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Abstract: Quantitative structure–activity relationships (QSAR) have been applied for decades in the development of 
relationships between physicochemical properties of chemical substances and their biological activities to obtain a reliable 
statistical model for prediction of the activities of new chemical entities. The fundamental principle underlying the 
formalism is that the difference in structural properties is responsible for the variations in biological activities of the 
compounds. In the classical QSAR studies, affinities of ligands to their binding sites, inhibition constants, rate constants, 
and other biological end points, with atomic, group or molecular properties such as lipophilicity, polarizability, electronic 
and steric properties (Hansch analysis) or with certain structural features (Free-Wilson analysis) have been correlated. 
However such an approach has only a limited utility for designing a new molecule due to the lack of consideration of the 
3D structure of the molecules. 3D-QSAR has emerged as a natural extension to the classical Hansch and Free-Wilson 
approaches, which exploits the three-dimensional properties of the ligands to predict their biological activities using 
robust chemometric techniques such as PLS, G/PLS, ANN etc. It has served as a valuable predictive tool in the design of 
pharmaceuticals and agrochemicals. Although the trial and error factor involved in the development of a new drug cannot 
be ignored completely, QSAR certainly decreases the number of compounds to be synthesized by facilitating the selection 
of the most promising candidates. Several success stories of QSAR have attracted the medicinal chemists to investigate 
the relationships of structural properties with biological activity. This review seeks to provide a bird’s eye view of the 
different 3D-QSAR approaches employed within the current drug discovery community to construct predictive structure–
activity relationships and also discusses the limitations that are fundamental to these approaches, as well as those that 
might be overcome with the improved strategies. The components involved in building a useful 3D-QSAR model are 
discussed, including the validation techniques available for this purpose. 

INTRODUCTION 

 Quantitative structure–activity relationship (QSAR), in 
simplest terms, is a method for building computational or 
mathematical models which attempts to find a statistically 
significant correlation between structure and function using a 
chemometric technique. In terms of drug design, structure 
here refers to the properties or descriptors of the molecules, 
their substituents or interaction energy fields, function 
corresponds to an experimental biological/biochemical end-
point like binding affinity, activity, toxicity or rate constants, 
while chemometric method include MLR, PLS, PCA, PCR, 
ANN, GA etc. The term ‘quantitative structure–property 
relationship’ (QSPR) is used when some property other than 
the biological activity is concerned. Various QSAR approa-
ches have been developed gradually over a time span of 
more than a hundred years and served as a valuable 
predictive tool, particularly in the design of pharmaceuticals 
and agrochemicals. The methods have evolved from Hansch 
and Free-Wilson’s one or two-dimensional linear free-energy 
relationships, via Crammer’s three-dimensional QSAR to 
Hopfinger’s fourth and Vedani’s fifth and sixth-dimensions. 
All one and two dimensional and related methods are 
commonly referred to as ‘classical’ QSAR methodologies, 
and have been discussed briefly in the later sections. 
Irrespective of the type, all QSAR formalisms presume that  
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every molecule included in the study binds to the same site 
of the same target receptor. However, the main difference 
between all these formalisms reside in the manner in which 
each one of them treats and represents structural properties 
of the molecules and extracts the quantitative relationships 
between the properties and activities. Due to the limited 
scope and space for this review, the author will focus only on 
the 3D-QSAR approaches in drug design. To present an 
overview of the scenario, remaining QSAR methodologies 
have just been outlined in brief. However, readers are 
recommended to go through the references provided for 
these methods, to comprehend them in detail. 

OBJECTIVES OF QSAR 

 Mostly all the QSAR methods focus on the following 
goals: 

• To quantitatively correlate and recapitulate the relation-
ships between trends in chemical structure alterations 
and respective changes in biological endpoint for com-
prehending which chemical properties are most likely 
determinants for their biological activities 

• To optimize the existing leads so as to improve their 
biological activities  

• To predict the biological activities of untested and 
sometimes yet unavailable compounds 

RATIONALE BEHIND QSAR MODELING 

 The extent of reliability in opting for QSAR modeling 
depends on the type or nature of property being predicted, 
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the stage of the project and the relative ease and cost of 
compound synthesis and subsequent testing. More often 
QSAR models provide useful predictions but many times 
they fail, despite of good statistics generated from internal 
data used in training. Regardless of all such problems, 
QSAR becomes a useful alternative because of the following 
reasons: 

• Conventional syntheses methods are expensive and 
time-consuming 

• Biological assays are also too costly, often requiring 
time, sacrifice of animals, or compounds in their pure 
forms 

• Drug failures due to poor ADMET profiles at later 
stages of development (or even after commercialization) 
are exceedingly expensive and painful 

• Large number of compounds are available due to 
combinatorial chemistry and HTS approaches, but esti-
mations are required for prioritization of synthesis and 
screening 

EVOLUTION OF QSAR 

 QSAR methods originated way back in the nineteenth 
century. The chronological order in which these methods 
(1D and 2D QSAR) have evolved over a period of time is 
being given in Table 1. 

CLASSIFICATION OF QSAR METHODOLOGIES 

 Based on dimensionality - Most often the QSAR 
methods are categorized into following classes, based on the 
structural representation or the way by which the descriptor 
values are derived: 

 1D-QSAR correlating activity with global molecular 
properties like pKa, log P etc. 

 2D-QSAR correlating activity with structural patterns 
like connectivity indices, 2D-pharmacophores etc., without 
taking into account the 3D-representation of these properties 

 3D-QSAR correlating activity with non-covalent 
interaction fields surrounding the molecules 

 4D-QSAR additionally including ensemble of ligand 
configurations in 3D-QSAR 

 5D-QSAR explicitly representing different induced-fit 
models in 4D-QSAR 

 6D-QSAR further incorporating different solvation 
models in 5D-QSAR 

 Based on the type of chemometric methods used – 
Sometimes QSAR methods are also classified into following 
two categories, depending upon the type of correlation 
technique employed to establish a relationship between 
structural properties and biological activity: 

 Linear methods including linear regression (LR), mul-
tiple linear regression (MLR), partial least-squares (PLS), 
and principal component analysis/regression (PCA/ PCR). 

