.0.0.0.2009.Discovery of Innovative Small Molecule Therapeutics.pdf 2.4.4.0.0.0.0.2009.Discovery of Innovative Small Molecule Therapeutics.pdf
      • 2.4.4.0.0.0.0.2011.The rise, fall and reinvention of combinatorial chemistry.pdf 2.4.4.0.0.0.0.2011.The rise, fall and reinvention of combinatorial chemistry.pdf
      • 2.4.4.0.0.0.0.2013.COMBINATORIAL CHEMISTRY. A REVIEW.pdf 2.4.4.0.0.0.0.2013.COMBINATORIAL CHEMISTRY. A REVIEW.pdf
      • 2.4.4.0.0.0.0.Wikipedia.Combinatorial_chemistry.pdf 2.4.4.0.0.0.0.Wikipedia.Combinatorial_chemistry.pdf
    • Sezione 3.0 Sezione 3.0
      • 3.0.0.0.0.0.0.2006.How many drug targets are there.pdf 3.0.0.0.0.0.0.2006.How many drug targets are there.pdf
      • 3.1.0.0.0.0.1.Wikipedia.Biological_target.pdf 3.1.0.0.0.0.1.Wikipedia.Biological_target.pdf
      • 3.1.0.0.0.0.5.2013.Application of genomics, proteomics and metabolomics in drug discovery, development and clinic.pdf 3.1.0.0.0.0.5.2013.Application of genomics, proteomics and metabolomics in drug discovery, development and clinic.pdf
      • 3.1.1.0.0.0.1.2010.Principles of early drug discovery.pdf 3.1.1.0.0.0.1.2010.Principles of early drug discovery.pdf
      • 3.1.2.0.0.0.1.2017.A comprehensive map of molecular drug targets.Original.pdf 3.1.2.0.0.0.1.2017.A comprehensive map of molecular drug targets.Original.pdf
      • 3.1.2.0.0.0.3.2008.Drugs and their molecular targets. an updated overview.pdf 3.1.2.0.0.0.3.2008.Drugs and their molecular targets. an updated overview.pdf
      • 3.1.2.0.0.0.6.targets_and_families.csv 3.1.2.0.0.0.6.targets_and_families.csv
      • 3.1.3.0.0.0.1.2020.An omics perspective on drug target discovery platform.pdf 3.1.3.0.0.0.1.2020.An omics perspective on drug target discovery platform.pdf
      • 3.1.3.0.0.0.4.2013.Use of genomics and proteomics in pharmaceutical drug discovery and development. A review.pdf 3.1.3.0.0.0.4.2013.Use of genomics and proteomics in pharmaceutical drug discovery and development. A review.pdf
      • 3.1.3.0.0.0.5.Wikipedia.Genomics.pdf 3.1.3.0.0.0.5.Wikipedia.Genomics.pdf
      • 3.1.3.0.0.0.5.Wikipedia.Metabolomics.pdf 3.1.3.0.0.0.5.Wikipedia.Metabolomics.pdf
      • 3.1.3.0.0.0.5.Wikipedia.Proteomics.pdf 3.1.3.0.0.0.5.Wikipedia.Proteomics.pdf
      • 3.1.3.0.0.0.6.2014.A draft map of the human proteome.pdf 3.1.3.0.0.0.6.2014.A draft map of the human proteome.pdf
      • 3.1.3.0.0.0.7.2008.Proteomics and genomics. perspectives on drug and target discovery.pdf 3.1.3.0.0.0.7.2008.Proteomics and genomics. perspectives on drug and target discovery.pdf
      • 3.1.3.0.0.0.7.2020.Target identification among known drugs by deep learning from heterogeneous networks.pdf 3.1.3.0.0.0.7.2020.Target identification among known drugs by deep learning from heterogeneous networks.pdf
      • 3.2.0.0.0.0.1.1950.The Origin of the Word Protein.pdf 3.2.0.0.0.0.1.1950.The Origin of the Word Protein.pdf
      • 3.2.0.0.0.0.1.Wikipedia.Protein_structure.pdf 3.2.0.0.0.0.1.Wikipedia.Protein_structure.pdf
      • 3.2.0.0.0.0.1.Wikipedia.Protein.pdf 3.2.0.0.0.0.1.Wikipedia.Protein.pdf
      • 3.2.0.0.0.0.2.1951.Atomic Coordinates and Structure Factors for Two Helical Configurations of Polypeptide Chains.pdf 3.2.0.0.0.0.2.1951.Atomic Coordinates and Structure Factors for Two Helical Configurations of Polypeptide Chains.pdf
      • 3.2.0.0.0.0.2.1951.The structure of proteins. Two hydrogen-bonded helical configurations of the polypeptide chain.pdf 3.2.0.0.0.0.2.1951.The structure of proteins. Two hydrogen-bonded helical configurations of the polypeptide chain.pdf
      • 3.2.0.0.0.0.3.2013.Book_MolecularBiology.pdf 3.2.0.0.0.0.3.2013.Book_MolecularBiology.pdf
      • 3.2.0.0.0.0.4.2013.Patrick.Part_A.pdf 3.2.0.0.0.0.4.2013.Patrick.Part_A.pdf
      • 3.2.0.0.0.0.17.2018.Spider prey-wrapping silk is an α-helical coiled-coil-β-sheet hybrid nanofiber.pdf 3.2.0.0.0.0.17.2018.Spider prey-wrapping silk is an α-helical coiled-coil-β-sheet hybrid nanofiber.pdf
      • 3.2.0.0.0.0.18.2011.Nanoconfinement_of_spider_silk_fibrils_begets_supe.pdf 3.2.0.0.0.0.18.2011.Nanoconfinement_of_spider_silk_fibrils_begets_supe.pdf
      • 3.3.0.0.0.0.4.1997.RNA as a drug target.pdf 3.3.0.0.0.0.4.1997.RNA as a drug target.pdf
      • 3.3.0.0.0.0.5.2019.Unveiling the druggable RNA targets and small molecule therapeutics.pdf 3.3.0.0.0.0.5.2019.Unveiling the druggable RNA targets and small molecule therapeutics.pdf
      • 3.4.0.0.0.0.1.2007.Targeting the glycans of glycoproteins. a novel paradigm for antiviral therapy.pdf 3.4.0.0.0.0.1.2007.Targeting the glycans of glycoproteins. a novel paradigm for antiviral therapy.pdf
      • 3.4.0.0.0.0.5.2019.Glycans in drug discovery.pdf 3.4.0.0.0.0.5.2019.Glycans in drug discovery.pdf
      • 3.4.0.0.0.0.6.2019.The glycan CA19-9 promotes pancreatitis and pancreatic cancer in mice.pdf 3.4.0.0.0.0.6.2019.The glycan CA19-9 promotes pancreatitis and pancreatic cancer in mice.pdf
      • 3.4.0.0.0.0.7.2015.Glycans in the immune system and The Altered Glycan Theory of Autoimmunity. A critical review.pdf 3.4.0.0.0.0.7.2015.Glycans in the immune system and The Altered Glycan Theory of Autoimmunity. A critical review.pdf
      • 3.5.0.0.0.0.1.2019.BigSMILES. A Structurally-Based Line Notation for Describing Macromolecules.pdf 3.5.0.0.0.0.1.2019.BigSMILES. A Structurally-Based Line Notation for Describing Macromolecules.pdf
      • 3.6.0.0.0.0.1.2004.UCSF Chimera--a visualization system for exploratory research and analysis.pdf 3.6.0.0.0.0.1.2004.UCSF Chimera--a visualization system for exploratory research and analysis.pdf
    • Sezione 4.0 Sezione 4.0
      • 4.2.1 4.2.1
        • 4.2.1.0.0.0.1.Wikipedia.ADME.pdf 4.2.1.0.0.0.1.Wikipedia.ADME.pdf
        • 4.2.1.0.0.0.2b.Wikipedia.Iloprost.pdf 4.2.1.0.0.0.2b.Wikipedia.Iloprost.pdf
        • 4.2.1.0.0.0.2c.Wikipedia.Articaine.pdf 4.2.1.0.0.0.2c.Wikipedia.Articaine.pdf
        • 4.2.1.0.0.0.3.2019.Book.BasicKnowledgeOfPharmacology.Pharmacokinetics.pdf 4.2.1.0.0.0.3.2019.Book.BasicKnowledgeOfPharmacology.Pharmacokinetics.pdf
        • 4.2.1.1.0.0.1.Wikipedia.Route_of_administration.pdf 4.2.1.1.0.0.1.Wikipedia.Route_of_administration.pdf
        • 4.2.1.2.0.0.1.1960.On the Mechanism of Absorption of Drugs from the Gastrointestinal Tract.pdf 4.2.1.2.0.0.1.1960.On the Mechanism of Absorption of Drugs from the Gastrointestinal Tract.pdf
        • 4.2.1.2.0.0.1.1985.The absorption of β‐adrenoceptor antagonists in rat in‐situ small intestine. the effect of lipophilicity.pdf 4.2.1.2.0.0.1.1985.The absorption of β‐adrenoceptor antagonists in rat in‐situ small intestine. the effect of lipophilicity.pdf
        • 4.2.1.2.0.0.1.2013.Pharmacokinetic - Patrick.pdf 4.2.1.2.0.0.1.2013.Pharmacokinetic - Patrick.pdf
        • 4.2.1.2.0.0.7.2003.Tumor acidity, ion trapping and chemotherapeutics I.pdf 4.2.1.2.0.0.7.2003.Tumor acidity, ion trapping and chemotherapeutics I.pdf
        • 4.2.1.2.0.0.7.2003.Tumor acidity, ion trapping and chemotherapeutics II.pdf 4.2.1.2.0.0.7.2003.Tumor acidity, ion trapping and chemotherapeutics II.pdf
        • 4.2.1.2.0.0.8.Ion-Trapping, Microsomal Binding, and Unbound Drug Distribution in the Hepatic Retention of Basic Drugs.pdf 4.2.1.2.0.0.8.Ion-Trapping, Microsomal Binding, and Unbound Drug Distribution in the Hepatic Retention of Basic Drugs.pdf
        • 4.2.1.2.0.0.10.1987.Drug Absorption.pdf 4.2.1.2.0.0.10.1987.Drug Absorption.pdf
        • 4.2.1.2.0.0.10.1995.An Introduction to Drug Disposition. The Basic Principles of Absorption, Distribution, Metabolism, and Excretion.pdf 4.2.1.2.0.0.10.1995.An Introduction to Drug Disposition. The Basic Principles of Absorption, Distribution, Metabolism, and Excretion.pdf
        • 4.2.1.2.0.0.10.2002.A mechanistic approach to understanding the factors affecting drug absorption. a review of fundamentals.pdf 4.2.1.2.0.0.10.2002.A mechanistic approach to understanding the factors affecting drug absorption. a review of fundamentals.pdf
        • 4.2.1.2.0.0.10.2018.Pharmacology, Part 2. Introduction to Pharmacokinetics.pdf 4.2.1.2.0.0.10.2018.Pharmacology, Part 2. Introduction to Pharmacokinetics.pdf
        • 4.2.1.2.0.0.10.2021.Drug Absorption - StatPearls - NCBI Bookshelf.pdf 4.2.1.2.0.0.10.2021.Drug Absorption - StatPearls - NCBI Bookshelf.pdf
        • 4.2.1.2.0.0.13.2017.Predicting Oral Drug Absorption. Mini Review on Physiologically-Based Pharmacokinetic Models.pdf 4.2.1.2.0.0.13.2017.Predicting Oral Drug Absorption. Mini Review on Physiologically-Based Pharmacokinetic Models.pdf
        • 4.2.1.3.0.0.1.Wikipedia.Distribution_(pharmacology).pdf 4.2.1.3.0.0.1.Wikipedia.Distribution_(pharmacology).pdf
        • 4.2.1.3.0.0.8.Wikipedia.Plasma_protein_binding.pdf 4.2.1.3.0.0.8.Wikipedia.Plasma_protein_binding.pdf
        • 4.2.1.3.0.0.9.1971.Effect of Binding to Plasma Proteins on the Distribution, Activity and Elimination of Drugs.pdf 4.2.1.3.0.0.9.1971.Effect of Binding to Plasma Proteins on the Distribution, Activity and Elimination of Drugs.pdf
        • 4.2.1.3.0.0.10.2010.The effect of plasma protein binding on in vivo efficacy misconceptions in drug discovery.pdf 4.2.1.3.0.0.10.2010.The effect of plasma protein binding on in vivo efficacy misconceptions in drug discovery.pdf
        • 4.2.1.4.0.0.1.Wikipedia.Drug_metabolism.pdf 4.2.1.4.0.0.1.Wikipedia.Drug_metabolism.pdf
        • 4.2.1.5.0.0.1.Wikipedia.Elimination_(pharmacology).pdf 4.2.1.5.0.0.1.Wikipedia.Elimination_(pharmacology).pdf
        • 4.2.1.5.0.0.2.Wikipedia.Nephron.pdf 4.2.1.5.0.0.2.Wikipedia.Nephron.pdf
        • 4.2.1.5.0.0.6.2020.Drug Elimination - StatPearls - NCBI Bookshelf.pdf 4.2.1.5.0.0.6.2020.Drug Elimination - StatPearls - NCBI Bookshelf.pdf
        • 4.2.1.5.0.0.7.2014.Drug Elimination.pdf 4.2.1.5.0.0.7.2014.Drug Elimination.pdf
      • 4.3 4.3
        • 4.3.0.0.0.0.1.Drug Metabolism.pdf 4.3.0.0.0.0.1.Drug Metabolism.pdf
        • 4.3.0.0.0.0.1.Pharmacokinetics and related topics.pdf 4.3.0.0.0.0.1.Pharmacokinetics and related topics.pdf
        • 4.3.1.0.0.0.1a.Wikipedia.Microsome.pdf 4.3.1.0.0.0.1a.Wikipedia.Microsome.pdf
        • 4.3.1.1.0.0.2.2001.Common and Uncommon Cytochrome P450 Reactions Related to Metabolism and Chemical Toxicity.pdf 4.3.1.1.0.0.2.2001.Common and Uncommon Cytochrome P450 Reactions Related to Metabolism and Chemical Toxicity.pdf
        • 4.3.1.1.0.0.2.McLean-Munro2018_ReferenceWorkEntry_CytochromeP450Cyp.pdf 4.3.1.1.0.0.2.McLean-Munro2018_ReferenceWorkEntry_CytochromeP450Cyp.pdf
        • 4.3.1.1.0.0.2.Wikipedia.Cytochrome_P450.pdf 4.3.1.1.0.0.2.Wikipedia.Cytochrome_P450.pdf
        • 4.3.1.1.0.0.4.2013.Cytochrome P450 enzymes in drug metabolism. Regulation of gene expression, enzyme activities, and impact of genetic variation.pdf 4.3.1.1.0.0.4.2013.Cytochrome P450 enzymes in drug metabolism. Regulation of gene expression, enzyme activities, and impact of genetic variation.pdf
