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Pharmacophore Discovery – Lessons Learned

John H. van Drie*

Vertex Pharmaceuticals, 130 Waverly St., Cambridge, MA 02139, USA

Abstract: Pharmacophore discovery is one of the major elements of molecular modeling in
the absence of X-ray structural data. While pharmacophores initially made their debut as a
means for lead discovery, more recent refinements have brought them into the domain of
lead optimization, e.g. as a means to define the molecular alignment in 3D-QSAR. In this
review, the experiences of over a decade of confronting and solving the challenges of
pharmacophore discovery applied to actual drug discovery are summarized. Also, practical
tips are described for using the author’s methodology for pharmacophore discovery,
DANTE..

INTRODUCTION

Nel mezzo del cammin di
nostra vita

Midway upon the journey of
our life

mi ritrovai per una selva
oscura

I found myself within a
forest dark,

ché la diritta via era
smarrita.

For the straightforward
pathway had been lost.

Ahi quanto a dir qual era è
cosa dura

Ah me! How hard a thing it
is to say

esta selva selvaggia e aspra
e forte

What was this forest savage,
rough, and stern,

che nel pensier rinova la
paura!

Which in the very thought
renews the fear.

Tant'è amara che poco è più
morte;

So bitter is it, death is little
more;

ma per trattar del ben ch'i'
vi trovai,

But of the good to treat,
which there I found,

dirò de l'altre cose ch'i' v'ho
scorte.

Speak will I of the other
things I saw there

Pharmacophore discovery is a way to bring structure to
bear on the drug design problem, when no macromolecular
structural data is available. When we first began to tackle the
problem of pharmacophore discovery almost fifteen years
ago, building upon the “active-analog approach” of G.
Marshall and co-workers [1], no one ever imagined that after
many years of effort and many advances, the precise,
definitive solution to this problem would still elude us. The
purpose of this manuscript is to summarize the lessons that
have been learned about how to tackle pharmacophore
discovery, based on the author’s first-hand experiences
accumulated over a decade and a half with many datasets in a
variety of settings. Virtually all of these datasets with which
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the author has worked are proprietary; the focus of this
manuscript is to describe the general strategies and lessons
learned, illustrated by two specific applications to
compounds acting against the 5-HT2a/c receptors, and to the
oxazolidinone antibiotics, which target the ribosome. The
first of these settings was at Abbott Labs, collaborating with
Y. C. Martin, where we had developed ALADDIN [2,3], the
first successful 3D database search methodology. The second
setting was at BioCAD, a startup company in Silicon Valley
that produced Catalyst, software which combined both the
first robust commercial 3D database search system, and the
first commercial pharmacophore discovery method,
“Hypothesis Generation”; at BioCAD, the author was both
developing the methodology and was applying it to a
blizzard of potential applications that came from partners or
customers. The third setting was at Upjohn (later to become
Pharmacia & Upjohn, later still Pharmacia, now Pfizer),
where the focus was on both fixing the methodologies and
applying them in a prospective fashion working with drug
discovery teams. The methodology that culminated these
experiences has been published as DANTE [4-7]. This
iterative cycling between developing computational metho-
dology and applying it has been crucial to its evolution into
an effective drug design technology. While most of the
author’s applications with both DANTE and Hypothesis
Generation are proprietary, what can be published are the
general rules for applying the methodology, based on the
lessons learned from this wide-ranging experience. This
manuscript documents these general rules and protocols for
the first time, distilling the author’s experiences of over 15
years in applying pharmacophore discovery to datasets of
contemporary interest to pharmaceutical research.

This manuscript is not intended as a comprehensive
review of pharmacophore discovery. Reviews have been
written by Höltje [8], Bures [9], with a comprehensive and
up-to-date review published recently by this author [10].

TERMINOLOGY AND CONCEPTS

Oh quanto è corto il dire e
come fioco al mio concetto!

Oh, how faint and ineffective
are the words to express my
idea!
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Definition of a Pharmacophore and Its Components

One may define the term ‘pharmacophore’ in two ways.
One way is to tersely define a pharmacophore as an abstract
description of the characteristics of a chemical structure that
will confer a particular biological activity. Defined in this
way, no particular reference is made to 3D properties.
However, customarily to molecular modelers, pharmaco-
phores include 3D properties; to medicinal chemists, the
term pharmacophore typically only includes the “2D”
properties (the atom types and their connectivity). Every-
where in this manuscript, the term ‘pharmacophore’ will refer
to descriptions of 3D characteristics.

Alternatively, one can define a pharmacophore in a more
intuitive, physically-motivated way. A pharmacophore may
be defined as the distilled essence of what yields productive
ligand-receptor interactions, a defined arrangement of
individual interactions. Thus defined, it is explicitly three-
dimensional. This physical picture should always be kept in
mind when dealing with pharmacophores – they are not
abstract mathematical entities. One of the reasons that
medicinal chemists find pharmacophores so useful is that
they explicitly represent fundamental physico-chemical
aspects of ligand-receptor interactions.

With either definition of a pharmacophore, one can see
that a pharmacophore encompasses a set of molecules.
Pharmacophoric 3D database searching (Fig. (1)) is the
process of using a pharmacophore as a search query for a
database of conformations of existing molecules; those
molecules which emerge has hits from the database search
match the pharmacophore, i.e. they also possess the
characteristics of chemical structure thought to confer
biological activity. These hits can be tested for biological
activity; the proportion of those hits with biological activity
is a direct measure of the quality of the pharmacophore.
Those which test positive may be novel options for new
leads. This proportion of hits that test positive typically
ranges from 0% - worthless pharmacophores -to 20% - fan-
tastic pharmacophores. Lead discovery via pharmacophoric
3D database searching is a means for prospectively testing
the value of a pharmacophore – the ultimate test. One should
not judge pharmacophores by the degree to which they “fit”

or “explain” the data; as we shall see shortly, many phar-
macophores are generally consistent with the biological data.