 Non-linear methods consisting of artificial neural net-
works (ANN), k-nearest neighbors (kNN), and Bayesian 
neural nets 

LIMITATIONS OF CLASSICAL QSAR METHO-
DOLOGIES 

 Classical QSAR methods are much simpler, faster and 
more amenable to automation than 3D-QSAR approaches. 
They include clearly-defined physiochemical descriptors and 
are best suited for the analysis of large number of com-
pounds and computational screening of molecular databases. 
Though they have been used for decades to correlate and 
predict the activity of molecules, they suffer from serious 
limitations in certain situations some of which are as follows 
[24]: 

• Only 2D-structures considered 

• Unavailability of appropriate physiochemical parameter 
(e.g., numerical descriptors for new or unusual subs-
tituents), rendering the compound unfit for inclusion in 
QSAR analysis 

• Insufficient parameters for describing drug-receptor 
interactions (e.g., steric parameter Es, Hammett constant 

 etc.) 

• Confined to only few substitutions in a common 
reference structure (simple variation of aromatic subs-
tituents) and works best with a congeneric series 

• No representation of stereochemistry or 3D-structure of 
molecules, regardless of their availability 

• Provide no unique solutions 

• Higher risk of chance correlations 

• High risk of failure due to ‘too far outside’ predictions 

• No graphical output thereby making the interpretation of 
results in familiar chemical terms, frequently difficult if 
not impossible 

• Requires considerable knowledge of substituent cons-
tants in physical organic chemistry to design a molecule, 
since classical QSAR equation do not directly suggest 
new compounds to synthesize 

PROGRESS IN 3D-QSAR APPROACHES 

 3D-QSAR is a broad term encompassing all those QSAR 
methods which correlate macroscopic target properties with 
computed atom-based descriptors derived from the spatial 
(three-dimensional) representation of the molecular struc-
tures [25-29]. The methodology has emerged as a natural 
extension to the classical QSAR approaches pioneered by 
Hansch and Free-Wilson. The major drawback of 3D-QSAR 
techniques is that they all are based on various assumptions 
which are described in the subsequent section [29]. 

ASSUMPTIONS IN 3D-QSAR METHODS 

 No QSAR model can replace the experimental assays, 
though experimental techniques are also not free from errors. 
Because of many obvious problems in simulating the real-
world situations, not every in vivo parameter can be included 
in the QSAR modeling. However, every attempt is being 
made to develop a model as close as possible to the real one 
and for this the 3D-QSAR paradigm has to rely on some 
basic assumptions which are given below [29]: 
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Table 1. A Brief History of Earlier QSAR Methodologies 

Author (Year) Contributions/Postulates 

Crum-Brown and Fraser (1868) Physiological activities of substances could be correlated with their chemical composition and constitution, but they 

did not show how to represent the chemical structure in a quantitative manner [1] 

Richardson (1868) Expressed the chemical structure as a function of solubility [2] 

Mills (1884) Developed a QSPR model for the prediction of melting and boiling points in homologous series, results were accurate 

to better than one degree [3] 

Richet (1893) Correlated toxicities of a set of alcohols, ethers and ketones with aqueous solubility and showed that their 

cytotoxicities are inversely related to their corresponding water solubilities [4] 

Overton and Meyer (1897, 

1899) 

Correlated partition coefficients of a group of organic compounds with their anesthetic potencies and concluded that 

narcotic (depressant) activity is dependent on the lipophilicity of the molecules [5, 6] 

Hammett (1935, 1937) Correlated the effect of the addition of a substituent on benzoic acid with the dissociation constant, postulated 

electronic sigma-rho constants and established the linear free-energy relationship (LFER) principle [7, 8] 

Ferguson (1939) Correlated depressant action with the relative saturation of volatile compounds in their vehicle and introduced a 

thermodynamic generalization to the toxicity [9] 

Bell and Roblin (1942) Studied antibacterial activities of a series of sulfanilamides in terms of their ionizations [10] 

Albert (1948) Examined the effects of ionization/electron distribution and steric access on the potencies of a multitude of 

aminoacridines [11] 

Taft (1952) Postulated a method for separating polar, steric, and resonance effects and introduced the first steric parameter, ES [12] 

Hansch and Muir (1962) Correlated the biological activities of plant growth regulators with Hammett constants and hydrophobicity [13] 

Hansch and Fujita (1964) Combined the hydrophobic constants with Hammett’s electronic constants to yield the linear Hansch equation and its 

many extended forms [14] 

Hansch (1969) Developed the parabolic Hansch equation for dealing with extended hydrophobicity ranges [15] 

Free and Wilson (1964) Formulated an additive model, where the activity is discretized as a simple sum of contributions from different 

substituents [16] 

Fujita and Ban (1971) Simplified the Free-Wilson equation estimating the activity for the non-substituted compound of the series and 

postulated Fujita-Ban equation that used the logarithm of activity, which brought the activity parameter in line with 

other free energy-related terms [17] 

Kubinyi (1976) Investigated the transport of drugs via aqueous and lipoidal compartment systems and further refined the parabolic 

equation of Hansch to develop a superior bilinear (non-linear) QSAR model [18] 

Hansch and Gao (1997) Developed comparative QSAR (C-QSAR), incorporated in the C-QSAR program [19] 

Heritage and Lowis (1997) Developed Hologram QSAR (HQSAR), where the structures are converted into all possible fragments, which are 

assigned specific integers, and then hashed into a fingerprint to form the molecular hologram. The bin occupancies of 

these holograms are used as the QSAR descriptors, encoding the chemical and topological information of molecules 

[20, 21] 

Cho and workers (1998) Developed Inverse QSAR, which seeks to find values for the molecular descriptors that possess a desired 

activity/property value. In other words, it consists of finding the optimum sets of descriptor values best matching a 

target activity and then generating a focused library of candidate structures from the solution set of descriptor values 

[22] 

Labute (1999) Developed Binary QSAR to handle binary activity measurements from high-throughput screening (e.g., pass/fail or 

active/inactive), and molecular descriptor vectors as input. A probability distribution for actives and inactives is then 

determined based on Bayes’ Theorem [23] 

 

• There is an underlying relationship between molecular 
structure and biological activity.  