        • 4.3.1.1.0.0.9.2021.A history of the roles of cytochrome P450 enzymes in the toxicity of drugs.pdf 4.3.1.1.0.0.9.2021.A history of the roles of cytochrome P450 enzymes in the toxicity of drugs.pdf
        • 4.3.1.2.0.0.1.2000.The Catalytic Pathway of Cytochrome P450cam at Atomic Resolution.pdf 4.3.1.2.0.0.1.2000.The Catalytic Pathway of Cytochrome P450cam at Atomic Resolution.pdf
        • 4.3.1.2.0.0.20.Metabolism of drugs and xenobiotics.pdf 4.3.1.2.0.0.20.Metabolism of drugs and xenobiotics.pdf
        • 4.3.1.2.0.0.23.Drug metabolism.pdf 4.3.1.2.0.0.23.Drug metabolism.pdf
        • 4.3.1.2.0.0.28.2010.Human Liver Microsomal Cytochrome P450 3A Enzymes Involved in Thalidomide 5-Hydroxylation and Formation of a Glutathione Conjugate.pdf 4.3.1.2.0.0.28.2010.Human Liver Microsomal Cytochrome P450 3A Enzymes Involved in Thalidomide 5-Hydroxylation and Formation of a Glutathione Conjugate.pdf
        • 4.3.1.2.0.0.33.2020.Inhibition and induction of CYP enzymes in humans. an update.pdf 4.3.1.2.0.0.33.2020.Inhibition and induction of CYP enzymes in humans. an update.pdf
        • 4.3.2.0.0.0.1.2012.Phase_II_drug_metabolism.pdf 4.3.2.0.0.0.1.2012.Phase_II_drug_metabolism.pdf
        • 4.3.2.1.0.0.1.2001.Glucuronidation_J_Clin_Psychopharm.pdf 4.3.2.1.0.0.1.2001.Glucuronidation_J_Clin_Psychopharm.pdf
        • 4.3.2.2.0.0.1.2001.Structure and Function of Sulfotransferases.pdf 4.3.2.2.0.0.1.2001.Structure and Function of Sulfotransferases.pdf
        • 4.3.2.2.0.0.1.2006.Human Sulfotransferases and Their Role in Chemical Metabolism.pdf 4.3.2.2.0.0.1.2006.Human Sulfotransferases and Their Role in Chemical Metabolism.pdf
        • 4.3.2.2.0.0.1.2012.Recent advances in sulfotransferase enzyme activity assays.pdf 4.3.2.2.0.0.1.2012.Recent advances in sulfotransferase enzyme activity assays.pdf
        • 4.3.2.3.0.0.1.1969.The Role of Glutathione and Glutathione S‐Transferases in Mercapturic Acid Biosynthesis.pdf 4.3.2.3.0.0.1.1969.The Role of Glutathione and Glutathione S‐Transferases in Mercapturic Acid Biosynthesis.pdf
        • 4.3.2.5.0.0.1.2013.Glycine conjugation.pdf 4.3.2.5.0.0.1.2013.Glycine conjugation.pdf
        • 4.3.3.0.0.0.0.2015.Prodrug design _ perspectives, approaches and applications in medicinal chemistry.pdf 4.3.3.0.0.0.0.2015.Prodrug design _ perspectives, approaches and applications in medicinal chemistry.pdf
        • 4.3.4.0.0.0.1.2003.Metabolic Stability for Drug Discovery and Development.pdf 4.3.4.0.0.0.1.2003.Metabolic Stability for Drug Discovery and Development.pdf
        • 4.3.5.0.0.0.1.1958.Chemical aspects of selective toxicity.pdf 4.3.5.0.0.0.1.1958.Chemical aspects of selective toxicity.pdf
        • 4.3.5.0.0.0.1.2013.Prodrugs A challenge for the drug development.pdf 4.3.5.0.0.0.1.2013.Prodrugs A challenge for the drug development.pdf
        • 4.3.5.0.0.0.1.2018.The expanding role of prodrugs in contemporary drug design and development.pdf 4.3.5.0.0.0.1.2018.The expanding role of prodrugs in contemporary drug design and development.pdf
        • 4.3.5.0.0.0.1.2020.Prodrugs. My Initial Exploration and Where It Led.pdf 4.3.5.0.0.0.1.2020.Prodrugs. My Initial Exploration and Where It Led.pdf
      • 4.4 4.4
        • 4.4.0.0.0.0.0.2007.Physicochemical Properties in Drug Profiling.pdf 4.4.0.0.0.0.0.2007.Physicochemical Properties in Drug Profiling.pdf
        • 4.4.0.0.0.0.0.2014.The Impact of Physicochemical and Molecular Properties in Drug Design. Navigation in the Drug-Like Chemical Space.pdf 4.4.0.0.0.0.0.2014.The Impact of Physicochemical and Molecular Properties in Drug Design. Navigation in the Drug-Like Chemical Space.pdf
        • 4.4.1.0.0.0.12.1995.Partition Coefficient (n-octanol-water). Shake Flask Method.pdf 4.4.1.0.0.0.12.1995.Partition Coefficient (n-octanol-water). Shake Flask Method.pdf
        • 4.4.1.0.0.0.13.2001.Partition of solutes from the gas phase and from water to wet and dry di-n-butyl ether. a linear free energy relationship analysis.pdf 4.4.1.0.0.0.13.2001.Partition of solutes from the gas phase and from water to wet and dry di-n-butyl ether. a linear free energy relationship analysis.pdf
        • 4.4.1.0.0.0.13.2007.Rapid method for estimating octanol-water partition coefficient (LOG Poct) from isocratic RP-HPLC and a hydrogen bond acidity term (A).pdf 4.4.1.0.0.0.13.2007.Rapid method for estimating octanol-water partition coefficient (LOG Poct) from isocratic RP-HPLC and a hydrogen bond acidity term (A).pdf
        • 4.4.1.0.0.0.16.2011.Flip-flop pharmacokinetics.pdf 4.4.1.0.0.0.16.2011.Flip-flop pharmacokinetics.pdf
        • 4.4.2.0.0.0.1.2007.The pKa Distribution of Drugs. Application to Drug Discovery.SI.xls 4.4.2.0.0.0.1.2007.The pKa Distribution of Drugs. Application to Drug Discovery.SI.xls
        • 4.4.4.1.0.0.0.2001.Experimental and computational approaches to estimate solubility and permeability.pdf 4.4.4.1.0.0.0.2001.Experimental and computational approaches to estimate solubility and permeability.pdf
        • 4.4.4.1.0.0.0.2001.Experimental and computational approaches to estimate solubility and permeability.right_column.pdf 4.4.4.1.0.0.0.2001.Experimental and computational approaches to estimate solubility and permeability.right_column.pdf
        • 4.4.4.1.0.0.0.2019.Two Decades under the Influence of the Rule of Five and the Changing Properties of Approved Oral Drugs.SI.csv 4.4.4.1.0.0.0.2019.Two Decades under the Influence of the Rule of Five and the Changing Properties of Approved Oral Drugs.SI.csv
        • 4.4.4.2.0.0.0.2002.Molecular Properties That Influence the Oral Bioavailability of Drug Candidates.pdf 4.4.4.2.0.0.0.2002.Molecular Properties That Influence the Oral Bioavailability of Drug Candidates.pdf
        • 4.4.4.4.0.0.0.2003.A ‘Rule of Three’ for fragment-based lead discovery.pdf 4.4.4.4.0.0.0.2003.A ‘Rule of Three’ for fragment-based lead discovery.pdf
        • 4.4.4.5.0.0.1.2001.Simple Selection Criteria for Drug-like Chemical Matter.pdf 4.4.4.5.0.0.1.2001.Simple Selection Criteria for Drug-like Chemical Matter.pdf
        • 4.4.4.6.0.0.1.2000.Prediction of Drug Absorption Using Multivariate Statistics.pdf 4.4.4.6.0.0.1.2000.Prediction of Drug Absorption Using Multivariate Statistics.pdf
        • 4.4.5.0.0.0.1.2009.Drug-like property concepts in pharmaceutical design.pdf 4.4.5.0.0.0.1.2009.Drug-like property concepts in pharmaceutical design.pdf
      • 4.5 4.5
        • 4.5.1.0.0.0.1.Computer-Aided Prediction ofPharmacokinetic (ADMET)Properties.pdf 4.5.1.0.0.0.1.Computer-Aided Prediction ofPharmacokinetic (ADMET)Properties.pdf
        • 4.5.1.0.0.0.3.2016.Open source molecular modeling.pdf 4.5.1.0.0.0.3.2016.Open source molecular modeling.pdf
        • 4.5.1.0.0.0.4.2010.PaDEL‐descriptor. An open source software to calculate molecular descriptors and fingerprints.pdf 4.5.1.0.0.0.4.2010.PaDEL‐descriptor. An open source software to calculate molecular descriptors and fingerprints.pdf
        • 4.5.2.0.0.0.1.2017.SwissADME. a free web tool to evaluate pharmacokinetics.pdf 4.5.2.0.0.0.1.2017.SwissADME. a free web tool to evaluate pharmacokinetics.pdf
        • 4.5.2.0.0.0.2.2018.ADMETlab. A platform for systematic ADMET evaluation based on a comprehensively collected ADMET database.pdf 4.5.2.0.0.0.2.2018.ADMETlab. A platform for systematic ADMET evaluation based on a comprehensively collected ADMET database.pdf
        • 4.5.2.0.0.0.3.2015.pkCSM. predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures.pdf 4.5.2.0.0.0.3.2015.pkCSM. predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures.pdf
        • 2005.Strategy of Utilizing In Vitro and In Vivo ADME Tools for Lead Optimization and Drug Candidate Selection.pdf 2005.Strategy of Utilizing In Vitro and In Vivo ADME Tools for Lead Optimization and Drug Candidate Selection.pdf
        • CDKDescUI-1.4.8.jar CDKDescUI-1.4.8.jar
        • PaDEL-Descriptor.zip PaDEL-Descriptor.zip
      • 4.6 4.6
        • 4.6.1.2.1.0.1.Wikipedia.Lennard-Jones_potential.pdf 4.6.1.2.1.0.1.Wikipedia.Lennard-Jones_potential.pdf
        • 4.6.2.0.0.0.1.1973.Relationship between the Ki and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction.pdf 4.6.2.0.0.0.1.1973.Relationship between the Ki and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction.pdf
        • 4.6.2.2.0.0.1.2004.Ligand efficiency- a useful metric for lead selection.pdf 4.6.2.2.0.0.1.2004.Ligand efficiency- a useful metric for lead selection.pdf
        • 4.6.2.2.0.0.1.2005.Ligand efficiency indices as guideposts for drug discovery.pdf 4.6.2.2.0.0.1.2005.Ligand efficiency indices as guideposts for drug discovery.pdf
        • 4.6.2.2.0.0.1.Wikipedia.Lipophilic_efficiency.pdf 4.6.2.2.0.0.1.Wikipedia.Lipophilic_efficiency.pdf
        • 4.6.2.2.0.0.4.1999.The maximal affinity of ligands.pdf 4.6.2.2.0.0.4.1999.The maximal affinity of ligands.pdf
        • 4.6.3.0.0.0.2.1997.Introduction.  Molecular Recognition.pdf 4.6.3.0.0.0.2.1997.Introduction.  Molecular Recognition.pdf
        • 4.6.3.0.0.0.6.1894.Einfluss der Configuration auf die Wirkung der Enzyme.docx 4.6.3.0.0.0.6.1894.Einfluss der Configuration auf die Wirkung der Enzyme.docx
        • 4.6.3.0.0.0.10.1994.The Key-Lock Theory and the Induced Fit Theory.pdf 4.6.3.0.0.0.10.1994.The Key-Lock Theory and the Induced Fit Theory.pdf
        • 4.6.4.1.0.0.1.Wikipedia.Ligand_(biochemistry).pdf 4.6.4.1.0.0.1.Wikipedia.Ligand_(biochemistry).pdf
        • 4.6.4.1.0.0.3.Wikipedia.Binding_selectivity.pdf 4.6.4.1.0.0.3.Wikipedia.Binding_selectivity.pdf
        • 4.6.4.2.0.0.1.2016.Enzyme Inhibitors and Activators.pdf 4.6.4.2.0.0.1.2016.Enzyme Inhibitors and Activators.pdf
        • 4.6.4.2.1.0.1.Wikipedia.Enzyme_Inhibitor.pdf 4.6.4.2.1.0.1.Wikipedia.Enzyme_Inhibitor.pdf
        • 4.6.4.2.1.1.7.Wikipedia.Suicide_inhibition.pdf 4.6.4.2.1.1.7.Wikipedia.Suicide_inhibition.pdf
        • 4.6.4.2.1.1.7b.2012.Identification of Protein Targets of Reactive Metabolites of Tienilic Acid in Human Hepatocytes.pdf 4.6.4.2.1.1.7b.2012.Identification of Protein Targets of Reactive Metabolites of Tienilic Acid in Human Hepatocytes.pdf
        • 4.6.4.2.1.1.9.2011.The resurgence of covalent drugs.pdf 4.6.4.2.1.1.9.2011.The resurgence of covalent drugs.pdf
        • 4.6.4.2.1.1.9.2011.The resurgence of covalent drugs.SuppInfo.pdf 4.6.4.2.1.1.9.2011.The resurgence of covalent drugs.SuppInfo.pdf
        • 4.6.4.2.1.1.21.2015.Covalent inhibitors in drug discovery. From accidental discoveries to avoided liabilities and designed therapies.pdf 4.6.4.2.1.1.21.2015.Covalent inhibitors in drug discovery. From accidental discoveries to avoided liabilities and designed therapies.pdf