Figure (2a) shows a simple pharmacophore for agonism
of the dopamine D1 receptor. The basic amine must be 6.8-
8.3 A from the indicated hydroxyl, and the hydroxyl must
be 2.7-2.9 A from the center of the aromatic ring. Finally,
the center of the aromatic ring must be 4.2-4.8 A from the
basic amine. Amazingly enough, it was a simple pharmaco-
phore similar to this that was used in an early application of
ALADDIN, that led to the discovery of a constrained analog
of dopamine, A-68930, a ligand highly-selective for the D1
receptor which had been synthesized earlier for a project
targeting an adrenergic receptor [11].

This simple example of a pharmacophore in Fig. (2a)
contains many of the parts that typically comprise a pharma-
cophore:

Features

Substructural elements that are defined purely by atom
types and connectivity. The simple example contains 3
features: aromatic ring, hydroxyl, and a basic amine (an
amine with a free lone pair, not tied up in conjugation as in
an amide or an aniline).

Geometric Objects

3D quantities that are computed from the positions of the
atoms in a Feature. In this simple example, the center of the
aromatic ring is a Geometric Object not centered on an atom.
The other Geometric Objects are atom-centered.

Constraints

All molecules which match the pharmacophore must be
able to adopt a low energy conformation where the positions
of the Geometric Objects satisfies the constraints. This
simple example has 3 distance constraints. One of the key
objectives of pharmacophore discovery is to determine the
optimal values of these constraints based on the SAR
(structure-activity relationship); it is not sufficient to merely
measure the distances of a low-energy conformer of one
molecule, and to add an arbitrary tolerance to these to define
the values of these constraints.

Fig. (1). Overall schematic of the process of 3D database searching.
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Note that a pharmacophore, composed of Features, Geo-
metric Objects, and Constraints, is an objective description.
It is independent of the orientation of the molecule,
independent of how the molecule is drawn, with the only
ambiguity inherent in it being ‘what constitutes a low-energy
conformation?’.

Pharmacophores may be more complex than this simple
example in Fig. (2a), or even simpler. The simplest pharma-
cophore aromatic ring 5 to 7 A from a basic amine is
surprisingly effective in a 3D database search at retrieving all
types of molecules active at GPCR’s (G-protein coupled
receptors). Pharmacophores can be more complex in many
ways:

Number of Features

Pharmacophores typically have 3 Features, sometimes 4,
but almost never more than 4.

Types of Geometric Objects

This simple example only shows points. One may also
refer to oriented vectors, as shown in Fig. (2b). Rarely used,
but also possible, are planes, as shown in Fig. (2c). The
physical interpretation of vectors and planes is that these
groups can make oriented interactions with the receptor, e.g.
via hydrogen bonds or via pi-stacking interactions.

Types of Constraints

With oriented Geometric Objects, come a variety of
constraints. Angle constraints between a point and an
oriented Geometric Object are possible, and Torsion Angle
constraints can be especially useful between two oriented
Geometric Objects, as shown in Fig. (2d).

Steric Constraints

It is rare that one hears of pharmacophores with sterically-
forbidden regions included (shape constraints), though this is

a) b)

Fig. (2a).  Simple D1 pharmacophore.

Fig. (2b). Simple D1 pharmacophore with vector relationships encoded with angles.

c) d)

Fig. (2c). Simple D1 pharmacophore with a constraint between the basic amine and the plane of the ring.

Fig. (2d). Simple D1 pharmacophore with torsional relationship encoded.
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less a reflection of the physical reality of ligand-receptor
interactions and more a reflection of the poor methodology
to support the definition of such steric constraints. A
dopamine D2 pharmacophore similar to the one we used
with ALADDIN is shown in Fig. (2e); it contains one steric
constraint, a sphere of radius 3 A positioned at specific
distances from the Geometric Objects defined on the
Features. It was an egregious mistake to omit steric
constraints from the automatically-generated pharmacophores
of Catalyst; typically the guidance given the user in such
cases is to omit molecules from the dataset, when the poor
activity and steric size are suggestive of the need for a steric
constraint. By contrast, DANTE pharmacophore discovery
introduced a novel method for defining and using steric
constraints, the “shrink-wrap algorithm”.

Fig. (2e). Sterically-forbidden region constraining space of
active analogs. This region can be defined using either relative
coordinates (distances from the center of the region to the three
features), or absolute coordinates (positioning the pharmaco-
phore features at specific Cartesian coordinates, and then
positioning the region in that same coordinate frame).

Pharmacophores as Used in Lead Discovery

All medicinal chemistry efforts must begin with a lead,
usually a molecule with modest biological activity against
the chosen target, devoid of ineradicable liabilities, which is
amenable to synthetic exploration. Virtual screening is the
process of discovering leads by sifting through an electronic
database of existing compounds, picking a subset which
have defined properties, and submitting the hits from this
database search to biological screening. Virtual screening
may be done using either protein structures [12], or using a
pharmacophore [2,3,11], in either case by electronically
screening a 3D database, a collection of conformation(s) of
the molecules in the database. This process is depicted
schematically in Fig. (1). Virtual screening had its biggest
impact in the pharmaceutical industry in the days before
high-throughput screening became commonplace, but it is
still widely-used in special circumstances, e.g. where the
biological assay is not amenable to high-throughput, or in
academic environments, where massive compound libraries
are not usually available.