• Receptor binding is directly proportional to the biolo-
gical activity. Differential effects on second messengers 
or other signaling steps which transpire between recep-

tor binding and experimentally observed response, are 
not taken into consideration. 

• Molecular structure can be measured and represented 
with a set of numbers usually called descriptors, which 
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encode all physical, chemical and biological properties 
of the molecule. 

• Molecules with common or related structures generally 
have similar physicochemical properties (the similarity 
principle), and thus have similar binding modes and 
consequently comparable biological activities. The 
reverse also holds true. Also, molecules located in the 
same region of the descriptor space present similar 
activity (the neighborhood principle). 

• Structural properties which lead to an observed 
biological response are most commonly determined by 
the non-bonding (or non-covalent) forces, mainly steric 
and electrostatic. 

• The observed biological effect is produced by the 
modeled ligand itself, and not by its metabolite or 
degradation product. 

• The lowest energy conformation of the ligand is its 
bioactive conformation, and it is this single confor-
mation of the ligand which exerts the binding effects.  

• With few exceptions, the geometry of the receptor 
binding site is considered rigid. 

• The loss of translational and rotational degrees of 
freedom (entropy) upon binding is believed to follow a 
similar pattern for all the molecules. 

• Total number of rotatable bonds is the only method most 
frequently used to estimate the entropic cost for freezing 
non-terminal single-bond rotors. 

• For all the modeled ligands, the protein binding site is 
assumed to be same. 

• For all the modeled compounds, the on-off rate is 
supposed to be similar i.e., the system is considered to 
be in equilibrium, and kinetic aspects are usually 
ignored. 

• Some of the major factors like desolvation energetics, 
temperature, diffusion, transport, pH, salt concentration 
etc. which contribute to the overall free energy of 
binding are difficult to handle, and thus usually ignored.  

• In molecular mechanics based 3D-QSAR methods, free 
energy of binding is largely explained by the enthalpic 
component (i.e., the internal energy), which is prone to 
the inherent force field errors. 

• Resulting QSAR model may represent one of potentially 
several solutions to the property–activity correlation 
problem. 

CLASSIFICATION OF 3D-QSAR APPROACHES 

 3D-QSAR methods can be classified on various criteria, 
some of which are given in Table 2. 

CoMFA 

 In 1987, Cramer developed the predecessor of 3D-
approaches called DYnamic Lattice-Oriented Molecular 
Modeling System (DYLOMMS) that involves the use of 
PCA to extract vectors from the molecular interaction fields, 
 

Table 2. Classification of 3D-QSAR approaches 

Classification Examples 

On the basis of intermolecular modeling, or the information used to 

develop QSAR 

Ligand-based 3D-QSAR CoMFA, CoMSIA, COMPASS, 

GERM, CoMMA, SoMFA 

Receptor-based 3D-QSAR COMBINE, AFMoC, HIFA, 

CoRIA 

On the basis of alignment criterion 

Alignment-dependent 3D-QSAR CoMFA, CoMSIA, GERM, 

COMBINE, AFMoC, HIFA, 

CoRIA 

Alignment-independent 3D-

QSAR 

COMPASS, CoMMA, HQSAR, 

WHIM, EVA/CoSA, GRIND 

On the basis of the chemometric technique used for correlating 

structural properties and activities 

Linear 3D-QSAR CoMFA, CoMSIA, AFMoC, 

GERM, CoMMA, SoMFA 

Non-linear 3D-QSAR COMPASS, QPLS 

 

which are then correlated with biological activities [30]. 
Soon after he modified it by combining the two existing 
techniques, GRID and PLS, to develop a powerful 3D-
QSAR methodology, Comparative Molecular Field Analysis 
(CoMFA) [31]. Today CoMFA has become a prototype of 
3D-QSAR methods [32]. A standard CoMFA procedure, as 
implemented in the Sybyl Software [33] from Tripos Inc., 
follows the following sequential steps: 

• Bioactive conformations of each molecule are 
determined. 

• All the molecules are superimposed or aligned using 
either manual or automated methods, in a manner 
defined by the supposed mode of interaction with the 
receptor. 

• The overlaid molecules are placed in the center of a 
lattice grid with a spacing of 2 Å. 

• The algorithm compares, in three-dimensions, the steric 
and electrostatic fields calculated around the molecules 
with different probe groups positioned at all inter-
sections of the lattice. 

• The interaction energy or field values are correlated with 
the biological activity data using PLS technique, which 
identifies and extracts the quantitative influence of 
specific chemical features of molecules on their biolo-
gical activity.  

• The results are articulated as correlation equations with 
the number of latent variable terms, each of which is a 
linear combination of original independent lattice 
descriptors.  

• For visual understanding, the PLS output is presented in 
the form of an interactive graphics consisting of colored 
contour plots of coefficients of the corresponding field 
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variables at each lattice intersection, and showing the 
imperative favorable and unfavorable regions in three-
dimensional space which are considerably associated 
with the biological activity.  

 Several parameters which significantly control the 
overall performance of the developed CoMFA model are 
described below; many of these are applicable to other 
QSAR methodologies also: 

BIOLOGICAL DATA 

 The popular ‘GIGO’ (garbage in garbage out) principle 
applies in every computational technique. In 3D-QSAR also, 
one should utilize accurate activity data in order to develop a 
good model. Though 3D-QSAR methods can be applied to 
heterogeneous data sets, some considerations for maintaining 
the accuracy of biological data are necessary [29, 34]:  

• Compounds should belong to a congeneric series (more 
important in case of classical QSAR). 