        • 4.6.4.2.1.1.24.2019.Covalent Inhibition in Drug Discovery.pdf 4.6.4.2.1.1.24.2019.Covalent Inhibition in Drug Discovery.pdf
        • 4.6.4.2.1.1.29.2020.Covalent inhibitors. A rational approach to drug discovery.pdf 4.6.4.2.1.1.29.2020.Covalent inhibitors. A rational approach to drug discovery.pdf
        • 4.6.4.2.1.2.1.Wikipedia.Competitive_inhibition.pdf 4.6.4.2.1.2.1.Wikipedia.Competitive_inhibition.pdf
        • 4.6.4.2.1.2.2.Wikipedia.Uncompetitive_inhibitor.pdf 4.6.4.2.1.2.2.Wikipedia.Uncompetitive_inhibitor.pdf
        • 4.6.4.2.1.2.3.2003.8-Methoxy-naphtho[2,3-b]thiophen-4,9-quinone, a non-competitive inhibitor of trypanothione reductase.pdf 4.6.4.2.1.2.3.2003.8-Methoxy-naphtho[2,3-b]thiophen-4,9-quinone, a non-competitive inhibitor of trypanothione reductase.pdf
        • 4.6.4.2.1.2.3.Wikipedia.Non-competitive_inhibition.pdf 4.6.4.2.1.2.3.Wikipedia.Non-competitive_inhibition.pdf
        • 4.6.4.2.1.2.4.2016.The natural flavone fukugetin as a mixed-type inhibitor for human tissue kallikreins.pdf 4.6.4.2.1.2.4.2016.The natural flavone fukugetin as a mixed-type inhibitor for human tissue kallikreins.pdf
        • 4.6.4.2.1.2.4.Wikipedia.Mixed_inhibition.pdf 4.6.4.2.1.2.4.Wikipedia.Mixed_inhibition.pdf
        • 4.6.4.2.2.0.1.2004.Enzyme Activation.pdf 4.6.4.2.2.0.1.2004.Enzyme Activation.pdf
        • 4.6.4.2.2.0.1.2015.Design and Synthesis of Acetylenyl Benzamide Derivatives as Novel Glucokinase Activators for the Treatment of T2DM.pdf 4.6.4.2.2.0.1.2015.Design and Synthesis of Acetylenyl Benzamide Derivatives as Novel Glucokinase Activators for the Treatment of T2DM.pdf
        • 4.6.4.2.2.0.1.Wikipedia.Enzyme_activator.pdf 4.6.4.2.2.0.1.Wikipedia.Enzyme_activator.pdf
        • 4.6.4.3.0.0.1.2015.Silverman.Receptor.pdf 4.6.4.3.0.0.1.2015.Silverman.Receptor.pdf
        • 4.6.4.3.0.0.2.2004.Receptive Substances. John Newport Langley (1852–1925) and his Path to a Receptor Theory of Drug Action.pdf 4.6.4.3.0.0.2.2004.Receptive Substances. John Newport Langley (1852–1925) and his Path to a Receptor Theory of Drug Action.pdf
        • 4.6.4.3.0.0.4.2010.Paul Ehrlich (1854-1915). man with the magic bullet.pdf 4.6.4.3.0.0.4.2010.Paul Ehrlich (1854-1915). man with the magic bullet.pdf
        • 4.6.4.3.0.0.4.Wikipedia.Paul_Ehrlich.pdf 4.6.4.3.0.0.4.Wikipedia.Paul_Ehrlich.pdf
        • 4.6.4.3.0.0.5.Wikipedia.Magic_bullet_(medicine).pdf 4.6.4.3.0.0.5.Wikipedia.Magic_bullet_(medicine).pdf
        • 4.6.4.3.0.0.6.Wikipedia.Receptor_(biochemistry).pdf 4.6.4.3.0.0.6.Wikipedia.Receptor_(biochemistry).pdf
        • 4.6.4.3.0.0.7.2018.The G protein-coupled receptors deorphanization landscape.pdf 4.6.4.3.0.0.7.2018.The G protein-coupled receptors deorphanization landscape.pdf
        • 4.6.4.3.0.0.7.Wikipedia.Orphan_receptor.pdf 4.6.4.3.0.0.7.Wikipedia.Orphan_receptor.pdf
        • 4.6.4.3.1.0.1.Wikipedia.Agonist.pdf 4.6.4.3.1.0.1.Wikipedia.Agonist.pdf
        • 4.6.4.3.2.0.1.Wikipedia.Receptor_antagonist.pdf 4.6.4.3.2.0.1.Wikipedia.Receptor_antagonist.pdf
        • 4.6.4.4.0.0.1.2001.Protacs. Chimeric molecules that target proteins to the Skp1–Cullin–F box complex for ubiquitination and degradation.pdf 4.6.4.4.0.0.1.2001.Protacs. Chimeric molecules that target proteins to the Skp1–Cullin–F box complex for ubiquitination and degradation.pdf
        • 4.6.4.4.0.0.1.2019.PROteolysis TArgeting Chimeras (PROTACs) — Past, present and future.pdf 4.6.4.4.0.0.1.2019.PROteolysis TArgeting Chimeras (PROTACs) — Past, present and future.pdf
        • 4.6.4.4.0.0.1.Wikipedia.Proteolysis_targeting_chimera.pdf 4.6.4.4.0.0.1.Wikipedia.Proteolysis_targeting_chimera.pdf
      • 4.1.0.0.0.0.1.Drug Activity Phases.pdf 4.1.0.0.0.0.1.Drug Activity Phases.pdf
      • 4.2.0.0.0.0.0.Wikipedia.Pharmacokinetics.pdf 4.2.0.0.0.0.0.Wikipedia.Pharmacokinetics.pdf
    • Sezione 5.0 Sezione 5.0
      • 5.1 5.1
        • 5.1.0.0.0.0.1.2010.How to improve RD productivity. the pharmaceutical industry_s grand challenge.pdf 5.1.0.0.0.0.1.2010.How to improve RD productivity. the pharmaceutical industry_s grand challenge.pdf
        • 5.1.0.0.0.0.1.2013.Patrick.Drug Discovery, Design and Development.pdf 5.1.0.0.0.0.1.2013.Patrick.Drug Discovery, Design and Development.pdf
        • 5.1.0.0.0.0.1.2015.Silverman.Chapter_1.pdf 5.1.0.0.0.0.1.2015.Silverman.Chapter_1.pdf
        • 5.1.0.0.0.0.3.2020.An overview of drug discovery and development.pdf 5.1.0.0.0.0.3.2020.An overview of drug discovery and development.pdf
        • 5.1.0.0.0.0.4.2019.Fexinidazole. First Global Approval.pdf 5.1.0.0.0.0.4.2019.Fexinidazole. First Global Approval.pdf
        • 5.1.0.0.0.0.5.2018.Assessing Pharmaceutical Research and Development Costs.pdf 5.1.0.0.0.0.5.2018.Assessing Pharmaceutical Research and Development Costs.pdf
        • 5.1.0.0.0.0.6.Aptuit-Drug-Design-and-Discovery-eBook.pdf 5.1.0.0.0.0.6.Aptuit-Drug-Design-and-Discovery-eBook.pdf
        • 5.1.0.0.0.0.8.Learn About Drug and Device Approvals - FDA.pdf 5.1.0.0.0.0.8.Learn About Drug and Device Approvals - FDA.pdf
        • 5.1.0.0.0.0.9.2017.Drug discovery and development. Role of basic biological research.pdf 5.1.0.0.0.0.9.2017.Drug discovery and development. Role of basic biological research.pdf
        • 5.1.0.0.0.0.17.Wikipedia.Drug_design.pdf 5.1.0.0.0.0.17.Wikipedia.Drug_design.pdf
        • 5.1.0.0.0.0.20.2019.The Stages of Drug Discovery and Development Proces.pdf 5.1.0.0.0.0.20.2019.The Stages of Drug Discovery and Development Proces.pdf
      • 5.2 5.2
        • 5.2.0.0.0.0.1.2006.Hit discovery and hit-to-lead approaches.pdf 5.2.0.0.0.0.1.2006.Hit discovery and hit-to-lead approaches.pdf
        • 5.2.0.0.0.0.2.2003.Hit and lead generation. beyond high-throughput screening.pdf 5.2.0.0.0.0.2.2003.Hit and lead generation. beyond high-throughput screening.pdf
        • 5.2.1.0.0.0.0.2015.Silverman.Chapter_2.1.pdf 5.2.1.0.0.0.0.2015.Silverman.Chapter_2.1.pdf
        • 5.2.1.0.0.0.1.2004.Facts, Figures and Trends in Lead Generation.pdf 5.2.1.0.0.0.1.2004.Facts, Figures and Trends in Lead Generation.pdf
        • 5.2.1.0.0.0.1.2011.Principles of early drug discovery.pdf 5.2.1.0.0.0.1.2011.Principles of early drug discovery.pdf
        • 5.2.1.0.0.0.1.2013.Patrick.Drug Discovery, Design and Development.pdf 5.2.1.0.0.0.1.2013.Patrick.Drug Discovery, Design and Development.pdf
        • 5.2.1.0.0.0.22.2009.‘Me-Too’ Innovation in Pharmaceutical Markets.pdf 5.2.1.0.0.0.22.2009.‘Me-Too’ Innovation in Pharmaceutical Markets.pdf
        • 5.2.1.0.0.0.22.2020.Me-too pharmaceutical products. History, definitions, examples, and relevance to drug shortages and essential medicines lists.pdf 5.2.1.0.0.0.22.2020.Me-too pharmaceutical products. History, definitions, examples, and relevance to drug shortages and essential medicines lists.pdf
        • 5.2.1.0.0.0.22.2020.Me‐too pharmaceutical products. History, definitions, examples, and relevance to drug shortages and essential medicines lists.pdf 5.2.1.0.0.0.22.2020.Me‐too pharmaceutical products. History, definitions, examples, and relevance to drug shortages and essential medicines lists.pdf
        • 5.2.2.1.0.0.1.2005.ZINC – A Free Database of Commercially Available Compounds for Virtual Screening.pdf 5.2.2.1.0.0.1.2005.ZINC – A Free Database of Commercially Available Compounds for Virtual Screening.pdf
        • 5.2.2.1.0.0.1.2012.ZINC. a free tool to discover chemistry for biology.pdf 5.2.2.1.0.0.1.2012.ZINC. a free tool to discover chemistry for biology.pdf
        • 5.2.2.1.0.0.1.2020.ZINC20—A Free Ultralarge-Scale Chemical Database for Ligand Discovery.pdf 5.2.2.1.0.0.1.2020.ZINC20—A Free Ultralarge-Scale Chemical Database for Ligand Discovery.pdf
        • 5.2.2.2.0.0.1.2015.ChEMBL web services. streamlining access to drug discovery data and utilities.pdf 5.2.2.2.0.0.1.2015.ChEMBL web services. streamlining access to drug discovery data and utilities.pdf
        • 5.2.2.2.0.0.1.2019.ChEMBL. towards direct deposition of bioassay data.pdf 5.2.2.2.0.0.1.2019.ChEMBL. towards direct deposition of bioassay data.pdf
        • 5.2.2.2.0.0.1.Wikipedia.ChEMBL.pdf 5.2.2.2.0.0.1.Wikipedia.ChEMBL.pdf
        • 5.2.2.3.0.0.1.2008.PubChem. Integrated Platform of Small Molecules and Biological Activitiess.pdf 5.2.2.3.0.0.1.2008.PubChem. Integrated Platform of Small Molecules and Biological Activitiess.pdf
        • 5.2.2.3.0.0.1.2020.PubChem in 2021. new data content and improved web interfaces.pdf 5.2.2.3.0.0.1.2020.PubChem in 2021. new data content and improved web interfaces.pdf
        • 5.2.2.3.0.0.1.Wikipedia.PubChem.pdf 5.2.2.3.0.0.1.Wikipedia.PubChem.pdf
        • 5.2.2.4.0.0.1.2007.BindingDB a web-accessible database of experimentally determined protein–ligand binding affinities.pdf 5.2.2.4.0.0.1.2007.BindingDB a web-accessible database of experimentally determined protein–ligand binding affinities.pdf
        • 5.2.2.4.0.0.1.2015.BindingDB in 2015. A public database for medicinal chemistry, computational chemistry and systems pharmacology.pdf 5.2.2.4.0.0.1.2015.BindingDB in 2015. A public database for medicinal chemistry, computational chemistry and systems pharmacology.pdf
        • 5.2.2.4.0.0.1.Wikipedia.BindingDB.pdf 5.2.2.4.0.0.1.Wikipedia.BindingDB.pdf
        • 5.2.2.5.0.0.1.2006.DrugBank. a comprehensive resource for in silico drug discovery and exploration.pdf 5.2.2.5.0.0.1.2006.DrugBank. a comprehensive resource for in silico drug discovery and exploration.pdf
        • 5.2.2.5.0.0.1.2008.DrugBank. a knowledgebase for drugs, drug actions and drug targets.pdf 5.2.2.5.0.0.1.2008.DrugBank. a knowledgebase for drugs, drug actions and drug targets.pdf
        • 5.2.2.5.0.0.1.2018.DrugBank 5.0. a major update to the DrugBank database for 2018.pdf 5.2.2.5.0.0.1.2018.DrugBank 5.0. a major update to the DrugBank database for 2018.pdf
        • 5.2.2.6.0.0.1.2018.The ReFRAME library as a comprehensive drug repurposing library and its application to the treatment of cryptosporidiosis.pdf 5.2.2.6.0.0.1.2018.The ReFRAME library as a comprehensive drug repurposing library and its application to the treatment of cryptosporidiosis.pdf
        • 5.2.3.0.0.0.1.Wikipedia.Hit_to_lead.pdf 5.2.3.0.0.0.1.Wikipedia.Hit_to_lead.pdf
        • 5.2.5.0.0.0.1.2001.Is There a Difference between Leads and Drugs. A Historical Perspective.pdf 5.2.5.0.0.0.1.2001.Is There a Difference between Leads and Drugs. A Historical Perspective.pdf
        • 5.2.5.0.0.0.1.2004.Lead- and drug-like compounds. the rule-of-five revolution.pdf 5.2.5.0.0.0.1.2004.Lead- and drug-like compounds. the rule-of-five revolution.pdf
        • 5.2.5.0.0.0.1.2007.The influence of drug-like concepts on decision-making in medicinal chemistry.pdf 5.2.5.0.0.0.1.2007.The influence of drug-like concepts on decision-making in medicinal chemistry.pdf