Pharmacophores as Used in Lead Optimization

The core process of any drug discovery process is the
iterative exploration of analogs around a lead, lead
optimization . The essential question of the medicinal
chemist in lead optimization mode is ‘what molecule should
I make next?’. The simple pharmacophores shown in Fig. (2)
don’t provide much assistance in answering this question,
because usually every molecule in the series the chemist is
exploring matches the pharmacophore. But pharmacophores
can assist in answering the fundamental cri de coeur of the
medicinal chemist, in multiple ways:

1) 3D-QSAR models may be used to predict the biological
activity of proposed molecules [13], using methods like
CoMFA [14]. Until recently, it has been little
appreciated that a prerequisite for the construction of such
models is a proper overlay of the conformations of the
molecules in the dataset. Pharmacophores may be used to
define the rules for overlaying molecules. Most
published 3D-QSAR studies spent much time describing
the statistical analyses, etc., but little time describing
how the molecules were overlaid. Fortunately, current
publications devote more effort to describing how the
overlays were performed, either explicitly using a
pharmacophore discovery method, or implicitly via the
protocol used in performing the overlay (for a review, see
[10]).

2) Shape-enhanced pharmacophores, of the type generated by
DANTE, describe both the geometric arrangement of
features and the steric boundaries of the binding site, as
can be inferred from the dataset. While in theory the
steric and electronic fields of CoMFA provide greater
sophistication in predicting activity, the steric boundaries
as derived by DANTE have demonstrated to be
surprisingly useful in prospective applications, by
defining the ‘limits of the playing field’, i.e.
constraining the space of possible molecules a chemist
should consider. Furthermore, unlike 3D-QSAR models,
DANTE’s shape-enhanced pharmacophore can easily be
used as 3D database search queries, to screen databases
composed of combinatorial libraries constructed around
the lead (Fig. (3)) [7]. A greater utility of DANTE’s
shape-enhanced pharmacophores comes from their use in
driving exploration of terra incognita. This is a very
important but underappreciated concept for molecular
design in lead optimization, as medicinal chemists need
to discover novel compounds, and need to explore
regions of space hitherto unexplored. In DANTE, regions
of the binding surface are marked either as ‘sterically
forbidden’ (those molecules in the dataset which are
active lie within that boundary, while inactive molecules
in the dataset protrude beyond it), or ‘terra incognita’,
i.e. active molecules lie within that region, and define
the extent of that surface, but no molecules in the dataset
protrude beyond that region. One can use a DANTE
shape-enhanced pharmacophore to explicitly look for
molecules to extend into these undefined regions, to
probe new regions of chemical space, to see if the
properties improve (Fig. (4)). In this example, a search
was performed of a database of novel ring systems
attached to a phenyl-oxazolidinone; those ring systems
which lie within the sterically-forbidden regions, but
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probe the terra incognita, were sought. In this way, a
novel ring system was found. Note that 3D-QSAR
methods attempt to assign electrostatic or steric field
values at all regions of space, and have no way to
indicate “don’t know” for regions of space where the data
in the dataset do not allow inferences to be made.

PROTOCOLS FOR PHARMACOPHORE DISCOVERY

Lume v’è Dato a Bene e a
Malizia

You have been given reason,
which can distinguish
between bad and good.

The activities which one must undertake to discover and
use a pharmacophore may be divided into 7 distinct stages:

1) Dataset preparation

2) Conformational analysis

3) Enumeration of candidate pharmacophores

4) Ranking of candidate pharmacophores

5) Overlaying molecules according to the best pharmaco-
phore(s); determination of steric constraints/terra
incognita or molecular fields for 3D-QSAR

6) Computational controls to evaluate robustness of the
results

7) Modeling the activity of proposed new compounds;
prospective application of the pharmacophore model

Our final goal is a high-quality pharmacophore, useful
prospectively in the design of new bioactive molecules. Let
us consider each of these steps along the path in more detail.

Dataset Preparation

At first glance, this step sounds trivial. Yet, the mere fact
that it took multiple publications over a 5-year period until
the “Cramer steroid dataset” was finally rid of all errors in
chemical structure as well as all errors in biological data
attests to how subtle and insidious this issue can be. The
goals of dataset preparation should be (1) to verify
the correctness of all chemical structures, especially
stereochemistry, and, if the data source was a chemical
database, discarding salts and other extraneous stuff (2) to
ensure that all biological data is correct, and was gathered in
a common way, (3) to ensure that the biological data is
mechanistically homogeneous, in so far as that is possible to
ascertain. Goal 2 warns against mixing data which comes
from different assays or the same assay run by different labs;
this is especially problematic when extracting data from
publications. Most researchers in pharmaceutical companies
rely on data retrieved from a corporate database, which
generally can be relied upon for accurate structures and
biological data acquired by one protocol. Goal 3 is always
the most challenging goal to achieve. The notion of a
pharmacophore assumes that there is a common pattern of
ligand-receptor interactions among the molecules in the
dataset. If that is not true, one is bound to fail. While some
pharmacophore discovery methods, like DANTE, explicitly
look to see if this assumption holds true, most do not, and
it is up to the user to rely on biophysical data to provide
guidance.

Because of Goal 3, some problems are simply not amen-
able to pharmacophore discovery. If, for example, your
biological readout were %F, bioavailability, one would never
want to derive a pharmacophore based on that, as there are

Fig. (3). Schematic flow of how to use shape constraints and terra incognita to virtually screen a combinatorial library. The shrink-
wrap surface imposes constraints on reagents for A.
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many many mechanisms which contribute to the overall
value, e.g. absorption, metabolism, clearance. If the biolo-
gical readout were ‘ability to be metabolized by cytochrome
P450’s (CYP’s)’, this would still be too heterogeneous, as
multiple CYP’s give rise to the overall value. If the
biological readout were ‘ability to bind to CYP 2D6’, then
potentially one may have a dataset that is mechanistically
homogeneous.