• Compounds should have the same mechanism of action 
and same/comparable binding mode. 

• The biological activities of compounds should correlate 
to their binding affinity and their enumerated biological 
responses should be measurable 

• Biological data for molecules should be obtained using 
uniform protocols (radioligand, activator, cofactor, pH, 
buffer etc.) and preferably from a single source 
(organism/tissue/cell/protein) and single lab.  

• Activity data for all the compounds should be in same 
units of measurement (binding/functional/IC50/Ki). Ki 
value is preferred instead of the IC50 data, since it is 
independent of the substrate concentration. 

• The ranges of biological activity covered should be as 
large as possible, keeping the mode of action identical. 
Preferably, activity range should be much larger than the 
standard deviations of the data; more than three 
logarithm units with an even spread of data is preferred. 

• If possible, biological data should be symmetrically 
distributed around their mean, and their precision should 
be evenly distributed over its range of variation. If not, 
such skewness can be removed by log transforming the 
data and expressing it as log (1/C), where C refers to the 
molar concentration of drug producing a standard 
response. It is noteworthy that free energy change is 
proportional to the inverse log of concentration of the 
compound.  

COMPOUND SELECTION AND SERIES 
OPTIMIZATION 

 One of the major applications of QSAR is to optimize the 
existing leads by structural modifications so as to improve 
their activity and reduce/eliminate the side-effects. However, 
there are many issues to be taken care of while selecting 
substituents for the modification of compounds; some of the 
important ones are given below [26, 34]: 

• The compounds/substituents selected should be 
convincingly different from the existing ones, so as to 
minimize collinearity among the variables. 

• The chosen compounds/substituents should have the 
properties which behave independent of each other, 
thereby maximizing dissimilarity and orthogonality. 

• The selection should be done in such a manner so as to 
map the substituent (descriptor) space with minimum 
number of compounds. 

• Synthetic accessibility/feasibility of the selected com-
pounds should also be taken into consideration. 

OPTIMIZATION OF 3D-STRUCTURE OF THE 
MOLECULES 

 An important issue in 3D-QSAR is how to generate and 
represent the starting molecular structure for analysis? The 
problem can be resolved both by experimental as well as 
computational techniques [34]. A large number of well-
resolved experimentally determined crystal structures are 
available in databases like Cambridge Structural Database 
[35] and Protein Data Bank [36]. The crystal structures offer 
the advantage that some conformational information about 
the flexible molecule is included. However, molecular 
modeling methods are particularly useful for compounds that 
have not been made or cannot even exists under normal 
conditions. Computationally the 3D-structures can be 
generated by three methods: (a) manually by sketching the 
structures interactively in a 3D-computer graphics interface 
or from an existing 3D-structure included in the fragment 
libraries, (b) numerically by using mathematical techniques 
like distance geometry, quantum or molecular mechanics, 
and (c) by automatic methods that are often used for building 
3D-structure databases.  

 After the generation of starting 3D-molecular structures, 
their geometries are refined by minimizing their confor-
mational energies using theoretical calculation methods. 
Commonly used structure optimization techniques include 
(a) molecular mechanics methods which usually does not 
explicitly consider the electronic motion, and thus are fast, 
reasonably accurate and can be used for very large molecules 
like enzymes, (b) quantum mechanics or ab initio methods 
which takes into account the 3D-distribution of electrons 
around the nuclei, and therefore are extremely accurate but 
time consuming, computationally intensive and cannot 
handle large molecules, (c) semi-empirical methods which 
are basically quantum mechanical in nature but employs an 
extensive use of approximations as in molecular mechanics. 
Generally, the molecular geometry is optimized by mole-
cular mechanics methods, and its atomic charges are calcu-
lated mostly by semi-empirical methods or less frequently by 
ab initio methods. 

CONFORMATIONAL ANALYSIS OF MOLECULES 

 It is a well recognized fact that each compound 
containing one or more single bonds is existing at each 
moment in many different so-called rotamers or conformers. 
Although small molecules may have only a single lowest 
energy conformation but large and flexible molecules do 
exists in multiple conformations at physiological conditions. 
Therefore, it becomes necessary to include various such 
conformations of the molecules in a 3D-QSAR study [34]. 
Depending upon the type of molecules in the study, any of 
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the following conformational search methods can be 
adopted: 

• Systematic search (or grid search) method which 
generates all possible conformations, by systematically 
varying each of the torsion angles of a molecule by 
some increment, keeping the bond lengths and bond 
angles fixed. 

• Random search method which generates a set of 
conformations by repetitively and randomly changing 
either the Cartesian (x, y, z) or the internal (bond 
lengths, bond angles and torsion/dihedral angles) coor-
dinates of a starting geometry of the molecule under 
consideration. 

• Monte Carlo method which simulates dynamic behavior 
of a molecule and generates the conformations by 
making random changes in its structure, calculating and 
comparing its energy with that of the previous confor-
mation and accepting it if it is unique. 

• Molecular dynamics method which employs the 
Newton’s second law of motion (force = mass  
acceleration) to simulate the time-dependent movements 
and conformational changes in a molecular system, and 
results in a so-called trajectory showing how the posi-
tions and velocities of atoms in the molecular system 
vary with time.  

• Simulated annealing which heats up the molecular 
system under consideration to high temperatures to 
overcome huge energy barriers, and after equilibrating 
there for sometime using molecular dynamics, cools 
down the system slowly and gradually to obtain the low 
energy conformations according to the Boltzmann 
distribution. 

• Distance geometry algorithm which generates a random 
set of coordinates by selecting random distances within 
each pair of upper and lower bounds to form constraints 
in a distance matrix, which are the used to generate 
energetically feasible conformations of a set of 
molecules.  

• Genetic and evolutionary algorithms which are based on 
the concept of biological evolution and works by first 
creating a population of possible solutions to the 
problem. The solutions with best fitness scores undergo 
crossovers and mutations over a time, and propagate 
their good characteristics down the generations to result 
in better solutions in the form of new conformers.  