        • 5.2.5.0.0.0.1.2009.Efficient Drug Lead Discovery and Optimization.pdf 5.2.5.0.0.0.1.2009.Efficient Drug Lead Discovery and Optimization.pdf
      • 5.3 5.3
      • 5.4 5.4
        • 5.4.1.1.0.0.3.1865.On the Connection between Chemical Constitution and Physiological Action.pdf 5.4.1.1.0.0.3.1865.On the Connection between Chemical Constitution and Physiological Action.pdf
        • 5.4.1.1.0.0.8.2005.Structure-Activity Relationships for the Design of Small-Molecule Inhibitors.pdf 5.4.1.1.0.0.8.2005.Structure-Activity Relationships for the Design of Small-Molecule Inhibitors.pdf
        • 5.4.1.1.0.0.9.2013.On Exploring Structure Activity Relationships.pdf 5.4.1.1.0.0.9.2013.On Exploring Structure Activity Relationships.pdf
        • 5.4.1.1.0.0.11.2018.The Importance of Medicinal Chemistry Knowledge in the Clinical Pharmacist’s Education.pdf 5.4.1.1.0.0.11.2018.The Importance of Medicinal Chemistry Knowledge in the Clinical Pharmacist’s Education.pdf
        • 5.4.1.1.0.0.12.2000.The Practice of Structure Activity Relationships (SAR) in Toxicology.pdf 5.4.1.1.0.0.12.2000.The Practice of Structure Activity Relationships (SAR) in Toxicology.pdf
        • 5.4.1.1.0.0.19.2012.SAR Matrices. Automated Extraction of Information-Rich SAR Tables from Large Compound Data Sets.pdf 5.4.1.1.0.0.19.2012.SAR Matrices. Automated Extraction of Information-Rich SAR Tables from Large Compound Data Sets.pdf
        • 5.4.1.1.0.0.19.2015.Monitoring the Progression of Structure–Activity Relationship Information during Lead Optimization.pdf 5.4.1.1.0.0.19.2015.Monitoring the Progression of Structure–Activity Relationship Information during Lead Optimization.pdf
        • 5.4.1.1.0.0.19.2019.Integrating the Structure–Activity Relationship Matrix Method with Molecular Grid Maps.pdf 5.4.1.1.0.0.19.2019.Integrating the Structure–Activity Relationship Matrix Method with Molecular Grid Maps.pdf
        • 5.4.1.1.0.0.22.2019.Understanding SAR for Trypanosomal Cysteine Protease Inhibitors by Simulations and Free Energy Calculations.pdf 5.4.1.1.0.0.22.2019.Understanding SAR for Trypanosomal Cysteine Protease Inhibitors by Simulations and Free Energy Calculations.pdf
        • 5.4.1.2.1.0.1.2004.Selective Optimization of Side Activities. Another Way for Drug Discovery.pdf 5.4.1.2.1.0.1.2004.Selective Optimization of Side Activities. Another Way for Drug Discovery.pdf
        • 5.4.1.2.1.0.1.2006.Selective optimization of side activities the SOSA approach.pdf 5.4.1.2.1.0.1.2006.Selective optimization of side activities the SOSA approach.pdf
        • 5.4.1.2.1.0.10.2021.Selective Optimization of Side Activities (SOSA) as an Efficient Approach for Generation of New Leads from Old Drugs.pdf 5.4.1.2.1.0.10.2021.Selective Optimization of Side Activities (SOSA) as an Efficient Approach for Generation of New Leads from Old Drugs.pdf
        • 5.4.1.2.2.0.1.2002.Structure-based screening of low-affinity compounds.pdf 5.4.1.2.2.0.1.2002.Structure-based screening of low-affinity compounds.pdf
        • 5.4.1.2.2.0.14.2003.A ‘Rule of Three’ for fragment-based lead discovery.pdf 5.4.1.2.2.0.14.2003.A ‘Rule of Three’ for fragment-based lead discovery.pdf
        • 5.4.1.2.2.0.14.2013.The _rule of three_ for fragment-based drug discovery. where are we now.pdf 5.4.1.2.2.0.14.2013.The _rule of three_ for fragment-based drug discovery. where are we now.pdf
        • 5.4.1.2.2.0.16.2004.Fragment-based lead discovery.pdf 5.4.1.2.2.0.16.2004.Fragment-based lead discovery.pdf
        • 5.4.1.2.2.0.27.2019.A bright future for fragment-based drug discovery. what does it hold.pdf 5.4.1.2.2.0.27.2019.A bright future for fragment-based drug discovery. what does it hold.pdf
        • 5.4.1.2.2.0.29.2020.Application of Fragment-Based Drug Discovery to Versatile Targets.pdf 5.4.1.2.2.0.29.2020.Application of Fragment-Based Drug Discovery to Versatile Targets.pdf
        • 5.4.1.2.3.0.1.1946.Biological Activity of Compounds in Homologous Series.pdf 5.4.1.2.3.0.1.1946.Biological Activity of Compounds in Homologous Series.pdf
        • 5.4.1.2.3.0.5.1946.The Pharmacology of Homologous Series.pdf 5.4.1.2.3.0.5.1946.The Pharmacology of Homologous Series.pdf
        • 5.4.1.2.3.0.7.Wikipedia.Homologation_reaction.pdf 5.4.1.2.3.0.7.Wikipedia.Homologation_reaction.pdf
        • 5.4.1.2.3.0.10.2004.Kowalski Ester Homologation. Application to the Synthesis of β-Amino Esters.pdf 5.4.1.2.3.0.10.2004.Kowalski Ester Homologation. Application to the Synthesis of β-Amino Esters.pdf
        • 5.4.1.2.4.0.1.1926.Zu den O‐Alkylderivaten des Benzoyl‐acetons und den aus ihnen entstehenden Isoxazolen.pdf 5.4.1.2.4.0.1.1926.Zu den O‐Alkylderivaten des Benzoyl‐acetons und den aus ihnen entstehenden Isoxazolen.pdf
        • 5.4.1.2.4.0.1.1934.The Principle of Vinylogy.pdf 5.4.1.2.4.0.1.1934.The Principle of Vinylogy.pdf
        • 5.4.1.2.4.0.6.2003.Molecular Variations in Homologous Series. Vinylogues and Benzologues.pdf 5.4.1.2.4.0.6.2003.Molecular Variations in Homologous Series. Vinylogues and Benzologues.pdf
        • 5.4.1.2.5.0.1.Wikipedia.Stereochemistry.pdf 5.4.1.2.5.0.1.Wikipedia.Stereochemistry.pdf
        • 5.4.1.2.5.0.3.Wikipedia.Cahn–Ingold–Prelog_priority_rules.pdf 5.4.1.2.5.0.3.Wikipedia.Cahn–Ingold–Prelog_priority_rules.pdf
        • 5.4.1.2.5.0.4.2018.Algorithmic Analysis of Cahn–Ingold–Prelog Rules of Stereochemistry.pdf 5.4.1.2.5.0.4.2018.Algorithmic Analysis of Cahn–Ingold–Prelog Rules of Stereochemistry.pdf
        • 5.4.1.2.5.0.7.2000.Mechanism of Action in Thalidomide Teratogenesis.pdf 5.4.1.2.5.0.7.2000.Mechanism of Action in Thalidomide Teratogenesis.pdf
        • 5.4.1.2.5.0.9.2011.Effect of Stereochemistry in Medicinal Chemistry and Drug Discovery.pdf 5.4.1.2.5.0.9.2011.Effect of Stereochemistry in Medicinal Chemistry and Drug Discovery.pdf
        • 5.4.1.2.5.0.10.2011.The Significance of Chirality in Drug Design and Development.pdf 5.4.1.2.5.0.10.2011.The Significance of Chirality in Drug Design and Development.pdf
        • 5.4.1.2.5.0.21.1933.Studies on the relationship between chemical constitution and physiological action.pdf 5.4.1.2.5.0.21.1933.Studies on the relationship between chemical constitution and physiological action.pdf
        • 5.4.1.2.5.0.23.2006.Chiral Drugs. An Overview.pdf 5.4.1.2.5.0.23.2006.Chiral Drugs. An Overview.pdf
        • 5.4.1.2.5.0.27.Wikipedia.Eudysmic_ratio.pdf 5.4.1.2.5.0.27.Wikipedia.Eudysmic_ratio.pdf
        • 5.4.1.2.5.0.28.1978.Stereoselectivity and affinity in molecular pharmacology.original.pdf 5.4.1.2.5.0.28.1978.Stereoselectivity and affinity in molecular pharmacology.original.pdf
        • 5.4.1.2.5.0.28.1978.Stereoselectivity and affinity in molecular pharmacology.pdf 5.4.1.2.5.0.28.1978.Stereoselectivity and affinity in molecular pharmacology.pdf
        • 5.4.1.2.5.0.29.2008.Analysis of Efficacy of Chiral Adrenergic Agonist.pdf 5.4.1.2.5.0.29.2008.Analysis of Efficacy of Chiral Adrenergic Agonist.pdf
        • 5.4.1.2.5.0.30.Structure–function of a1-adrenergic receptor.pdf 5.4.1.2.5.0.30.Structure–function of a1-adrenergic receptor.pdf
        • 5.4.1.2.5.0.33.2014.STEREOCHEMISTRY AND ITS ROLE IN DRUG DESIGN.pdf 5.4.1.2.5.0.33.2014.STEREOCHEMISTRY AND ITS ROLE IN DRUG DESIGN.pdf
        • 5.4.1.2.6.0.1.2019.Structural simplification. an efficient strategy in lead optimization.pdf 5.4.1.2.6.0.1.2019.Structural simplification. an efficient strategy in lead optimization.pdf
        • 5.4.1.2.7.0.1.2014.Conformational restriction. An effective tactic in _follow-on_-based drug discovery.pdf 5.4.1.2.7.0.1.2014.Conformational restriction. An effective tactic in _follow-on_-based drug discovery.pdf
        • 5.4.1.2.7.0.9.2013.An Introduction to Medicinal Chemistry.Rigidification of the structure.pdf 5.4.1.2.7.0.9.2013.An Introduction to Medicinal Chemistry.Rigidification of the structure.pdf
        • 5.4.1.2.8.0.1.2008.Homo and Heterodimer Ligands. the Twin Drug Approach.pdf 5.4.1.2.8.0.1.2008.Homo and Heterodimer Ligands. the Twin Drug Approach.pdf
        • 5.4.1.2.8.0.18.2005.Designed Multiple Ligands. An Emerging Drug Discovery Paradigm.pdf 5.4.1.2.8.0.18.2005.Designed Multiple Ligands. An Emerging Drug Discovery Paradigm.pdf
        • 5.4.1.2.8.0.32.2006.The Physicochemical Challenges of Designing Multiple Ligands.pdf 5.4.1.2.8.0.32.2006.The Physicochemical Challenges of Designing Multiple Ligands.pdf
        • 5.4.1.2.8.0.33.2008.Dimeric Approaches to Anti-Cancer Chemotherapeutics.pdf 5.4.1.2.8.0.33.2008.Dimeric Approaches to Anti-Cancer Chemotherapeutics.pdf
        • 5.4.1.2.8.0.35.2019.Double the Chemistry, Double the Fun.pdf 5.4.1.2.8.0.35.2019.Double the Chemistry, Double the Fun.pdf
        • 5.4.1.2.9.0.1.2012.The Use of Bioisosterism in Drug Design and MolecularModification.pdf 5.4.1.2.9.0.1.2012.The Use of Bioisosterism in Drug Design and MolecularModification.pdf
        • 5.4.1.2.9.0.4.1919.Isomorphism, isosterism and covalence.pdf 5.4.1.2.9.0.4.1919.Isomorphism, isosterism and covalence.pdf
        • 5.4.1.2.9.0.8.1925.Über Bau und Grösse der Nichtmetallhydride.pdf 5.4.1.2.9.0.8.1925.Über Bau und Grösse der Nichtmetallhydride.pdf
        • 5.4.1.2.9.0.10.1932.Uber Pseudoatome.pdf 5.4.1.2.9.0.10.1932.Uber Pseudoatome.pdf
        • 5.4.1.2.9.0.10.1935.Zusammenhänge zwischen Konstitution und Wirkung bei Pyrazolonderivaten.pdf 5.4.1.2.9.0.10.1935.Zusammenhänge zwischen Konstitution und Wirkung bei Pyrazolonderivaten.pdf
        • 5.4.1.2.9.0.12.1950.Influence of Isosteric Replacements upon Biological Activity.pdf 5.4.1.2.9.0.12.1950.Influence of Isosteric Replacements upon Biological Activity.pdf
        • 5.4.1.2.9.0.15.1996.Bioisosterism.  A Rational Approach in Drug Design.pdf 5.4.1.2.9.0.15.1996.Bioisosterism.  A Rational Approach in Drug Design.pdf
        • 5.4.1.2.9.0.26.2020.Craig plot 2.0. an interactive navigation in the substituent bioisosteric space.pdf 5.4.1.2.9.0.26.2020.Craig plot 2.0. an interactive navigation in the substituent bioisosteric space.pdf
        • 5.4.1.2.10.0.1.2004.Scaffold hopping.pdf 5.4.1.2.10.0.1.2004.Scaffold hopping.pdf
        • 5.4.1.2.10.0.5.2006.On scaffolds and hopping in medicinal chemistry.pdf 5.4.1.2.10.0.5.2006.On scaffolds and hopping in medicinal chemistry.pdf
        • 5.4.1.2.10.0.6.2017.Recent Advances in Scaffold Hopping.pdf 5.4.1.2.10.0.6.2017.Recent Advances in Scaffold Hopping.pdf
        • 5.4.2.0.0.0.0.2018.TOOLS FOR LIGAND BASED DRUG DISCOVERY.pdf 5.4.2.0.0.0.0.2018.TOOLS FOR LIGAND BASED DRUG DISCOVERY.pdf
        • 5.4.2.0.0.0.0.Wikipedia.Pharmacophore.pdf 5.4.2.0.0.0.0.Wikipedia.Pharmacophore.pdf
        • 5.4.2.2.1.0.0.2011.Pharmacophores for medicinal chemists.pdf 5.4.2.2.1.0.0.2011.Pharmacophores for medicinal chemists.pdf
        • 5.4.2.2.1.0.1.2013.Glossary of Terms Used in Medicinal Chemistry.pdf 5.4.2.2.1.0.1.2013.Glossary of Terms Used in Medicinal Chemistry.pdf