Mechanistic inhomogeneity can still creep in, even if the
biological readout results from binding a single, pure
receptor. Multiple binding modes are difficult to detect in
the absence of direct structural data, yet if they occur they
will pose serious challenges for the pharmacophore discovery
exercise (one of the best studied examples of multiple
binding modes in a single series is the Roche thrombin
inhibitors [15], where minor changes to the chemical
structure leads to a new binding mode flipped 180 degrees
about an axis – a phenomenon that has been called
precipitous binding modes). The DANTE methodology is
one of the few pharmacophore discovery methods that can
detect this type of mechanistic inhomogeneity.

One thing which must be avoided in this step of dataset
preparation is biasing the selection of compounds for the
dataset to circumvent limitations in the pharmacophore
discovery method being used. Users of Catalyst’s “Hypo-
thesis Generation” have long been encouraged to carefully
select compounds to “teach” the computer properly. This
introduces an enormous subjectivity into the process, and if
the results are highly-dependent on the selection of
compounds from a larger set of mechanistically-homo-
geneous compounds, then the methodology is weak. Good
methodology leads to reproducible results – the hallmark of
any scientific method.

Conformational Analysis

Some method of exhaustive conformational analysis
must be applied to all the molecules of the dataset. It does
not suffice to merely use the minimum energy conformation
of all molecules in the dataset. By ‘exhaustive conforma-
tional analysis’, one refers to a process that systematically
explores the entire conformational space of a molecule; this
frequently includes exploring both stereochemistries for any
chiral center specified as racemic. Many tools are available
for this step. Below are a subset of those available tools,
ones with which the author has had direct first-hand
experience. The key tradeoffs regarding the protocol to follow
are: (1) what energy threshold τ should be used (i.e. find all
conformations within τ kcal/mol of the energy minimum),
(2) how should duplicate conformations be detected and/or
removed (or, alternatively, how should the results be
clustered into families of conformations), and (3) how much
time must be consumed. Conformational analysis is typi-
cally the slowest step in pharmacophore discovery.

Catalyst “Best” Conformational Analysis

This method [16] relies on a combination of algorithms
for systematically exploring all conformational space, using
a stripped-down version of the CHARMm force field to
evaluate the energetics, with a novel term added to the
energy function to ensure distinct regions of conformational
space are explored. The default recommendation for the
energy threshold τ is 20 kcal/mol, which is ridiculously large
(if one takes that to be physically meaningful, one is
including conformations whose probability is exp(-τ/kT) =
3x10-15). In experiments with this conformational analysis
method, this author has generally found a value of 8
kcal/mol to be acceptable; this was based on analyzing
oxazolidinone antibiotics, comparing the active analogs vs.
their ring-opened inactive analogs. Overall, one is left with
the sense that the primary weakness of Catalyst’s “Best”
conformational analysis is the force field that is used; too
frequently, odd conformations are chosen as the ones
matching the pharmacophore. The high value of τ m ay be
needed in part to overcome weaknesses of the force field.
Also, this conformational analysis method appears to
generate too few conformers, and it is difficult to adjust the
variable parameters which control the clustering of
conformers. This sparsity of conformers primarily manifests
itself in poor coverage of the surface elements in the DANTE
shrink-wrap surfaces. The speed of this method of confor-
mational analysis is a limitation; one can easily spend 8
CPU-hours on a reasonably-sized dataset, and currently one
is limited to Silicon Graphics computers, which are no
longer the fastest. (Catalyst has another method for confor-
mational analysis, the “Fast” method, which is appropriate
only for the construction of 3D databases).

Macromodel Monte-Carlo Multiple Minimum (MCMM)

This method [17] stochastically populates different
regions of conformational space, and allows a variety of
different force fields to be used to evaluate energetics; it uses
an rms threshold for discarding similar conformations. For
the types of molecules one presents to pharmacophore
discovery, the Merck Molecular Force Field [18] appears to
work best. Experimentation with steadily lower values of τ
continue. The lowest values with which this author has had

Fig. (4). How to use terra incognita as a design constraint.
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success are 5 kcal/mol; this issue continues to be debated in
the literature, with suggestions that values as low as 3
kcal/mol are acceptable [19]. For the quality of conforma-
tions, this author’s experience suggests that MCMM is the
best option for conformational analysis in pharmacophore
discovery. The default setting for detection of duplicates
(0.25 A rms deviation) ensures a high degree of coverage,
even for mapping the shrink-wrap surface. The sole drawback
is the execution speed, which can be measured in CPU-days
for reasonably-sized datasets (though it should be noted that
MCMM runs on most computers, and that this process is
readily parallelizable, so multiple CPU-days can convert to
acceptable elapsed times).

OMEGA

This unpublished method [20] appears to mainly rely on
torsion-driving using a defined set of allowed torsions for
each rotatable bond type, and does not have methods for
assessing energetics or duplication. Its main advantage is
speed (minutes for most datasets). It is recommended that
post-processing be done to evaluate energetics, e.g. using
Macromodel. The conformational coverage appears to be too
coarse for routine use in pharmacophore discovery, though
this is dataset-dependent.

CONFORT

This unpublished method [21] uses a sophisticated method
for adaptively determining the optimum angles for driving
torsions, among other things. Like OMEGA, it needs post-
processing to evaluate energetics. Its speed lies between
OMEGA’s and Catalyst’s Best method; the improved
sampling of torsional angles comes at a computational cost.

Final Comments on Conformational Analysis

The list of methods above is not intended to represent a
comprehensive list. It should also be noted that some
pharmacophore discovery methods integrate in one program
the operations of conformational analysis with those of
pharmacophore discovery. The difficulty with these integrated
approaches is that, when the wrong answer emerges from the
software, it must be difficult to isolate the problems to the
conformational analysis method, or the pharmacophore
discovery method. Also, various workers augment their
protocol with steps which cluster and/or minimize the
conformations (for example, [22]); in contrast, the approach
this author has generally followed using DANTE is to create
more conformations than may be necessary, thousands per
molecule if needed, and to let the natural clustering of the
pharmacophore discovery method weed out unneeded
conformers. Pharmacophore discovery is not the slow step,
so an extra conformer is not a disadvantage, while a missing
conformer may degrade the quality of the final result. (This
was not always true – DANTE originally ran on a SGI
Personal Iris with 32 Mb RAM – but with cheap powerful
machines commonplace today, clock speeds > 1 GHz
containing multiple Gb of RAM, this is not an issue).