DETERMINING BIOACTIVE CONFORMATIONS OF 
MOLECULES 

 Bioactive conformation refers to that conformation of the 
molecule when it is bound to the receptor. Intrinsic forces 
between the atoms in the molecule as well as extrinsic forces 
between the molecule and its surrounding environment 
significantly influence the bioactive conformation of the 
molecule. Reliability of any 3D-QSAR methodology 
depends on the determination of bioactive conformations 
[25, 34]. Bioactive conformations of the molecules can be 
obtained both by experimental as well as theoretical tech-

niques. Experimental methods for establishing bioactive 
conformations include: 

 X-ray crystallography: Exact 3D-structure of the 
macromolecules can be obtained only by this technique. 
Drug-receptor complexes generated by X-ray crystallo-
graphy provide reasonably accurate information, but this 
method has several limitations like 

• The protein needs to be crystallized and the constitution 
of crystallizing media is not usually similar to the 
physiological conditions 

• The method produces a time-averaged structure, since 
data collection usually takes a long time 

• Many times the structures are distorted due to crystal 
packing 

• Because of crystal instability and active-site occlusion, it 
is often not possible to diffuse substrates or other 
biologically relevant molecules into the existing crystals 

• Positions of hydrogen atoms are difficult to be resolved 

• Errors in accurately determining the structure of the 
ligand 

 NMR spectroscopy: In this method the 3D-structural data 
is obtained in solution. It is a method of choice when the 
molecule cannot be crystallized through experimental ways, 
as in case of the membrane bound receptors or receptors 
which have not yet been isolated due to stability, resolution 
or other issues. The important features of this method are: 

• Since no protein crystallization is required, the 
conformation of the protein is not influenced by packing 
forces of the crystal environment 

• The solution conditions (pH, ionic strength, Substrate, 
temperature etc.) can be adjusted to match the phy-
siological conditions. The results are also highly 
dependent on the solvent 

• Significant information regarding dynamic aspects of 
molecular motion can be obtained 

• Takes less time but is suitable for small molecules only 

• Positions of hydrogen atoms can be resolved 

• Apolar solvents may lead to an overestimation of 
hydrogen bonding phenomena 

• Structure obtained from NMR may not be similar to the 
one obtained from experimental methods, and many 
times it may not represent the receptor bound confor-
mation 

 Theoretically 3D-structural information can be obtained 
by a knowledge-based approach called Protein/homology 
modeling: In this method, the primary sequence of new 
protein is compared with all sequences of structurally known 
proteins stored in a database like PDB. Proteins in the 
database which are found to be homologous to the unknown 
are retrieved and used as templates for the structural 
prediction of the unknown protein. However this approach is 
limited only to the target proteins that are amenable to 
structure determination. Also the quality and applicability of 
this method primarily depends on the sequence similarity 
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between the protein of known structure (template) and the 
protein to be modeled (target). 

ALIGNMENT OF MOLECULES 

 One of the most crucial problems in most of the 
alignment-based 3D-QSAR methods is that their results are 
highly sensitive to the manner in which the bioactive 
conformations of all the molecules are superimposed over 
each other [25, 34]. In cases, where all the molecules in a 
data set have a common rigid core structure, molecules can 
be aligned easily using least-square fitting procedure. How-
ever in case of structural heterogeneity in the dataset, align-
ment of highly flexible molecules becomes quite difficult 
and time consuming. Several approaches have been proposed 
to superimpose the molecules as accurately as possible, some 
of which are as follows: 

 Atom overlapping based superimposition: This method 
involves corresponding atom to atom pairing between the 
molecules. It is also called as the pharmacophore approach 
and is the most popular method, since it gives the best 
matching of the preselected atom positions. It is beneficial in 
identifying dissimilarity between similar molecules, but 
cannot be applied to molecules with different structural types 
where corresponding atoms are difficult to select.  

 Binding sites based superimposition: In this method, 
molecular alignment is obtained by superimposing the recep-
tor active sites or the receptor residues that interact with the 
ligands. This approach is believed to be more conceivable, 
despite problems in conformational analysis due to enhanced 
degrees of freedom. 

 Fields/pseudofields based superimposition: This method 
perform superimposition by comparing the similarities in the 
calculated interaction energy fields between the molecules. 
Electrostatic similarity and molecular surface similarity 
indices have also been used by the researchers for molecular 
alignment. 

 Pharmacophore based superimposition: This method 
uses a hypothetical pharmacophore as a useful common 
target template. Each molecule is conformationally directed 
to assume the shape obligatory for its sub-molecular features 
to match with either a known pharmacophore or the one 
which is generated during the conformational analysis. 

 Multiple conformers based superimposition: This method 
is particularly useful in cases where the ligands may bind to 
a receptor in multiple ways, or when the correct binding 
mode is unknown and the ligands have a fair degree of 
conformational flexibility. For example, the 3D-QSAR 
method COMPASS (described in later section) iteratively 
determines and selects the best bioactive conformation and 
optimal alignment from a set of initial poses.  

CALCULATION OF MOLECULAR INTERACTION 
ENERGY FIELDS 

 After superimposition, the overlaid set of molecules is 
positioned in the center of a lattice or grid box, to calculate 
interaction energies between the ligands and different probe 
atoms placed at each intersection of the lattice [34, 37]. 
Various aspects that are required to be taken care of while 

calculating the interaction energies in CoMFA methodology 
are as follows: 

• The standard size of the grid spacing is 2 Å. The grid 
spacing is inversely proportional to the rigorousness of 
calculations. As the grid spacing decreases to 1 Å or 
less, the calculations becomes more intensive requiring 
much more computing time and disc storage space. The 
reduced grid spacing (0.5 Å) is usually employed while 
extracting interaction energy fields for a reference (most 
active) compound during molecular superimposition 
based on fields, as described earlier. 