        • 5.4.2.2.1.0.1.2014.Glossary of Terms Used in Medicinal Chemistry_II.pdf 5.4.2.2.1.0.1.2014.Glossary of Terms Used in Medicinal Chemistry_II.pdf
        • 5.4.2.2.1.0.5.2003.Pharmacophore Discovery – Lessons Learned.pdf 5.4.2.2.1.0.5.2003.Pharmacophore Discovery – Lessons Learned.pdf
        • 5.4.2.2.1.0.11.2017.Privileged Structures Revisited.pdf 5.4.2.2.1.0.11.2017.Privileged Structures Revisited.pdf
        • 5.4.2.2.1.0.27.2004.From magic bullets to designed multiple ligands.pdf 5.4.2.2.1.0.27.2004.From magic bullets to designed multiple ligands.pdf
        • 5.4.2.2.1.0.37.2010.Pharmacophore modeling and applications in drug discovery. challenges and recent advances.Pharmacophore.1.pdf 5.4.2.2.1.0.37.2010.Pharmacophore modeling and applications in drug discovery. challenges and recent advances.Pharmacophore.1.pdf
        • 5.4.2.2.2.0.0.2003.General Introduction to QSAR.pdf 5.4.2.2.2.0.0.2003.General Introduction to QSAR.pdf
        • 5.4.2.2.2.1.4.1952.Polar and Steric Substituent Constants for Aliphatic and o-Benzoate Groups from Rates of Esterification and Hydrolysis of Esters.pdf 5.4.2.2.2.1.4.1952.Polar and Steric Substituent Constants for Aliphatic and o-Benzoate Groups from Rates of Esterification and Hydrolysis of Esters.pdf
        • 5.4.2.2.2.1.7.1951.Further Evidence For a Chemical Reaction Between Plant Growth-Regulators and a Plant Substrate.pdf 5.4.2.2.2.1.7.1951.Further Evidence For a Chemical Reaction Between Plant Growth-Regulators and a Plant Substrate.pdf
        • 5.4.2.2.2.2.1.1951.Further Evidence For a Chemical Reaction Between Plant Growth-Regulators and a Plant Substrate.pdf 5.4.2.2.2.2.1.1951.Further Evidence For a Chemical Reaction Between Plant Growth-Regulators and a Plant Substrate.pdf
        • 5.4.2.2.2.2.1.1955.Chemical Constitution as Related to Grwoth Regulator Action.pdf 5.4.2.2.2.2.1.1955.Chemical Constitution as Related to Grwoth Regulator Action.pdf
        • 5.4.2.2.2.2.1.1963.The Correlation of Biological Activity of Plant Growth Regulators and Chloromycetines with Hammett Constants and logP.pdf 5.4.2.2.2.2.1.1963.The Correlation of Biological Activity of Plant Growth Regulators and Chloromycetines with Hammett Constants and logP.pdf
        • 5.4.2.2.2.2.2.1964.p-σ-π Analysis. A Method for the Correlation of Biological Activity and Chemical Structure.pdf 5.4.2.2.2.2.2.1964.p-σ-π Analysis. A Method for the Correlation of Biological Activity and Chemical Structure.pdf
        • 5.4.2.2.2.2.3.1967.The Use of Substituent Constants in Drug Design.pdf 5.4.2.2.2.2.3.1967.The Use of Substituent Constants in Drug Design.pdf
        • 5.4.2.2.2.2.4.1968.Physicochemical Parameters in Drug Design.pdf 5.4.2.2.2.2.4.1968.Physicochemical Parameters in Drug Design.pdf
        • 5.4.2.2.2.2.5.1967.Structure-Activity Relationship in the Auxin Activity of Mono-Substituted Phenylacetic Acids.pdf 5.4.2.2.2.2.5.1967.Structure-Activity Relationship in the Auxin Activity of Mono-Substituted Phenylacetic Acids.pdf
        • 5.4.2.2.2.2.6.1969.A Quantitative approach to biochemical structure-activity relationships.pdf 5.4.2.2.2.2.6.1969.A Quantitative approach to biochemical structure-activity relationships.pdf
        • 5.4.2.2.2.3.1.1964.A Mathematical Contribution to Structure-Activity Studies.pdf 5.4.2.2.2.3.1.1964.A Mathematical Contribution to Structure-Activity Studies.pdf
        • 5.4.2.2.2.4.1.1971.Structure-activity study of phenethylamines as substrates of biosynthetic enzymes of sympathetic transmitters.pdf 5.4.2.2.2.4.1.1971.Structure-activity study of phenethylamines as substrates of biosynthetic enzymes of sympathetic transmitters.pdf
        • 5.4.2.2.2.4.2.1988.Free Wilson Analysis. Theory, Applications and its Relationship to Hansch Analysis.pdf 5.4.2.2.2.4.2.1988.Free Wilson Analysis. Theory, Applications and its Relationship to Hansch Analysis.pdf
        • 5.4.2.2.2.4.3.1998.A Combined Hansch-Free‐Wilson Approach.pdf 5.4.2.2.2.4.3.1998.A Combined Hansch-Free‐Wilson Approach.pdf
        • 5.4.2.2.2.6.1.2012.Hansch analysis 50 years on.pdf 5.4.2.2.2.6.1.2012.Hansch analysis 50 years on.pdf
        • 5.4.2.2.2.6.6.2014.QSAR Modeling. Where Have You Been. Where Are You Going To.pdf 5.4.2.2.2.6.6.2014.QSAR Modeling. Where Have You Been. Where Are You Going To.pdf
        • 5.4.2.2.2.6.8.2013.Beyond the Scope of Free-Wilson Analysis. Building Interpretable QSAR Models with Machine Learning Algorithms.pdf 5.4.2.2.2.6.8.2013.Beyond the Scope of Free-Wilson Analysis. Building Interpretable QSAR Models with Machine Learning Algorithms.pdf
        • 5.4.2.2.2.6.9.2019.Conformational Effects on Physical-Organic Descriptors. The Case of Sterimol Steric Parameters.pdf 5.4.2.2.2.6.9.2019.Conformational Effects on Physical-Organic Descriptors. The Case of Sterimol Steric Parameters.pdf
        • 5.4.2.2.2.6.10.1987.Principal component analysis.pdf 5.4.2.2.2.6.10.1987.Principal component analysis.pdf
        • 5.4.2.2.2.6.10.2020.QSPR-QSAR. State-of-Art, Weirdness, the Future.pdf 5.4.2.2.2.6.10.2020.QSPR-QSAR. State-of-Art, Weirdness, the Future.pdf
        • 5.4.2.2.2.6.12.1987.Multi‐way principal components‐and PLS‐analysis.pdf 5.4.2.2.2.6.12.1987.Multi‐way principal components‐and PLS‐analysis.pdf
        • 5.4.2.2.2.6.13.Partial Least Squares (PLS). Its strengths and limitations.pdf 5.4.2.2.2.6.13.Partial Least Squares (PLS). Its strengths and limitations.pdf
        • 5.4.2.2.2.6.14.2006.On outliers and activity cliffs--why QSAR often disappoints.pdf 5.4.2.2.2.6.14.2006.On outliers and activity cliffs--why QSAR often disappoints.pdf
        • 5.4.2.2.2.6.15.2007.OECD Guidance Document on the Validation of (Q)SAR Models.pdf 5.4.2.2.2.6.15.2007.OECD Guidance Document on the Validation of (Q)SAR Models.pdf
        • 5.4.2.2.2.6.16.2009.Basic validation procedures for regression models in QSAR and QSPR studies. theory and application.pdf 5.4.2.2.2.6.16.2009.Basic validation procedures for regression models in QSAR and QSPR studies. theory and application.pdf
        • 5.4.2.2.2.6.16.2009.Basic validation procedures for regression models in QSAR and QSPR studies. theory and application.SI.pdf 5.4.2.2.2.6.16.2009.Basic validation procedures for regression models in QSAR and QSPR studies. theory and application.SI.pdf
        • 5.4.2.2.2.6.17.2010.Best Practices for QSAR Model Development, Validation, and Exploitation.pdf 5.4.2.2.2.6.17.2010.Best Practices for QSAR Model Development, Validation, and Exploitation.pdf
        • 5.4.2.2.2.7.12.1970.The assumptions of the linear regression model.pdf 5.4.2.2.2.7.12.1970.The assumptions of the linear regression model.pdf
        • 5.4.2.2.2.7.14.1971.Interdependence between physical parameters and selection of substituent groups for correlation studies.pdf 5.4.2.2.2.7.14.1971.Interdependence between physical parameters and selection of substituent groups for correlation studies.pdf
        • 5.4.2.2.2.7.15.1979.Chance factors in studies of quantitative structure-activity relationships.pdf 5.4.2.2.2.7.15.1979.Chance factors in studies of quantitative structure-activity relationships.pdf
        • 5.4.2.2.2.7.22.2018.Mordred. a molecular descriptor calculator.pdf 5.4.2.2.2.7.22.2018.Mordred. a molecular descriptor calculator.pdf
        • 5.4.2.2.2.7.29.1984.The Collinearity Problem in Linear Regression. The Partial Least Squares (PLS) Approach to Generalized Inverses.pdf 5.4.2.2.2.7.29.1984.The Collinearity Problem in Linear Regression. The Partial Least Squares (PLS) Approach to Generalized Inverses.pdf
        • 5.4.2.2.2.7.31.1993.Partial Least Squares (PLS). Its strengths and limitations.pdf 5.4.2.2.2.7.31.1993.Partial Least Squares (PLS). Its strengths and limitations.pdf
        • 5.4.2.2.2.7.31.1993.The Probability of Chance Correlation Using Partial Least Squares (PLS).pdf 5.4.2.2.2.7.31.1993.The Probability of Chance Correlation Using Partial Least Squares (PLS).pdf
        • 5.4.2.2.2.7.x.2005.Assessing QSAR Limitations – A Regulatory Perspective.pdf 5.4.2.2.2.7.x.2005.Assessing QSAR Limitations – A Regulatory Perspective.pdf
        • 5.4.2.2.2.8.6.1988.Comparative Molecular Field Analysis (CoMFA).CoMFA.1.pdf 5.4.2.2.2.8.6.1988.Comparative Molecular Field Analysis (CoMFA).CoMFA.1.pdf
        • 5.4.2.2.2.8.17.2001.Flexible Alignment of Small Molecules.pdf 5.4.2.2.2.8.17.2001.Flexible Alignment of Small Molecules.pdf
        • 5.4.2.2.2.8.18.2009.ShaEP. Molecular Overlay Based on Shape and Electrostatic Potential.pdf 5.4.2.2.2.8.18.2009.ShaEP. Molecular Overlay Based on Shape and Electrostatic Potential.pdf
        • 5.4.2.2.2.8.19.2010.3D-QSAR in drug design--a review.pdf 5.4.2.2.2.8.19.2010.3D-QSAR in drug design--a review.pdf
        • 5.4.2.2.2.8.20.2020.Teaching and Learning Computational Drug Design.pdf 5.4.2.2.2.8.20.2020.Teaching and Learning Computational Drug Design.pdf
        • 5.4.2.3.0.0.2.2000.Structure-based 3D-QSAR—merging the accuracy of structure-based alignments with ligand-based methods.pdf 5.4.2.3.0.0.2.2000.Structure-based 3D-QSAR—merging the accuracy of structure-based alignments with ligand-based methods.pdf
        • 5.4.2.3.0.0.3.The development of a simple empirical scoring function.pdf 5.4.2.3.0.0.3.The development of a simple empirical scoring function.pdf
        • 5.4.2.3.0.0.4.Docking and scoring in virtual screening for drug discovery. methods and applications.pdf 5.4.2.3.0.0.4.Docking and scoring in virtual screening for drug discovery. methods and applications.pdf
        • 5.4.2.3.0.0.5.Protein-Ligand Docking in the New Millennium – A Retrospective of 10 Years in the Field.pdf 5.4.2.3.0.0.5.Protein-Ligand Docking in the New Millennium – A Retrospective of 10 Years in the Field.pdf
        • 5.4.2.3.0.0.6.Prediction of Drug Binding Affinities by Comparative Binding Energy Analysis.COMBINE.1.1995.pdf 5.4.2.3.0.0.6.Prediction of Drug Binding Affinities by Comparative Binding Energy Analysis.COMBINE.1.1995.pdf
        • 5.4.2.3.0.0.7.Comparative Binding Energy Analysis Considering Multiple Receptors. A Step toward 3D-QSAR Models for Multiple Targets.pdf 5.4.2.3.0.0.7.Comparative Binding Energy Analysis Considering Multiple Receptors. A Step toward 3D-QSAR Models for Multiple Targets.pdf
        • 5.4.2.3.0.0.8.2005.Proteochemometrics. A Tool for Modeling the Molecular Interaction Space.pdf 5.4.2.3.0.0.8.2005.Proteochemometrics. A Tool for Modeling the Molecular Interaction Space.pdf
        • 5.4.2.3.0.0.9.2019.Proteochemometrics – recent developments in bioactivity and selectivity modeling.pdf 5.4.2.3.0.0.9.2019.Proteochemometrics – recent developments in bioactivity and selectivity modeling.pdf