Enumeration of Candidate Pharmacophores

Most datasets are compatible with many possible
pharmacophores. Failure to appreciate this is the greatest
source of subjectivity and irreproducibility in pharmacophore

discovery; method A homes in on one pharmacophore, while
method B homes in on a different one. The proper approach
to pharmacophore discovery is to enumerate all pharmaco-
phores consistent with a dataset, what may be termed
candidate pharmacophores. The possibility also exists that
there are no pharmacophores consistent with the dataset; this
procedure of enumerating all candidate pharmacophores must
also reckon with that possibility. There are some model
building methods, e.g. COMPASS [23], which make an
implicit assumption that a pharmacophore exists, and it is
unique, and it is merely an algorithmic challenge to find it.

The procedure used in DANTE to enumerate all
pharmacophores follows these three steps:

1) For all molecules in the dataset, for all conformations of
each molecule, for each feature-type from a standard
library of feature-types, identify all features on that
conformation. The standard library of feature-types is the
set we introduced with the Catalyst software: A,D,N,P,
H,R (hydrogen bond acceptor, hydrogen bond donor, a
group negatively charged at physiological pH, a group
positively charged at physiological pH, a hydrophobic
group, and an aromatic ring).

2) If triad pharmacophores are sought (pharmacophores
containing 3 features), for all molecules in the dataset,
for all conformations of each molecule, tabulate all inter-
feature constraint values for all possible triads on each
conformation. Each triad of inter-feature constraint values
is referred to as an “MRS point” (point in Molecular
Recognition Space). An MRS point may contain only 3
distances, if the 3 features are ones without orientation
(N,P,H), or it may contain 3 distances and angles and
torsions, if one or more features are oriented (A,D,R).

3) The tightest  cluster of MRS  points is identified, following
the idea of Mayer, Naylor, Motoc, and Marshall [24],
hereafter referred to as the MNMM algorithm (Fig. (5a)).
This cluster should contain all the molecules in the
dataset. The constraints for the pharmacophore are those
that enclose this cluster, i.e. the minimum and maximum
for each distance, angle, or torsion among all MRS points
in the tightest cluster. Note that the MNMM algorithm
works for any combination of distances, angles or torsions.

This final clustering step is the heart of the DANTE
pharmacophore discovery method. Note that it is here where
one can detect if a pharmacophore exists in the dataset – if
no tight clusters emerge, then one is likely faced with that
situation. Here one can also detect if the dataset is best
partitioned into multiple pharmacophores: if the array of
MRS points is best described by two tight clusters, each
cluster containing a distinct subset of the dataset, then one
may have a heterogeneous dataset (Fig. (5b)). Outliers are
frequently evident in this clustering step, i.e. a tight cluster
of MRS points exists for all molecules in the dataset but one
(Fig. (5c)).

Evaluation and Ranking of Candidate Pharmacophores

When one applies the procedure described in the previous
section to a variety of datasets, one is immediately struck by
the problem that typically many pharmacophores can be
inferred from the data. In fact, it is a hallmark of “easy”
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Fig. (5a).  Algorithm of Mayer, Naylor, Motoc and Marshall.

Fig. (5b). Algorithm of Mayer, Naylor, Motoc and Marshall in the presence of dataset heterogeneity. A pharmacophore with d12
constrained within 5-6 A and d23 constrained within 4-5A encompasses actives 1,2,3. A pharmacophore with d12 constrained within
8-9 A and d23 constrained within 6-7 A encompasses actives 4,5,6.
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Fig. (5c). Algorithm of Mayer, Naylor, Motoc and Marshall in the presence of one outlier.

datasets that a single pharmacophore emerges from this
procedure; the ACE dataset of Mayer et al. [24], is such an
example. However, most datasets one encounters in the
course of real drug discovery, and especially those which are
most challenging to the intuitive approach of medicinal
chemists, are ones for which multiple candidate pharmaco-
phores emerge. How should one sift through these different
possibilities, and identify the “best” one(s)?

The unique aspect of DANTE is that it uses the principle
of selectivity to rank these candidate pharmacophores, with
more selective pharmacophores preferred over less selective
ones [5]. The selectivity index S is derived from notions of
probability theory. For each candidate pharmacophore, one
performs a 3D database search against a drug-like database,
e.g. the database supplied by the National Cancer Institute
[25]. Denote the proportion of the database returned as hits
by that candidate pharmacophore as q. One can interpret q as
the probability that that candidate pharmacophore will match
a randomly-chosen druglike molecule. Hence, if our dataset
contains N molecules, and the pharmacophore hits all N
molecules, the likelihood that N random druglike molecules
will all match the candidate pharmacophore is qN, which is
called S, the index of selectivity. The smaller the value of S,
the less likely that candidate pharmacophore may have arisen
by chance. Hence, by assessing q for all candidate pharmaco-
phores, computing S for all candidate pharmacophores, and
ranking all candidate pharmacophores by S, one can rank
them according to the statistical likelihood that they do not
represent a chance correlation.

If a candidate pharmacophore hits on a subset of M
molecules in the dataset of N molecules, one must introduce

a sum over the tail of the binomial distribution to properly
evaluate this statistical likelihood:

S = k

NC q k

k =M

N

∑ (1− q)N − k

where CN
k represents the number of ways k things may be

selected from N things, 
N!

(N − k )!k!
.