• The typical size of the grid box is 3 - 4 Å larger than the 
union surface of the overlaid molecules. Since the 
electrostatic/Coulombic interactions are long-rang in 
nature, a larger grid box may be needed. Due to inherent 
correlation between electrostatic energies among lattice 
points in close proximity, a similar size grid box can be 
used for steric/van der Waals interactions.  

• Many times the position of the grid box considerably 
influences the statistics particularly the number of 
components in the final CoMFA model. Generally, the 
initial models are developed at various locations to spot 
the best grid position. Two approaches have been 
proposed to reduce the instability. The first one suggests 
rotating the set of overlaid molecules in a manner that 
they are not parallel to any of the grid edges. The second 
strategy recommends substituting the field value at a 
lattice point by average of the field values at the vertices 
of a cube centered on the grid point, whose side length is 
two-thirds of the grid spacing.  

• In CoMFA, the interaction energies are calculated using 
probes. The probe may be a small molecule like water, 
or a chemical fragment such as a methyl group. The 
electrostatic energies are calculated with H+ probe, 
whereas a sp3 hybridized carbon atom with an effective 
radius of 1.53 Å and a +1.0 charge is used as probe for 
including the steric energies. Each probe is positioned in 
turn at every intersection point of the lattice, and the 
interaction energies between the probe and each of the 
compounds are calculated using different molecular 
force fields.  

• A force field is a mathematical equation, which using a 
combination of bond lengths, bond angles, dihedral 
angles, interatomic distances along with coordinates and 
other parameters, empirically fit the potential energy 
surface. Major forces encountered in the drug-receptor 
intermolecular interactions include electrostatic/ 
Coulombic, hydrogen bonding, steric/van der Waals and 
hydrophobic. The electrostatic and hydrogen bonding 
interactions are responsible for ligand-receptor speci-
ficity, whereas hydrophobic interactions generally 
provide the strength for binding. The most commonly 
employed fields in CoMFA are steric and electrostatic, 
which are mainly enthalpic in nature. However, many 
times the entropic effects, in the form of hydrophobic 
interactions, are also included in the CoMFA analysis. 
Creativity of the research and the validity of the 
underlying theory are the major parameters deciding the 
type of field to be generated and included in a CoMFA 
model. 
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• In CoMFA, the standard (6-12) Lennard-Jones function 
is used to model the van der Waals interactions whereas 
electrostatic interactions are determined by the 
Coulomb’s law. The slope of the Lennard-Jones poten-
tials is very steep close to the van der Waals surface, as 
a result of which the potential energy at lattice points in 
the proximity of the surface changes significantly. This 
implies that a trivial difference in the mutual shift or 
conformational changes of the compounds may result in 
very large differences in energy values. Moreover, the 
Lennard-Jones and Coulombic potentials show singu-
larities (unacceptably large values) at the atomic posi-
tions. Therefore to avoid all these problems in CoMFA, 
the cut-off values (± 30 kcal/mol) for steric and 
electrostatic energy are defined.  

DATA PRETREATMENT AND SCALING 

 Before performing the actual chemometric analysis in 
3D-QSAR, the raw data is usually pretreated to minimize 
redundancy [34]. One of the common reduction methods is 
based on the standard deviation cut-off, in which all the 
energy columns with a low standard deviation are eliminated 
from the data, since they require longer computing time 
without contributing significantly to the results. Similarly 
several variable selection methods are available, which can 
be used to reduce collinearity among the descriptors thereby 
preventing data over-fitting and improving the prediction 
performance of the model. Also, in CoMFA the steric and 
electrostatic values are amended by using cut-offs (± 30 
kcal/mol, as mentioned earlier), depending upon the position 
of the lattice point.  

 Many times after pretreatment, the data is subjected to 
scaling which assigns equal weight to all the descriptors and 
places them on a common platform for a meaningful 
statistical analysis. Scaling significantly improves the signal 
to noise ratio and also allows ranking the relative importance 
of individual variables. Different scaling techniques are 
available and can be used effectively in 3D-QSAR approa-
ches. For example: autoscaling scales the variables to zero 
mean and a unit standard deviation by dividing each column 
with its standard deviation, block-scaling provides each 
category of variables with the same weight by dividing the 
initial autoscaling weights of descriptors in one class by the 
square root of the number of descriptors in that class 
(CoMFA standard scaling), and block-adjusted scaling 
which is particularly useful when other variables are inclu-
ded along with the energy values in the analysis. This scaling 
gives other variables a comparable weight to the total 
variables.  

 Sometimes the pretreated data is subjected to centering 
by subtracting the column means from all the data. This does 
not change any coefficient values or comparative weights of 
the descriptors, but the number of significant components 
from PLS may be one less than from the data without 
centering. The method is supposed to improve the ease of 
interpretation and numerical stability. 

MODEL GENERATION AND VALIDATION 

 After pretreatment and scaling of the descriptors 
(interaction energies and other variables, if necessary), they 

are correlated to the biological activities of the molecules, 
assuming a linear relationship between them [34, 37, 38]. 
Since the number of independent (x) variables in CoMFA is 
much larger than the number of compounds in the data set, 
the traditional linear regression analysis cannot be used to 
perform the fitting process. Therefore to extract a stable and 
best QSAR model from a range of possible solutions, the 
partial least-squares (PLS) technique is used. Other methods 
to model linear relationships include MLR, PCA, PCR etc. 
However many times the relationship between the dependent 
(y) and independent (x) variables is not linear or it can’t be 
predicted, in such cases non-linear chemometric methods 
like neural networks are employed; these methods make no 
assumption about the relationship between the variables 
during training and model development. Most of these 
chemometric techniques for QSAR modeling are discussed 
in the later sections. 