        • 5.4.2.3.0.0.10.2016.Role of Molecular Dynamics and Related Methods in Drug Discovery.pdf 5.4.2.3.0.0.10.2016.Role of Molecular Dynamics and Related Methods in Drug Discovery.pdf
        • 5.4.2.3.0.0.11.2014.Structure-based three-dimensional pharmacophores as an alternative to traditional methodologies.pdf 5.4.2.3.0.0.11.2014.Structure-based three-dimensional pharmacophores as an alternative to traditional methodologies.pdf
        • 5.4.2.3.0.0.12.2018.Homology modeling in drug discover.pdf 5.4.2.3.0.0.12.2018.Homology modeling in drug discover.pdf
    • Sezione 6.0 Sezione 6.0
      • 6.1 6.1
        • 6.1.0.0.0.0.1.Wikipedia.Anatomical_Therapeutic_Chemical_Classification_System.pdf 6.1.0.0.0.0.1.Wikipedia.Anatomical_Therapeutic_Chemical_Classification_System.pdf
        • 6.1.0.0.0.0.4.ATC.WHOCC - Structure and principles.pdf 6.1.0.0.0.0.4.ATC.WHOCC - Structure and principles.pdf
        • 6.1.0.0.0.0.6.Anatomical Therapeutic Chemical (ATC) Classification.pdf 6.1.0.0.0.0.6.Anatomical Therapeutic Chemical (ATC) Classification.pdf
      • 6.2 6.2
        • 6.2.0.0.0.0.1.Rapporto_Antibiotici_2019.pdf 6.2.0.0.0.0.1.Rapporto_Antibiotici_2019.pdf
        • 6.2.0.0.0.0.1.Wikipedia.Drug_nomenclature.pdf 6.2.0.0.0.0.1.Wikipedia.Drug_nomenclature.pdf
      • 6.3 6.3
        • 6.3.0 6.3.0
          • 6.3.0.0.0.0.5.Pfizer_in_Anti-Infectives.pdf 6.3.0.0.0.0.5.Pfizer_in_Anti-Infectives.pdf
          • 6.3.0.0.0.0.7.2015.Accelerating progress on HIV, tuberculosis, malaria, hepatitis and neglected tropical diseases.pdf 6.3.0.0.0.0.7.2015.Accelerating progress on HIV, tuberculosis, malaria, hepatitis and neglected tropical diseases.pdf
          • 6.3.0.0.0.0.10.2015.Anti-infective Agents.pdf 6.3.0.0.0.0.10.2015.Anti-infective Agents.pdf
          • 6.3.0.0.0.0.11.Wikipedia.Infection.pdf 6.3.0.0.0.0.11.Wikipedia.Infection.pdf
        • 6.3.1 6.3.1
          • 6.3.1.1 6.3.1.1
            • 6.3.1.1.0.0.5.2010.A brief history of the antibiotic era. lessons learned and challenges for the future.pdf 6.3.1.1.0.0.5.2010.A brief history of the antibiotic era. lessons learned and challenges for the future.pdf
            • 6.3.1.1.0.0.6.2016.Antibiotics. from prehistory to the present day.pdf 6.3.1.1.0.0.6.2016.Antibiotics. from prehistory to the present day.pdf
            • 6.3.1.1.0.0.8.1980.Tetracycline-labeled human bone from ancient Sudanese Nubia (A.D. 350).pdf 6.3.1.1.0.0.8.1980.Tetracycline-labeled human bone from ancient Sudanese Nubia (A.D. 350).pdf
            • 6.3.1.1.0.0.14.2019.Antibiotic Discovery. Where Have We Come from, Where Do We Go.pdf 6.3.1.1.0.0.14.2019.Antibiotic Discovery. Where Have We Come from, Where Do We Go.pdf
            • 6.3.1.1.0.0.15.2019.Antibiotics. past, present and future.pdf 6.3.1.1.0.0.15.2019.Antibiotics. past, present and future.pdf
            • 6.3.1.1.0.0.16.2015.A new antibiotic kills pathogens without detectable resistance.pdf 6.3.1.1.0.0.16.2015.A new antibiotic kills pathogens without detectable resistance.pdf
            • 6.3.1.1.0.0.16.2017.History of antimicrobial drug discovery. Major classes and health impact.pdf 6.3.1.1.0.0.16.2017.History of antimicrobial drug discovery. Major classes and health impact.pdf
            • 6.3.1.1.0.0.17.2019.Antibacterial Aromatic Polyketides Incorporating the Unusual Amino Acid Enduracididine.pdf 6.3.1.1.0.0.17.2019.Antibacterial Aromatic Polyketides Incorporating the Unusual Amino Acid Enduracididine.pdf
            • 6.3.1.1.0.0.20.2012.The Antibacterial Drug Discovery.pdf 6.3.1.1.0.0.20.2012.The Antibacterial Drug Discovery.pdf
          • 6.3.1.2 6.3.1.2
          • 6.3.1.3 6.3.1.3
          • 6.3.1.4 6.3.1.4
        • 6.3.2 6.3.2
        • 6.3.3 6.3.3
          • Video Video
            • 6.3.3.0.0.0.0.How The Body Reacts To Tuberculosis.mp4 6.3.3.0.0.0.0.How The Body Reacts To Tuberculosis.mp4
            • 6.3.3.0.0.0.0.Things to Know About TB.mp4 6.3.3.0.0.0.0.Things to Know About TB.mp4
            • 6.3.3.0.0.0.0.Tuberculosis TB Transmission and Pathogenesis Video.mp4 6.3.3.0.0.0.0.Tuberculosis TB Transmission and Pathogenesis Video.mp4
            • 6.3.3.0.0.0.22.Isoniazid _ Mechanism of Action _ Pharmacology.mp4 6.3.3.0.0.0.22.Isoniazid _ Mechanism of Action _ Pharmacology.mp4
            • Tuberculosis_360p.mp4 Tuberculosis_360p.mp4
          • 6.3.3.0.0.0.1.1998.Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence.pdf 6.3.3.0.0.0.1.1998.Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence.pdf
          • 6.3.3.0.0.0.3.2019.The Mycobacterium tuberculosis capsule. a cell structure with key implications in pathogenesis.pdf 6.3.3.0.0.0.3.2019.The Mycobacterium tuberculosis capsule. a cell structure with key implications in pathogenesis.pdf
          • 6.3.3.0.0.0.8.2018.Drug targets exploited in Mycobacterium tuberculosis.pdf 6.3.3.0.0.0.8.2018.Drug targets exploited in Mycobacterium tuberculosis.pdf
          • 6.3.3.0.0.0.14.2003.The current anti-TB drug research and development pipeline.pdf 6.3.3.0.0.0.14.2003.The current anti-TB drug research and development pipeline.pdf
          • 6.3.3.0.0.0.17.2011.The Medicinal Chemistry of Tuberculosis Chemotherapy.pdf 6.3.3.0.0.0.17.2011.The Medicinal Chemistry of Tuberculosis Chemotherapy.pdf
          • 6.3.3.0.0.0.33.2019.An overview of new antitubercular drugs, drug candidates, and their targets.pdf 6.3.3.0.0.0.33.2019.An overview of new antitubercular drugs, drug candidates, and their targets.pdf
          • 6.3.3.0.0.0.48.2021.Riminophenazine Derivatives as Potential Antituberculosis Agents. Synthesis, Biological, and Electrochemical Evaluations.pdf 6.3.3.0.0.0.48.2021.Riminophenazine Derivatives as Potential Antituberculosis Agents. Synthesis, Biological, and Electrochemical Evaluations.pdf
          • 6.3.3.0.0.0.60.2014.Preparation method for bedaquiline.pdf 6.3.3.0.0.0.60.2014.Preparation method for bedaquiline.pdf
          • 6.3.3.0.0.0.61.2015.An elegant synthesis of indoloquinoline alkaloid cryptotackieine via Vilsmeier-Haack approach.pdf 6.3.3.0.0.0.61.2015.An elegant synthesis of indoloquinoline alkaloid cryptotackieine via Vilsmeier-Haack approach.pdf
          • 6.3.3.0.0.0.70.2006.OPC-67683, a Nitro-Dihydro-Imidazooxazole Derivative with Promising Action against Tuberculosis.pdf 6.3.3.0.0.0.70.2006.OPC-67683, a Nitro-Dihydro-Imidazooxazole Derivative with Promising Action against Tuberculosis.pdf
          • 6.3.3.0.0.0.81.2006.Synthesis and Antituberculosis Activity of a Novel Series of Optically Active oxazoles.pdf 6.3.3.0.0.0.81.2006.Synthesis and Antituberculosis Activity of a Novel Series of Optically Active oxazoles.pdf
          • 6.3.3.0.0.0.83.2011.Synthetic intermediate of oxazole compound and method for producing the same.pdf 6.3.3.0.0.0.83.2011.Synthetic intermediate of oxazole compound and method for producing the same.pdf
          • 6.3.3.0.0.0.85.1980.The first practical method for asymmetric epoxidation.pdf 6.3.3.0.0.0.85.1980.The first practical method for asymmetric epoxidation.pdf
          • 6.3.3.0.0.0.85.1984.Crystal structures of two titanium tartrate asymmetric epoxidation catalysts.pdf 6.3.3.0.0.0.85.1984.Crystal structures of two titanium tartrate asymmetric epoxidation catalysts.pdf
          • 6.3.3.0.0.0.87.1993.1,1′-(azodicarbonyl)dipiperidine-tributylphosphine, a new reagent system for mitsunobu reaction.pdf 6.3.3.0.0.0.87.1993.1,1′-(azodicarbonyl)dipiperidine-tributylphosphine, a new reagent system for mitsunobu reaction.pdf
          • 2011.Recent Progress in the Discovery and Development of 2-Nitroimidazooxazines and 6-Nitroimidazooxazoles.pdf 2011.Recent Progress in the Discovery and Development of 2-Nitroimidazooxazines and 6-Nitroimidazooxazoles.pdf
          • 2015.Delamanid. A Review of Its Use in Patients with Multidrug-Resistant Tuberculosis.pdf 2015.Delamanid. A Review of Its Use in Patients with Multidrug-Resistant Tuberculosis.pdf
          • 2015.Synthesis of new generation triazolyl and isoxazolyl containing 6-nitro-2,3-dihydroimidazooxazoles as anti-TB.pdf 2015.Synthesis of new generation triazolyl and isoxazolyl containing 6-nitro-2,3-dihydroimidazooxazoles as anti-TB.pdf
          • 2017.Antitubercular Nitroimidazoles Revisited. Synthesis and Activity of the Authentic 3-Nitro Isomer of Pretomanid.pdf 2017.Antitubercular Nitroimidazoles Revisited. Synthesis and Activity of the Authentic 3-Nitro Isomer of Pretomanid.pdf
        • 6.3.4 6.3.4
          • Video Video
            • 6.3.4.1.0.0.1a.PROTOZOA CLASSIFICATION.mp4 6.3.4.1.0.0.1a.PROTOZOA CLASSIFICATION.mp4
            • 6.3.4.1.0.0.1b.Protozoa Compilation  Protozoi.mp4 6.3.4.1.0.0.1b.Protozoa Compilation Protozoi.mp4
            • 6.3.4.1.0.0.1c.Parasites Protozoa classification structure life cycle.mp4 6.3.4.1.0.0.1c.Parasites Protozoa classification structure life cycle.mp4
            • 6.3.4.1.2.0.34.Antimalarial drugs animation Chloroquine.mp4 6.3.4.1.2.0.34.Antimalarial drugs animation Chloroquine.mp4
          • 6.3.4.0.0.0.7.1980.Ivermectin, a new broad-spectrum antiparasitic agent.pdf 6.3.4.0.0.0.7.1980.Ivermectin, a new broad-spectrum antiparasitic agent.pdf
          • 6.3.4.0.0.0.8b.2021.Ivermectin. An Anthelmintic, an Insecticide, and Much More.pdf 6.3.4.0.0.0.8b.2021.Ivermectin. An Anthelmintic, an Insecticide, and Much More.pdf
          • 6.3.4.0.0.0.9.2011.Antiparasitic Therapy.pdf 6.3.4.0.0.0.9.2011.Antiparasitic Therapy.pdf
          • 6.3.4.0.0.0.9.2020.Antiparasitic Drugs - StatPearls - NCBI Bookshelf.pdf 6.3.4.0.0.0.9.2020.Antiparasitic Drugs - StatPearls - NCBI Bookshelf.pdf
          • 6.3.4.1.2.0.46.2010.Next-Generation Antimalarial Drugs.pdf 6.3.4.1.2.0.46.2010.Next-Generation Antimalarial Drugs.pdf
          • 6.3.4.1.3.0.29.2018.Review on structural-activity relationship (SAR) using antimalarial drug design as a case study.pdf 6.3.4.1.3.0.29.2018.Review on structural-activity relationship (SAR) using antimalarial drug design as a case study.pdf
          • 6.3.4.1.4.0.3.2008.Confirmation of the Rabe–Kindler Conversion of d-Quinotoxine Into Quinine.pdf 6.3.4.1.4.0.3.2008.Confirmation of the Rabe–Kindler Conversion of d-Quinotoxine Into Quinine.pdf
          • 6.3.4.1.4.0.4.2001.The First Stereoselective Total Synthesis of Quinine.pdf 6.3.4.1.4.0.4.2001.The First Stereoselective Total Synthesis of Quinine.pdf
          • 6.3.4.1.4.0.4.2018.C−H Activation Enables a Concise Total Synthesis of Quinine and Analogues.pdf 6.3.4.1.4.0.4.2018.C−H Activation Enables a Concise Total Synthesis of Quinine and Analogues.pdf
          • 6.3.4.1.4.0.5.1949.CHLOROQUINE MANUFACTURE.pdf 6.3.4.1.4.0.5.1949.CHLOROQUINE MANUFACTURE.pdf
          • 6.3.4.1.4.0.5.2001.One pot synthesis of  a mefloquine intermediate.US6500955.pdf 6.3.4.1.4.0.5.2001.One pot synthesis of a mefloquine intermediate.US6500955.pdf