The only time-consuming step in this ranking procedure is
the assessment of q for each candidate pharmacophore; with
massively-parallel computing clusters, nowadays this is not
an issue, though earlier one needed to rely on a mathematical
trick to provide lookup tables for rapid estimation of q [4].

Because typical values of S are so small, it is more
convenient to work with pS = -log(S). Values of pS smaller
than 5 usually indicate a weak pharmacophore, i.e. if the
most selective candidate pharmacophore only has a pS value
of 5 (S=1.0x10-5), this is a dataset that does not point clearly
to a pharmacophore. Values of pS in the range 5 to 7 are
moderately good pharmacophores; 7 to 10 are good
pharmacophores; >10 are exceptional. Values of pS > 10 are
characteristic of SAR’s which have been well-worked-out,
long after the drugs have already been discovered, like the
ACE pharmacophore of Mayer et al. [24], or the D2 and
beta-2 pharmacophores used as examples in the original
DANTE publication [5].

The principle of selectivity is also useful in determining
the degree to which a pharmacophore must be elaborated.
Considering a dataset composed of 10 proprietary 5-HT2a/c
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agonists [26], one can begin by discovering the simple dyad
(two-feature) pharmacophore shown in Fig. (6a), a basic
amine and an aromatic ring constrained to lie within a
distance of 5.0 – 5.2 A. This selectivity values for this
pharmacophore are q=0.15, pS=8.3. If one looks for triad
pharmacophores containing this dyad, one discovers the
pharmacophore shown in Fig. (6b), q=0.10, pS=5.1. This is
a step backwards, and hence it is not productive with this
dataset to advance from dyads to triads. Next, if one
considers a dyad pharmacophore with angles and a torsion
(taking the lone pair on the basic amine as providing a
directionality, as is customarily done in modeling CNS
compounds), one discovers the pharmacophore shown in
Fig. (6c), q=0.04, pS=13.7. Note also that, due to the

a)

b)

Fig. (6a).  Simple dyad 5-HT2a pharmacophore.

Fig. (6b). Simple triad 5-HT2a pharmacophore.

Fig. (6c). Simple dyad 5-HT2a pharmacophore with angle.
torsion constraints.

Fig. (6d). Pharmacophore in 6c with additional steric
constraints.

signed torsion angle, this pharmacophore is chiral, though it
is only a dyad. Measured by the selectivity index alone, this
looks like an excellent pharmacophore, though in fact it will
hit agonists of many GPCR’s. Additional selectivity comes
from shape constraints.

Overlaying Molecules According to the Pharmacophore,
Mapping Steric Boundaries, Identifying Terra Incognita

In the development of ALADDIN, this author spent a lot
of time investigating the pro’s and con’s of using absolute
coordinate systems (molecules positioned in Cartesian x,y,z
coordinate systems) vs. relative coordinate systems (internal
coordinates, distances, angles, etc.). Ultimately, the
ALADDIN language provided either one to the user, but
what emerged after much experimentation is that internal
coordinates worked best for defining the types of pharmaco-
phores that have been discussed up to this point, but that
absolute coordinates work best for the description of shape,
i.e. steric constraints. While Catalyst’s “Hypothesis Gene-
ration” ignored these lessons learned, in DANTE pharma-
cophore discovery, what appears to work best is to discover
the initial pharmacophore (features; distance, angle, and
torsion constraints) in internal coordinates and then to use
that pharmacophore to revert to absolute coordinates, and
then to infer the shape constraints. One is left with two
distinct problems: (1) how to convert pharmacophores
composed of distances, angles, etc. to absolute coordinate
frames, i.e. how to align all molecules in 3D space, and (2)
how to infer the shape constraints.

To align molecules in 3D space, one selects out those
conformations that match the initial pharmacophore. One can
either arbitrarily pick one of these conformations as a
reference (a step which introduces subjectivity), and overlay
all other conformations to that using the Kabsch algorithm
[27], or, more systematically, one can construct geometrically
a set of (x,y,z)’s whose internal coordinates match the
relationships of the centroid of all the MRS points which
belong to the cluster from which the pharmacophore was
formed, and overlay all conformations to those (x,y,z)’s (a
hybrid approach is also possible – to choose the one confor-
mation whose MRS point is closest to the centroid, and use
that as a reference).

Once aligned, one has an ugly composition – an explosion
of many molecules, possibly hundreds of conformations, all
aligned in a way consistent with the pharmacophore.
Inference and application of shape constraints suddenly turns
it into a thing of beauty – reminiscent of what is in every
chemist’s and pharmacologist’s mind of how these molecules
may be binding to the receptor.

In DANTE, the procedure that is used is called ‘shrink-
wrapping’ [6]; while it is sometimes called the ‘shrink-wrap
algorithm’, properly the procedure used by DANTE com-
bines (1) an algorithm, (2) a novel shape representation, and
(3) a principle of minimum volume. In DANTE, the shape
of the binding site is inferred by computing the surface
enclosing the smallest volume that contains at least one
conformer of each active molecule. This shape is represented
by a series of polygons mapped onto a surface topologically
equivalent to a sphere. The algorithm for performing the
volume computations is described in detail elsewhere [6].
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There is no guarantee that the surface of minimum
volume should be physically identical to the binding site of
the receptor. Empirically, this principle of minimum volume
appears to work. Note that most SAR’s do not allow one to
define the entire surface; polygons are marked as ‘sterically
forbidden’ when an inactive molecule must protrude though
it, otherwise they are labeled as terra incognita. An example
of the net result is shown in Fig. (6d), a patchwork of
forbidden regions surrounded by transparent terra incognita;
literature 5-HT2a compounds are shown mapped into this
fully-fledged pharmacophore model [28]. Note that this
approach is a refinement of the approach originally developed
by Garland Marshall and co-workers, where the union
volume of the actives is intersected with the union volume
of the inactives to define sterically forbidden regions [1].
Fig. (7) shows a rare case of a binding site being essentially
fully defined by the SAR, with almost no terra incognita:
the binding site of the oxazolidinone antiobiotics [29], as
inferred from the SAR of over 3,000 analogs, measuring the
biological activity as the MIC against the bacterium
Haemophilus infuenza. This is a cutaway view of that
surface, cut away in a manner which intentionally obscures
what little terra incognita exists.