 The most important criterion for judging the quality of a 
QSAR model is its ability to predict accurately not only the 
activities of molecules that form part of training set (internal 
prediction), but also of molecules not included in the 
development of the model (external prediction) [38]. The 
internal predictive capability of the model can be judged 
from cross-validated by techniques like leave-one-out and 
leave-group-out, whereas its external predictivity can be 
evaluated by using a separate set of molecules (the test set) 
not included in the model development. To further assess the 
robustness and statistical confidence of the derived models 
Fischer statistics, randomization (y-scrambling) and boot-
strapping analysis are also performed. All these cross-
validation methods have been explained in the later sections.  

DISPLAY OF RESULTS 

 CoMFA generates an equation correlating the biological 
activity with the contribution of interaction energy fields at 
every grid point. To allow simple and easy visual inter-
pretation, results are generally shown as coefficient (or scalar 
product of coefficients and standard deviation) contour plots, 
depicting important regions in space around the molecules 
where specific structural modifications significantly alters 
the activity [29, 34]. Generally two types of contours are 
shown for each interaction energy field: the positive and 
negative contours. The contours for steric fields are shown in 
green (positive contours, more bulk favored) and yellow 
(negative contours, less bulk favored), while the electrostatic 
field contours are displayed in red (positive contours, elec-
tronegative substituents favored) and blue (negative 
contours, electropositive substituents favored) colors. 

 In addition of contour plots, CoMFA also provides two 
types of plots from PLS models: score plots and loading/ 
weight plots. Score plots between biological activity (Y-
scores) and latent variables (X-scores) show relationship 
between the activity and the structures, whereas plots of 
latent variables (X-scores) display the similarity/dissimilarity 
between the molecules, and their clustering propensities.  

DRAWBACKS AND LIMITATIONS OF CoMFA 

 Despite of offering many advantages over classical 
QSAR and good performance in various practical appli-
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cations, CoMFA has several pitfalls and imperfections as 
given below [26, 29, 34]: 

• Since the time of its origin in 1988, numerous appli-
cations of the CoMFA method in different fields have 
been published [39]. Several data sets have been 
investigated; the first being the binding affinity of the 
steroid data set [40] for human corticosteroid-binding 
globulins (CBG) and testosterone-binding globulins 
(TBG). Many successful endeavors of CoMFA approach 
in the areas of enzyme Highly sensitive to bioactive 
conformation, different binding modes of ligands, align-
ment rules and number of components  

• Too many adjustable parameters like overall orientation, 
lattice placement, step size, probe atom type etc. 

• Uncertainty in selection of compounds and variables 

• Fragmented contour maps with variable selection 
procedures 

• Hydrophobicity not well-quantified 

• Cut-off limits used 

• Low signal to noise ratio due to many useless field 
variables 

• Imperfections in potential energy functions  

• Various practical problems with PLS 

• Applicable only to in vitro data 

 Since the time of its origin in 1988, numerous appli-
cations of the CoMFA method in different fields have been 
published [39]. Several data sets have been investigated; the 
first being the binding affinity of the steroid data set [40] for 
human corticosteroid-binding globulins (CBG) and 
testosterone-binding globulins (TBG). Many successful 
endeavors of CoMFA approach in the areas of enzyme inhi-
bition, agrochemistry (pesticides, insecticides or herbicides), 
physicochemistry (partition coefficients, capacity factors, 
enantio-separation factors and 13C chemical shifts), ADME 
and toxicity, thermodynamics and kinetics have also been 
exhaustively appraised in several reviews [25, 27, 32, 41, 
42]. 

MSA 

 Molecular Shape Analysis (MSA) is a ligand-based 3D-
QSAR formalism which attempts to merge conformational 
analysis with the classical Hansch approach. It deals with the 
quantitative characterization, representation and mani-
pulation of molecular shape in the construction of a QSAR 
model [43]. The methodology begins by subjecting each 
molecule in the data set to a fixed valence geometry intra-
molecular conformational analysis with a scan at 30° 
increments for all torsion angles except for amide N (C=O) 
torsion which is scanned at 180° increment. The confor-
mational energies are estimated using a fixed valence 
geometry molecular mechanics force-field consisting of a 
dispersion/steric, electrostatic, and, if applicable, hydrogen 
bonding contributions. For each compound, all apparent 
intramolecular energy minima are identified and recorded, 
each of which are then used as starting points in rigorous 
fixed valence geometry energy minimizations. Both appa-

rently as well as rigorously minimized energy conformations 
are aspirants for the ‘active’ conformation of each analog in 
the ensuing steps. To identify the active conformation of 
each analog, the LBA-LCS (loss in biological activity-loss in 
conformational stability) approach is used; this is based on 
the identification of stable low-energy intramolecular confor-
mer states common to the active analogs, which is a high-
energy, unstable state for the inactive analogs.  

 A shape reference structure is selected as the mutant 
shape generated by the common and difference volume 
combinations realized by multiple compound alignments or 
active conformations. The potential active conformation of 
each compound in the data set is pair-wise compared and 
aligned with the shape reference. This is followed by the 
calculation of various descriptors which measure relative 
molecular shape similarity. One of the important shape 
variables is the common overlap steric volume (COSV) 
between pairs of molecules as a function of conformation 
and relative intermolecular geometry. It actually measures 
how much steric space a pair of molecules share under a 
prescribed intermolecular relationship. Two other descriptors 
are also arbitrarily defined as alternate mathematical 
representations of COSV that can advantageously be used in 
developing empirical QSARs; one has the dimensions of 
area but is not a physical measure of common atomic surface 
areas between two molecules, and another has the dimen-
sions of length but is not a cumulative measure of distances 
between the molecules [43]. These pair-wise shape variables 
can also be amalgamated with the non-shape ther-mody-
namic and electronic descriptors including the terms from 
the Hansch equation ( , Es, ) in developing a MSA 3D-
QSAR model. 