          • 6.3.4.1.4.0.5.2011.Asymmetric Total Synthesis of the Antimalarial Drug (+)-Mefloquine Hydrochloride.pdf 6.3.4.1.4.0.5.2011.Asymmetric Total Synthesis of the Antimalarial Drug (+)-Mefloquine Hydrochloride.pdf
          • 6.3.4.1.4.0.5.QUINOLINE COMPOUND AND PROCESS OF MAKEING THE SAME.US2233970.pdf 6.3.4.1.4.0.5.QUINOLINE COMPOUND AND PROCESS OF MAKEING THE SAME.US2233970.pdf
          • 6.3.4.1.4.0.13.1952.Process for the preparation and manufacture of primaquine.US2604474.pdf 6.3.4.1.4.0.13.1952.Process for the preparation and manufacture of primaquine.US2604474.pdf
          • 6.3.4.1.4.0.13.2005.Primaquine Diphosphate. Comprehensive Profile.pdf 6.3.4.1.4.0.13.2005.Primaquine Diphosphate. Comprehensive Profile.pdf
          • 6.3.4.1.4.0.14.1955.Synthesis of Primaquine and Certain of its Analogs.pdf 6.3.4.1.4.0.14.1955.Synthesis of Primaquine and Certain of its Analogs.pdf
          • 6.3.4.1.4.0.16.Skraup_reaction.pdf 6.3.4.1.4.0.16.Skraup_reaction.pdf
          • 6.3.4.1.4.0.17.1880.Eine Synthese des quinolins.pdf 6.3.4.1.4.0.17.1880.Eine Synthese des quinolins.pdf
          • 6.3.4.1.4.0.18.1887.Ueber eine Darstellungsweise primärer Amine aus den entsprechenden Halogenverbindungen.pdf 6.3.4.1.4.0.18.1887.Ueber eine Darstellungsweise primärer Amine aus den entsprechenden Halogenverbindungen.pdf
        • 6.3.5 6.3.5
          • Video Video
            • 6.3.5.3.2.0.6.HIV Mechanisms of NNRTI Resistance_360p.mp4 6.3.5.3.2.0.6.HIV Mechanisms of NNRTI Resistance_360p.mp4
          • 6.3.5.3.3.0.1.2012.Transition states of native and drug-resistant HIV-1 protease are the same.pdf 6.3.5.3.3.0.1.2012.Transition states of native and drug-resistant HIV-1 protease are the same.pdf
          • 6.3.5.3.7.1.18.2006.Title Iridium-catalyzed borylation of arenes and heteroarenes via C-H activation.pdf 6.3.5.3.7.1.18.2006.Title Iridium-catalyzed borylation of arenes and heteroarenes via C-H activation.pdf
          • 6.3.5.3.7.2.7.2006.Meldrum_s Acid in Multicomponent Reactions.pdf 6.3.5.3.7.2.7.2006.Meldrum_s Acid in Multicomponent Reactions.pdf
          • 6.3.5.3.7.2.8.2009.Dimethylformamide dimethyl acetal as a building block in heterocyclic synthesis.pdf 6.3.5.3.7.2.8.2009.Dimethylformamide dimethyl acetal as a building block in heterocyclic synthesis.pdf
          • 6.3.5.3.7.2.13.1981.N-methoxy-n-methylamides as effective acylating agents.pdf 6.3.5.3.7.2.13.1981.N-methoxy-n-methylamides as effective acylating agents.pdf
          • 6.3.5.3.7.2.14.1999.100 Years of Baeyer–Villiger Oxidations.pdf 6.3.5.3.7.2.14.1999.100 Years of Baeyer–Villiger Oxidations.pdf
          • 6.3.5.3.7.3.3.2004.Novel arylsulfonamides possessing sub-picomolar HIV protease activities.pdf 6.3.5.3.7.3.3.2004.Novel arylsulfonamides possessing sub-picomolar HIV protease activities.pdf
          • 6.3.5.3.7.3.7.2004.Stereoselective Photochemical 1,3-Dioxolane.pdf 6.3.5.3.7.3.7.2004.Stereoselective Photochemical 1,3-Dioxolane.pdf
          • 6.3.5.4.3.0.5.2002.The Uronium-Guanidinium Peptide Coupling Reagents. Finally the True Uronium Salts.pdf 6.3.5.4.3.0.5.2002.The Uronium-Guanidinium Peptide Coupling Reagents. Finally the True Uronium Salts.pdf
          • 6.3.5.4.3.0.6b.1899.Barbier reaction 1.jpg
          • 6.3.5.4.3.0.6b.1899.Barbier reaction 2.jpg
          • 6.3.5.4.3.0.6b.1899.Barbier reaction 5.jpg
          • 2016.HIV reservoirs. what, where and how to target them.pdf 2016.HIV reservoirs. what, where and how to target them.pdf
          • 2019.Long-Acting HIV Drugs for Treatment and Prevention.pdf 2019.Long-Acting HIV Drugs for Treatment and Prevention.pdf
          • 2020.Antiretroviral Drugs for Treatment and Prevention of HIV Infection in Adults.pdf 2020.Antiretroviral Drugs for Treatment and Prevention of HIV Infection in Adults.pdf
        • Video Video
          • 6.3.1.6.0.0.1.From DNA to protein - 3D.mp4 6.3.1.6.0.0.1.From DNA to protein - 3D.mp4
          • 6.3.1.6.0.0.3.Bacterial Protein synthesis - Initiation, Elongation and Termination.mkv 6.3.1.6.0.0.3.Bacterial Protein synthesis - Initiation, Elongation and Termination.mkv
          • 6.3.1.6.0.0.5.ribosome Full 3D strecture.mp4 6.3.1.6.0.0.5.ribosome Full 3D strecture.mp4
          • 6.3.1.6.1.0.2.Pharmacology AnimationProtein Synthesis Inhibitors antibiotics animation video.mp4 6.3.1.6.1.0.2.Pharmacology AnimationProtein Synthesis Inhibitors antibiotics animation video.mp4
          • 6.3.1.6.2.0.11.Aminoglycosides_ Mechanism of action.mp4 6.3.1.6.2.0.11.Aminoglycosides_ Mechanism of action.mp4
          • 6.3.1.6.2.0.11.Gentamicin_ Mechanism of Action.mp4 6.3.1.6.2.0.11.Gentamicin_ Mechanism of Action.mp4
          • 6.3.1.6.2.0.12.Mechanisms of Aminoglycoside Antibiotic Resistance.mp4 6.3.1.6.2.0.12.Mechanisms of Aminoglycoside Antibiotic Resistance.mp4
          • 6.3.1.6.3.0.2.Tetracycline Mechanism of Action.mp4 6.3.1.6.3.0.2.Tetracycline Mechanism of Action.mp4
          • 6.3.1.6.3.0.2.Tetracycline_ Mechanism of action.mp4 6.3.1.6.3.0.2.Tetracycline_ Mechanism of action.mp4
          • 6.3.1.6.4.0.2.Chloramphenicol_ Mechanism of action.mp4 6.3.1.6.4.0.2.Chloramphenicol_ Mechanism of action.mp4
          • 6.3.1.6.4.0.2.Mechanism of Action of the Antibiotic CHLORAMPHENICOL on the 70S Ribosome.mp4 6.3.1.6.4.0.2.Mechanism of Action of the Antibiotic CHLORAMPHENICOL on the 70S Ribosome.mp4
          • 6.3.1.6.5.0.3.Macrolides _ Mechanism of  action.mp4 6.3.1.6.5.0.3.Macrolides _ Mechanism of action.mp4
          • 6.3.1.6.5.0.3.Macrolides - Mechanisms of Action and Resistance.webm 6.3.1.6.5.0.3.Macrolides - Mechanisms of Action and Resistance.webm
          • 6.3.1.6.5.0.8. Macrolides Detailed Pharmacology Animated - Mechanism of action, Kinetics, Resistance.mp4 6.3.1.6.5.0.8. Macrolides Detailed Pharmacology Animated - Mechanism of action, Kinetics, Resistance.mp4
          • 6.3.1.6.6.0.3.Linezolid(Zyvox) - Mechanism of action.mkv 6.3.1.6.6.0.3.Linezolid(Zyvox) - Mechanism of action.mkv
          • 6.3.1.6.6.0.6.Oxazolidinones Animation_360p.mp4 6.3.1.6.6.0.6.Oxazolidinones Animation_360p.mp4
          • 6.3.2.0.0.0.2.Aspergillosis_360p.mp4 6.3.2.0.0.0.2.Aspergillosis_360p.mp4
          • 6.3.2.0.0.0.2.Candidemia_Invasive Candidiasis Treatment Algorithm.mp4 6.3.2.0.0.0.2.Candidemia_Invasive Candidiasis Treatment Algorithm.mp4
          • 6.3.2.0.0.0.2.Candiduria Risk Factors Symptoms and Treatment_360p.mp4 6.3.2.0.0.0.2.Candiduria Risk Factors Symptoms and Treatment_360p.mp4
          • 6.3.2.0.0.0.2.Defenses Against Candida Species_360p.mp4 6.3.2.0.0.0.2.Defenses Against Candida Species_360p.mp4
          • 6.3.2.0.0.0.2.Elsevier IndiaMechanism of action of antifungal drugs.mp4 6.3.2.0.0.0.2.Elsevier IndiaMechanism of action of antifungal drugs.mp4
          • 6.3.2.0.0.0.2.Extrapulmonary Aspergillosis_360p.mp4 6.3.2.0.0.0.2.Extrapulmonary Aspergillosis_360p.mp4
          • 6.3.2.0.0.0.2.Fungal Infection in Bone Marrow Transplant Recipient_360p.mp4 6.3.2.0.0.0.2.Fungal Infection in Bone Marrow Transplant Recipient_360p.mp4
          • 6.3.2.0.0.0.2.Overview of the Fungal Cell Structure.mp4 6.3.2.0.0.0.2.Overview of the Fungal Cell Structure.mp4
          • 6.3.2.0.0.0.2.Sources of Candida Organisms_360p.mp4 6.3.2.0.0.0.2.Sources of Candida Organisms_360p.mp4
          • 6.3.2.0.0.0.16b.Mechanisms in MedicineThe Role of Azoles.mp4 6.3.2.0.0.0.16b.Mechanisms in MedicineThe Role of Azoles.mp4
          • 6.3.2.0.0.0.18b.Mechanisms in MedicineThe Role of Amphotericin.mp4 6.3.2.0.0.0.18b.Mechanisms in MedicineThe Role of Amphotericin.mp4
          • 6.3.2.0.0.0.18b.Pharmacology AnimationAmphotericin B animation.mp4 6.3.2.0.0.0.18b.Pharmacology AnimationAmphotericin B animation.mp4
          • 6.3.2.0.0.0.20b.Mechanisms in MedicineThe Role of Echinocandins.mp4 6.3.2.0.0.0.20b.Mechanisms in MedicineThe Role of Echinocandins.mp4
          • 6.3.2.0.0.0.20b.Pharmacology AnimationEchinocandins animation.mp4 6.3.2.0.0.0.20b.Pharmacology AnimationEchinocandins animation.mp4
          • 6.3.2.0.0.0.22.Pharmacology AnimationAzoles And Terbinafine antifungal animation.mp4 6.3.2.0.0.0.22.Pharmacology AnimationAzoles And Terbinafine antifungal animation.mp4
          • 6.3.2.1.0.0.33.Speed PharmacologyPharmacology – ANTIFUNGAL DRUGS (MADE EASY).mkv 6.3.2.1.0.0.33.Speed PharmacologyPharmacology – ANTIFUNGAL DRUGS (MADE EASY).mkv
          • 6.3.2.1.0.0.56.Biofilm_.mp4 6.3.2.1.0.0.56.Biofilm_.mp4
          • Cell Wall Synthesis.mp4 Cell Wall Synthesis.mp4
          • Efflux.mp4 Efflux.mp4
          • Fluoroquinolones_ Mechanisms of Action and Resistance.mp4 Fluoroquinolones_ Mechanisms of Action and Resistance.mp4
          • Horizontal Gene Transfer and Antibiotic Resistance.mp4 Horizontal Gene Transfer and Antibiotic Resistance.mp4
          • La vita e la straordinaria scoperta di Vincenzo Tiberio-EiM1T4hyEpE.mkv La vita e la straordinaria scoperta di Vincenzo Tiberio-EiM1T4hyEpE.mkv
          • Macrolides_ Mechanisms of Action and Resistance.mp4 Macrolides_ Mechanisms of Action and Resistance.mp4
          • Mechanism of action of Penicillin Cephalosporin Vancomycin Cycloserine Bacitracin beta lactam_360p.mp4 Mechanism of action of Penicillin Cephalosporin Vancomycin Cycloserine Bacitracin beta lactam_360p.mp4
          • Metronidazole _ Bacterial Targets, Mechanism of Action, Adverse Effects.mp4 Metronidazole _ Bacterial Targets, Mechanism of Action, Adverse Effects.mp4
          • Mutations - selection_ the bacteria resist.mp4 Mutations - selection_ the bacteria resist.mp4
          • Potassium Capture by Valinomycin.mp4 Potassium Capture by Valinomycin.mp4
          • ß-Lactams_ Mechanisms of Action and Resistance.mp4 ß-Lactams_ Mechanisms of Action and Resistance.mp4
          • Vancomycin _ Bacterial Targets, Mechanism of Action, Adverse Effects.mp4 Vancomycin _ Bacterial Targets, Mechanism of Action, Adverse Effects.mp4
          • Vincenzo Tiberio e la vera scoperta della penicillina a Napoli.mkv Vincenzo Tiberio e la vera scoperta della penicillina a Napoli.mkv
      • 6.4 6.4
        • 6.4.0.0.0.0.1.2019.Bookshelf_NBK548487.pdf 6.4.0.0.0.0.1.2019.Bookshelf_NBK548487.pdf
        • 6.4.1.0.0.0.2.2020.Antiemetics. types, actions and uses.pdf 6.4.1.0.0.0.2.2020.Antiemetics. types, actions and uses.pdf
        • 6.4.2.0.0.0.2.2005.Efficacy and safety of bisacodyl in the acute treatment of constipation.pdf 6.4.2.0.0.0.2.2005.Efficacy and safety of bisacodyl in the acute treatment of constipation.pdf
        • 6.4.2.0.0.0.4.2018.Cytotoxicity of Structurally Diverse Anthranoids.pdf 6.4.2.0.0.0.4.2018.Cytotoxicity of Structurally Diverse Anthranoids.pdf
        • 6.4.2.0.0.0.5.Cascara Sagrada_ Uses, Botanical Source, Characters, and Chemical Constituents.pdf 6.4.2.0.0.0.5.Cascara Sagrada_ Uses, Botanical Source, Characters, and Chemical Constituents.pdf