Computational Controls

A colleague of mine likes to use the term “gonzo pharma-
cology” [30] to describe the process where a biologically
active compound is applied to cells, a response is observed,

and inferences are made based on that one experiment as to
the molecular basis of how that response is generated. Part of
the training of pharmacologists and cell-biologists includes
engendering a deep respect for the importance of control
experiments, to elucidate the molecular mechanisms of the
behavior of a complex set of interrelated pathways, and to
weed out incorrect hypotheses about what those mechanisms
might be.

Too often, in molecular modeling, we are guilty of
“gonzo modeling”: running some data through a program,
observing the results, and asserting “Eureka!”, without
running the types of additional computational experiments
that ascertain whether one has discovered a significant
relationship or not. Nowhere are computational controls
more important than in the area of pharmacophore discovery.

The types of computational controls that this author has
used to evaluate the quality and significance of both DANTE
[5] and Hypothesis Generation are:

1) Adding noise to conformations. It is a simple matter to
repeat the pharmacophore discovery operation, where after
performing conformation generation, a small amount of
noise is added to each coordinate of every conformation.
One anticipates that adding small quantities of noise,
e.g. 10-7 A, should leave the results unchanged. One
anticipates that intermediate amounts, e.g. 0.001 A,
should produce comparably-sized differences in the
results. Surprisingly, the results of early versions of
Hypothesis Generation were not robust relative to even

Fig. (7). Cutaway view of the shrink-wrap surface of oxazolidinone antibiotic binding site for Haemophilus Influenza activity. This
steric boundary is defined by over 3,000 oxazolidinone analogs. The structure shown is that of linezolid, the first oxazolidinone
antibiotic, approved for use in 2000.
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the smallest quantities of noise: upon addition of noise
of magnitude 10-7 the output was totally different –
different features selected, changes in distances of the
order of 1 A. DANTE results behave as anticipated [5].

2) Permuting atom indices. One anticipates that order by
which atom numbers are assigned should have no effect
whatsoever on any computation, e.g. that numbering the
oxygens of dopamine 1,2, the nitrogen 3, and all the
carbons 4-11 should give the same result as numbering
the carbons 1-8, the nitrogen 9, the oxygens 10,11. This
is another computational control that early versions of
Hypothesis Generation flunked (non-programmers find
this hard to believe, but it is actually non-trivial to write
software that never makes the assumption “let’s start by
looking at atom 1…”). DANTE relies everywhere on a
subgraph-isomorphism algorithm to refer to pieces of
molecules, and is robust relative to this computational
control [5].

3) Adding randomly-chosen molecules to the dataset. This
is another challenge to most pharmacophore discovery
algorithms, as they frequently begin with the assumption
that a pharmacophore exists for all the molecules in the
dataset. By contrast, DANTE, via the MNMM
algorithm, looks for a pharmacophore – randomly added
molecules will appear as outliers. DANTE is usually
robust to this type of control [5].

4) Apply the entire pharmacophore discovery protocol,
beginning to end, on a dataset of randomly-selected drug-
like molecules. One anticipates some type of feedback
from the software, suggesting that no common patterns
are discernible. In DANTE, the selectivity index is a
guide, in the published examples always yielding a value
of the selectivity index pS < 5.3 [5]. At first glance, this
computational control sounds foolhardy, yet one is
frequently faced with the task of evaluating an SAR
produced by a biological assay, where it later turns out
that the biological readout was laden with artifacts [31].

These are only some examples of the types of
computational controls one could apply. This should be an
opportunity for some creative thinking among modelers, to
better protect us from drawing conclusions from chance
correlations.

Prospective Application, Design, Synthesize, Test, Iterate
on Model Building

The sine qua non of any model-building exercise is the
prospective application to molecular design. By prospective,
we mean applying the model to molecules that have never
been seen during the model-construction activity. This is
distinct from the popular techniques like cross-validation,
where a portion of the dataset is partitioned off, not used in
the model-building, and against which the model is applied
as the final step. The vicissitudes of these retrospective
approaches are becoming steadily clearer [32,33]; in fact,
Kubinyi has summarized his experience with the observation
that those models that fit the data best tend to work
prospectively the worst, an observation this author has
dubbed the “Kubinyi Paradox”.

Prospective application is possible via collaborations
with medicinal chemists, who can make molecules suggested
by the model, or who will use the model to choose among
many possible molecules they devise. The success of a
pharmacophore is measured by frequency with which those
new ideas are successful, compared to the frequency
experienced by the medicinal chemist, relying on his/her
intuition alone. Prospective validation may also be achieved
by using the pharmacophore to virtually screen molecular
databases; this is one of the advantages of pharmacophore
models, that they can be directly coupled to a 3D database
search.

SUMMARY OF LESSONS LEARNED

vuolsi così colà dove si
puote

It is so willed there where is
power to go

ciò che si vuole, e più non
dimandare

That which is willed; and
ask no further question

One may briefly summarize the lessons learned as
follows:

1) Most datasets are consistent with many pharmacophores.
The challenge in pharmacophore discovery is to
enumerate all of these candidate pharmacophores, and to
rank order them. The principle of selectivity - rank-
ordering pharmacophores by their selectivity – is a useful
method to identify the best pharmacophores

2) A facile link from pharmacophore discovery to 3D
database searching is vital. This is useful both in
performing prospective validation of the model, and in
assessing different candidate pharmacophores, to
determine which is most selective.

3) Inclusion of sterically-forbidden regions, or shape
constraints, is vital to achieve good selectivity.

4) Identification of terra incognita is very important, and
directing design towards uncovered territory is useful.

5) Computational controls are vital, to protect against
chance correlations.

6) Some datasets are easy; some are hard. Medicinal
chemists rarely need help with the former, and our
methods are weakest on the latter. The challenge is to
discover good pharmacophores for hard datasets; hence
the need for a careful adherence to the proper protocols.
This author has been searching for years for a metric that
could quantify the intuitive sense of a dataset being
“hard” or “easy”; one idea has recently emerged from
studies of non-additivity, which should appear in print
soon.

7) Mechanistic inhomogeneity among the molecules of a
dataset can present an insuperable challenge for any
pharmacophore discovery method. This is the one
condition where picking subsets of the dataset is
justified; beyond that, a good pharmacophore discovery
method should process all the data.

8) Success in prospective application is the sole measure of
the quality of a pharmacophore.
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KEY OPEN ISSUES AND CONTROVERSIES

Le leggi son, ma chi pon
mano ad esse?

There are the laws, but who
commands respect to them?

The following questions represent, in the author’s opinion,
the crucial unresolved issues in the area of pharmacophore
discovery, and point the way towards future investigations:

1) What value of τ is best? Values for the energy threshold
in conformational analysis frequently are chosen based on
tradition, with some empirical evidence based on actual
studies suggesting values of 3-5 kcal/mol are best. In
theory, the idea depicted in Fig. (8) should be the ideal
way of addressing this. Referring back to the basic idea
of the MNMM method, if we let each molecule span an
increasing larger set of MRS points with increasing
values of τ, one should eventually reach a value of τ
where the circles all begin to form an intersection region.
Thus, one should be able to “dial-in” the value of τ that
leads to the tightest intersection region. In practice, the
author has never been able to get this to work to his
satisfaction, but it is suggestive of future directions.
Using a traditional or arbitrary value of τ is a key source
of subjectivity in the process of pharmacophore discovery;
it is important to find a way to determine the proper
value of τ, to wring out every element of subjectivity
from this process, to ensure that the results parallel the
physical reality and hence are useful. The proper value of
τ may be dataset-dependent; a method like that shown in
Fig. (8) would capture that.

2) How should features be identified? The idea of relying
on a standard library of features A,D,N,P,H,R seems
antiquated, and likely exacerbates the problem of multiple
candidate pharmacophores arising from a dataset. It is an
embarrassment to this field that we continue to rely on

such a primitive method. Some creativity is needed here
to provide a better solution, ideally to identify features in
a way that is dataset-dependent.

3) What is the best way to handle the multiplicity of phar-
macophores consistent with a dataset? This author’s
experience suggests that the principle of selectivity is
indeed a useful guide to picking the pharmacophore most
useful prospectively, but it is not foolproof. An alter-
native approach is to embrace all these pharmacophores,
and to create in effect a 3D similarity measure based on
the presence/absence of different pharmacophores [34,35];
it is unclear what the physical significance of such
models is.

4) How should shape constraints be handled? How can
other field quantities be included (e.g. electrostatics)?
The author’s experience suggests that the surface of
minimum volume, as implemented in the ‘shrink-wrap’
procedure, is useful for steric constraints. It remains an
open problem to “color the shrink-wrap surface”, i.e.
identify regions of the inferred binding surface that
complement regions on the ligand of high- and low-
charge density. In light of the Kubinyi Paradox, this
author does not take it as a given, that the appropriate
solution to this is partial-least-squares (PLS).

5) Is the iterative model-building process convergent? As
shown in Fig. (9), the process of constructing a pharma-
cophore model, and using it prospectively, forms a loop.
The question that has been posed by D. Agrafiotis is: is
this process convergent? Generally, it was seen with
Hypothesis Generation that every addition of a new
molecule led to a totally different pharmacophore model;
by contrast, in DANTE each additional molecule tends to
reinforce the existing model. This clearly is an
interesting question for future study.

Fig. (8). Theoretical scheme for “dialing-in” the value of tau that leads to a pharmacophore. At tau=5 kcal/mol, there is no overlap, but
at 8 kcal/mol, a very small overlap region may be found. At 10 kcal/mol, this overlap region grows.
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6) Do the processes described above lead to models which
are superior to or 3D-QSAR models like CoMFA
[13,14], or those derived from ensembles of pharmaco-
phores [34,35], or those derived from field-based
overlay methods [36,37]? 3D-QSAR models require a
pharmacophore prior to calculating the fields, so these
methods aren’t really comparable – 3D-QSAR refines the
results that emerge from pharmacophore discovery.
Compared with the other classes of 3D model-building,
prospective tests of these methods will eventually clarify
the answer to this question, though a common set of
computational controls applied to all methods with the
same input data would be instructive.

CONCLUSION

Lo duca e io per quel
cammino ascoso

The Guide and I into that
hidden road

intrammo a ritornar nel
chiaro mondo;

Now entered, to return to the
bright world;

e sanza cura aver d'alcun
riposo,

And without care of having
any rest

salimmo sù, el primo e io
secondo,

We mounted up, he first and I
the second,

tanto ch'i' vidi de le cose
belle

Till I beheld through a round
aperture

che porta 'l ciel, per un
pertugio tondo.

Some of the beauteous things
that Heaven doth bear;

E quindi uscimmo a riveder
le stelle.

Thence we came forth to
rebehold the stars.

Many lessons have been learned in over a decade of use
of modeling tools for pharmacophore discovery, but
probably the most important one is: despite their
immaturity, these tools are useful, and have their place at the

side of any scientist engaged in drug design in the absence of
direct crystallographic data on the biological target.
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