        • 6.4.2.0.0.0.10.1955.USE OF DIOCTYL SODIUM SULFOSUCCINATE (AEROSOL O. T.) FOR SEVERE CONSTIPATION.pdf 6.4.2.0.0.0.10.1955.USE OF DIOCTYL SODIUM SULFOSUCCINATE (AEROSOL O. T.) FOR SEVERE CONSTIPATION.pdf
        • 6.4.2.0.0.0.12.2017.Plecanatide. First Global Approval.pdf 6.4.2.0.0.0.12.2017.Plecanatide. First Global Approval.pdf
        • 6.4.2.0.0.0.13.1999.Selective stimulation of colonic transit by the benzofuran 5HT4 agonist, prucalopride, in healthy humans.pdf 6.4.2.0.0.0.13.1999.Selective stimulation of colonic transit by the benzofuran 5HT4 agonist, prucalopride, in healthy humans.pdf
        • 6.4.2.0.0.0.13.Wikipedia.Plecanatide.pdf 6.4.2.0.0.0.13.Wikipedia.Plecanatide.pdf
        • 6.4.2.0.0.0.15.2014.Advances in the management of constipation-predominant irritable bowel syndrome. the role of linaclotide.pdf 6.4.2.0.0.0.15.2014.Advances in the management of constipation-predominant irritable bowel syndrome. the role of linaclotide.pdf
        • 6.4.3.0.0.0.0.2015.Pharmacologic Agents for Chronic Diarrhea.pdf 6.4.3.0.0.0.0.2015.Pharmacologic Agents for Chronic Diarrhea.pdf
        • 6.4.3.0.0.0.2.2003.Treatment of diarrheal disease.pdf 6.4.3.0.0.0.2.2003.Treatment of diarrheal disease.pdf
        • 6.4.3.2.0.0.7.2003.Management of acute cancer treatment-induced diarrhea.pdf 6.4.3.2.0.0.7.2003.Management of acute cancer treatment-induced diarrhea.pdf
        • 6.4.3.3.0.0.4.1986.In vivo ‘enkephalinase’ inhibition by acetorphan in human plasma and CSF.pdf 6.4.3.3.0.0.4.1986.In vivo ‘enkephalinase’ inhibition by acetorphan in human plasma and CSF.pdf
        • 6.4.3.3.0.0.6.1973.Synthetic antidiarrheal agents. 2,2-Diphenyl-4-(4_-aryl-4_-hydroxypiperidino)butyramides.pdf 6.4.3.3.0.0.6.1973.Synthetic antidiarrheal agents. 2,2-Diphenyl-4-(4_-aryl-4_-hydroxypiperidino)butyramides.pdf
        • 6.4.3.3.0.0.8.2019.The role of antispasmodics in managing irritable bowel syndrom.pdf 6.4.3.3.0.0.8.2019.The role of antispasmodics in managing irritable bowel syndrom.pdf
        • 6.4.3.4.0.0.2.2003.Management of infectious diarrhoea.pdf 6.4.3.4.0.0.2.2003.Management of infectious diarrhoea.pdf
        • 6.4.3.4.0.0.4.2017.Antibiotic Therapy for Acute Watery Diarrhea and Dysentery.pdf 6.4.3.4.0.0.4.2017.Antibiotic Therapy for Acute Watery Diarrhea and Dysentery.pdf
        • 6.4.3.4.0.0.5.2005.Rifaximin. a nonabsorbable rifamycin antibiotic for use in nonsystemic gastrointestinal infections.pdf 6.4.3.4.0.0.5.2005.Rifaximin. a nonabsorbable rifamycin antibiotic for use in nonsystemic gastrointestinal infections.pdf
        • 6.4.3.4.0.0.6.2007.Therapy for and Prevention of Traveler_s Diarrhea.pdf 6.4.3.4.0.0.6.2007.Therapy for and Prevention of Traveler_s Diarrhea.pdf
        • 6.4.3.6.0.0.1.2014.Systematic review. the management of chronic diarrhoea due to bile acid malabsorption.pdf 6.4.3.6.0.0.1.2014.Systematic review. the management of chronic diarrhoea due to bile acid malabsorption.pdf
        • 6.4.4.0.0.0.2.2019.Peptic Ulcer Disease. A Brief Review of Conventional Therapy and Herbal Treatment Options.pdf 6.4.4.0.0.0.2.2019.Peptic Ulcer Disease. A Brief Review of Conventional Therapy and Herbal Treatment Options.pdf
        • 6.4.4.0.0.0.7.1999.Gastrointestinal Toxicity of Nonsteroidal Antiinflammatory Drugs.pdf 6.4.4.0.0.0.7.1999.Gastrointestinal Toxicity of Nonsteroidal Antiinflammatory Drugs.pdf
        • 6.4.4.1.0.0.3.1964.Rationale for the use of anticholinergic agents in the management of duodenal ulcer.pdf 6.4.4.1.0.0.3.1964.Rationale for the use of anticholinergic agents in the management of duodenal ulcer.pdf
        • 6.4.4.1.0.0.5.1988.Role of the Cholinergic Nervous System in Acid Secretion.pdf 6.4.4.1.0.0.5.1988.Role of the Cholinergic Nervous System in Acid Secretion.pdf
        • 6.4.4.1.0.0.7.1985.Pirenzepine. a selective anticholinergic for peptic ulcer,pdf.pdf 6.4.4.1.0.0.7.1985.Pirenzepine. a selective anticholinergic for peptic ulcer,pdf.pdf
        • 6.4.4.2.0.0.4.1994.The development of cimetidine.pdf 6.4.4.2.0.0.4.1994.The development of cimetidine.pdf
        • 6.4.4.2.0.0.8.1989.US4855439.Process for the preparation of cimetidine.pdf 6.4.4.2.0.0.8.1989.US4855439.Process for the preparation of cimetidine.pdf
        • 6.4.4.2.0.0.11.2001.HISTAMINE H2-ANTAGONISTS.pdf 6.4.4.2.0.0.11.2001.HISTAMINE H2-ANTAGONISTS.pdf
        • 6.4.4.3.0.0.1.1987.Antiulcer activity of clonidine. lack of effect on gastric prostaglandins.pdf 6.4.4.3.0.0.1.1987.Antiulcer activity of clonidine. lack of effect on gastric prostaglandins.pdf
        • 6.4.4.3.0.0.2.2012.The Role of Alpha-2 Adrenergic Receptors in Anti-ulcer Activity.pdf 6.4.4.3.0.0.2.2012.The Role of Alpha-2 Adrenergic Receptors in Anti-ulcer Activity.pdf
        • 6.4.4.4.0.0.6.2009.The gastric HK-ATPase. structure, function, and inhibition.pdf 6.4.4.4.0.0.6.2009.The gastric HK-ATPase. structure, function, and inhibition.pdf
        • 6.4.4.9.0.0.2.2005.Effect of the Carbonic Anhydrase Inhibitor.pdf 6.4.4.9.0.0.2.2005.Effect of the Carbonic Anhydrase Inhibitor.pdf
    • Video Video
      • A Brief Introduction to Refluxing-b6xFAEkjmGg.mkv A Brief Introduction to Refluxing-b6xFAEkjmGg.mkv
      • Abacavir_3VRI_441300_Low.webm Abacavir_3VRI_441300_Low.webm
      • Acyclovir_2KI5_2022_Low.webm Acyclovir_2KI5_2022_Low.webm
      • Amprenavir_3EKV_65016_Low.webm Amprenavir_3EKV_65016_Low.webm
      • Atazanavir_3EKY_148192_Low.webm Atazanavir_3EKY_148192_Low.webm
      • Boceprevir_3LOX_10324367_Low.webm Boceprevir_3LOX_10324367_Low.webm
      • BoehringerIngelheim.Development_of_a_Medicine.wmv BoehringerIngelheim.Development_of_a_Medicine.wmv
      • Brivudine_1OSN_446727_Low.webm Brivudine_1OSN_446727_Low.webm
      • CCR5_Maraviroc_4MBS_3002977_Low.webm CCR5_Maraviroc_4MBS_3002977_Low.webm
      • CMV_Polymerase_Foscarnet_3KD1_3415_Low.webm CMV_Polymerase_Foscarnet_3KD1_3415_Low.webm
      • Darunavir_4LL3_213039_Low.webm Darunavir_4LL3_213039_Low.webm
      • Delavirdine_1KLM_5625_Low.webm Delavirdine_1KLM_5625_Low.webm
      • Development_of_a_Medicine.mkv Development_of_a_Medicine.mkv
      • Didanosine_1V3Q_50599_Low.webm Didanosine_1V3Q_50599_Low.webm
      • Dolutegravir_3S3M_54726191_Low.webm Dolutegravir_3S3M_54726191_Low.webm
      • Efavirenz_1JKH_64139_Low.webm Efavirenz_1JKH_64139_Low.webm
      • Elvitegravir_3L2U_5277135_Low.webm Elvitegravir_3L2U_5277135_Low.webm
      • Emtricitabine_2NO6_60877_Low.webm Emtricitabine_2NO6_60877_Low.webm
      • Enfuvirtide_2X7R_16130199_Low.m4v Enfuvirtide_2X7R_16130199_Low.m4v
      • Entecavir_153941_Low.webm Entecavir_153941_Low.webm
      • Etravirine_3MEC_193962_Low.webm Etravirine_3MEC_193962_Low.webm
      • FDA.WhatAreClinicalTrialPhases.mkv FDA.WhatAreClinicalTrialPhases.mkv
      • FDA.WhatAreClinicalTrialPhases.wmv FDA.WhatAreClinicalTrialPhases.wmv
      • Foscarnet_3KD1_3415_Low.webm Foscarnet_3KD1_3415_Low.webm
      • Ganciclovir_1KI2_3454_Low.webm Ganciclovir_1KI2_3454_Low.webm
      • HCVNS5B_Sofosbuvir_4WTG_45375808_Low.webm HCVNS5B_Sofosbuvir_4WTG_45375808_Low.webm
      • HCVProtease_Simeprevir_3KEE_24873435_Low.webm HCVProtease_Simeprevir_3KEE_24873435_Low.webm
      • HIVProtease_Lopinavir_2Q5K_92727_Low.webm HIVProtease_Lopinavir_2Q5K_92727_Low.webm
      • HIVRT_Nevirapine_4PUO_4463_Low.webm HIVRT_Nevirapine_4PUO_4463_Low.webm
      • HIVRT_Tenofovir_1T03_6398764_Low.webm HIVRT_Tenofovir_1T03_6398764_Low.webm
      • Idoxuridine_1KI7_5905_Low.webm Idoxuridine_1KI7_5905_Low.webm
      • Indinavir_3WSJ_5362440_Low.webm Indinavir_3WSJ_5362440_Low.webm
      • InfluenzaA_Matrix2_Amantadine_2KAD_2130_Low.webm InfluenzaA_Matrix2_Amantadine_2KAD_2130_Low.webm
      • InfluenzaA_Neuraminidase_Laninamivir_3TIB_9847629_Low.webm InfluenzaA_Neuraminidase_Laninamivir_3TIB_9847629_Low.webm
      • InfluenzaA_Neuraminidase_Zanamivir_2HTQ_60855_Low.webm InfluenzaA_Neuraminidase_Zanamivir_2HTQ_60855_Low.webm
      • KillerConeSnailsNationalGeographic.mp4 KillerConeSnailsNationalGeographic.mp4
      • KillerConeSnailsNationalGeographic.wmv KillerConeSnailsNationalGeographic.wmv
      • Lamivudine_2NOA_60825_Low.webm Lamivudine_2NOA_60825_Low.webm
      • Lopinavir_2Q5K_92727_Low.webm Lopinavir_2Q5K_92727_Low.webm
      • Maraviroc_4MBS_3002977_Low.webm Maraviroc_4MBS_3002977_Low.webm
      • Nelfinavir_3EKX_64143_Low.webm Nelfinavir_3EKX_64143_Low.webm
      • Nevirapine_4PUO_4463_Low.webm Nevirapine_4PUO_4463_Low.webm
      • Oseltamivir_3CL2_65028_Low.webm Oseltamivir_3CL2_65028_Low.webm
      • PassiveTransportSpecialTypesOfDiffusion-AnimatedMembranePhysiology.mkv PassiveTransportSpecialTypesOfDiffusion-AnimatedMembranePhysiology.mkv
      • Penciclovir_1KI3_4725_Low.webm Penciclovir_1KI3_4725_Low.webm
      • Raltegravir_3L2V_54671008_Low.webm Raltegravir_3L2V_54671008_Low.webm
      • Ribavirin_3SFU_37542_Low.webm Ribavirin_3SFU_37542_Low.webm
      • Rilpivirine_3MEE_6451164_Low.webm Rilpivirine_3MEE_6451164_Low.webm
      • Rimantadine_2RLF_5071_Low.webm Rimantadine_2RLF_5071_Low.webm
      • Ritonavir_1HXW_392622_Low.webm Ritonavir_1HXW_392622_Low.webm
      • Saquinavir_3EKQ_441243_Low.m4v Saquinavir_3EKQ_441243_Low.m4v
      • Stavudine_18283_Low.webm Stavudine_18283_Low.webm
      • Telaprevir_3SV6_3010818_Low.webm Telaprevir_3SV6_3010818_Low.webm
      • ThymidineKinase_Acyclovir_2KI5_2022_Low.webm ThymidineKinase_Acyclovir_2KI5_2022_Low.webm
      • ThymidineKinase_Brivudine_1OSN_446727_Low.webm ThymidineKinase_Brivudine_1OSN_446727_Low.webm
      • ThymidineKinase_Idoxuridine_1KI7_5905_Low.webm ThymidineKinase_Idoxuridine_1KI7_5905_Low.webm
      • Tipranavir_2O4P_54682461_Low.webm Tipranavir_2O4P_54682461_Low.webm
      • Valaciclovir_4AQL_60773_Low.webm Valaciclovir_4AQL_60773_Low.webm
      • Vidarabine_1PW7_21704_Low.webm Vidarabine_1PW7_21704_Low.webm
      • yt5s.com-Microtubule inhibitors ~pharmacology~(720p).mp4 yt5s.com-Microtubule inhibitors ~pharmacology~(720p).mp4
      • yt5s.com-Paclitaxel_ Mechanism of action.mp4 yt5s.com-Paclitaxel_ Mechanism of action.mp4
      • yt5s.com-Safety and efficacy of an HIV-1 attachment inhibitor(720p).mp4 yt5s.com-Safety and efficacy of an HIV-1 attachment inhibitor(720p).mp4
      • Zalcitabine_24066_Low.webm Zalcitabine_24066_Low.webm
      • Zanamivir_2HTQ_60855_Low.webm Zanamivir_2HTQ_60855_Low.webm
      • Zidovudine_3KLF_35370_Low.webm Zidovudine_3KLF_35370_Low.webm
◄ Iscrizione al gruppo CFT1 per l'accesso alle lezioni registrate ed al materiale didattico 2024-2025
Quesiti e risposte sul programma svolto ►
Ospite (Login)
Politiche
Ottieni l'app mobile
Powered by Moodle

Informazioni

  • Portale Sapienza
  • Moodle community
  • Moodle Docs
  •  

Contatti

Help desk

Sapienza Università di Roma
Piazzale Aldo Moro 5, 00185 Roma

Seguici
  •  
  •