 The shape similarity descriptors along with the non-shape 
variables are eventually correlated with the biological acti-
vities of the molecules using the MLR technique, however, 
other chemometric methods like PLS and GA can also be 
employed. The MSA results can be graphically represented 
as a picture of the most active analog placed in its active 
conformation or as the superimposition of shape descriptors 
onto the molecular geometry of the most active molecule. 
Some of the recent successful applications of MSA include 
the generation of useful 3D-QSAR models of the allosteric 
modulators of muscarinic receptors [44], anticoccidial 
triazines [45], cholecystokinin-A receptor antagonists [46], 
and indanone-benzylpiperidine inhibitors of acetylcholines-
terase [47]. MSA is being provided in the Cerius2 software 
[48] from Accelrys Inc.  

GRID 

 GRID was the first tailor-made program designed for the 
medicinal chemist as an alternative to the original CoMFA 
approach. It calculates the interaction energy fields in 
molecular field analysis and determines the energetically 
favorable binding sites on molecules of known structure. 
Though the approach is similar to CoMFA in that it too 
computes explicit non-bonded (or non-covalent) interactions 
between a molecule of known three-dimensional structure 
and a probe (i.e., a small chemical group with user-defined 
properties) located at the sample positions on a lattice 
throughout and around the macromolecule, it offers two 
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distinct advantages; first is the use of a 6-4 potential function 
for calculating the interaction energies, which is smoother 
than the 6-12 form of the Lennard-Jones type in CoMFA, 
and second is, the availability of different types of probes 
[49]. The program in addition of computing the regular steric 
and electrostatic potentials, also calculates the hydrogen 
bonding potential using a hydrogen bond donor and accep-
tor, and the hydrophobic potential using a “DRY probe”. 
Later on a water probe was added to calculate hydrophobic 
interactions [41, 50]. Since the water probe is not only 
electrically neutral but can also donate and accept a hydro-
gen bond, the energies determined using this probe are sup-
posed to embrace steric and hydrogen bonding interactions 
also, besides representing the hydrophobic interaction energy 
like log P due to its molecular surface area. In addition to the 
water and DRY probes, other probes which are usually used 
singly, include the methyl group, the amine NH2 group, the 
carboxylate group and the hydroxyl group. Contour surfaces 
are calculated at various energy levels for each probe for 
every point on the grid and are displayed graphically along 
with the protein structure. While negative energy levels of 
the contours describe regions at which ligand binding should 
be favored, positive energy levels normally characterize the 
shape of the target. Some of the recent applications of the 
GRID method include determining energetically favorable 
binding sites and characterization of their surface properties 
[51], building predictive pharmacophore models [52], 
classification and comparison of ligand-binding sites [53], 
and rational design of potent inhibitors of influenza virus 
sialidase [54]. Many times GRID maps are also used as input 
descriptors in CoMFA, GOLPE or SIMCA for QSAR or 3D-
QSAR analyses [55]. It is possible to use these interaction 
energies in a statistical technique to relate to the biological 
activity in a quantitative manner. The GRID software is 
supplied by Molecular Discovery Ltd [56].  

HASL 

 The Hypothetical Active Site Lattice (HASL) method is 
an inverse grid-based approach which represents the shapes 
of the molecules inside an active site as a collection of grid-
points [57]. The methodology begins with the intermediate 
conversion of the Cartesian coordinates (x, y, z) of a super-
posed set of molecules to a 3D-grid consisting of the regu-
larly-spaced points that are: 

• arranged orthogonally to each other 

• separated by a particular distance termed as the 
resolution (which determines the number of grid points 
representing a molecule) 

• all sprawl within the van der Waals radii of the atoms 
constituting the molecule 

 The resulting framework of points is referred to as the 
molecular lattice and represents the receptor active site map. 
The overall lattice dimensions are dependent on the size of 
the molecules and the resolution chosen.  

 Typically a reference molecule is selected arbitrarily and 
its user-defined conformations similar in shape and that have 
been energy-minimized, are used to generate the HASL. The 
selected conformation of the reference molecule is centered 
about the origin of a Cartesian coordinate system, and a 

regular grid with a chosen resolution is then laid over the 
molecule. All grid points lying within the van der Waals 
radii of the atoms of the molecule are designated as 
‘occupied’ and form the molecular lattice. The electronic 
properties of the occupying atoms are distinctly represented 
by assigning the lattice points a ‘HASL-type’ value based on 
the electron density of the atoms, which constitute the fourth 
dimension of the molecular lattice. The values of +1, -1 and 
0 are assigned to the electron-rich (e.g. O, N), electron-poor 
(e.g. C in C=O) and neutral atoms/substituents, which 
roughly represent H-bond acceptors, donors, and lipophilic 
atom types, respectively. Such internal atom type desig-
nations allow apparently different structures to be overlaid 
with an equivalent electronic “sense”, (i.e., similar atomic 
characteristics of two molecules can be superimposed in 3D-
space), to obtain a maximum complementarity of space and 
physiochemical character within that space. Similar to 
electron density, other user-selected physio-chemical 
properties such as hydrophobicity, can also be employed as 
the fourth dimension. A second molecule is subsequently 
selected and subjected to the same routine, generating its 4D 
lattice which is then compared and consequently aligned to 
that of the stationary reference molecule. In order to 
optimally align the molecules based on their lattices, a 
systematic search is performed which involves a stepped 
progression of translational and rotational movements, with 
an intermediate lattice generated at each step, until a perfect 
match is obtained. The extent of similarity between the two 
molecules is calculated according to a fitting function, based 
upon the degree of corres-pondence between the points of 
the two lattices, i.e, on the number of points the two lattices 
have in common. Once the best possible alignment between 
the two molecular lattices is obtained, those lattice points of 
the fitted molecule which are not yet in common with the 
reference molecule are added to create a new composite 
construct or larger reference lattice containing the infor-
mation from both the molecules. This fitting and merging 
process is then repeated to include all the molecules of the 
training set in the growing HASL, resulting in a reference 
lattice entailing every point from all the molecular lattices. 

 In order to determine the activity contributions from 
different lattice points, initially the experimental activity 
value of a molecule is homogeneously divided among its all 
lattice points. For lattice points which are shared by more 
than one molecule, the partial bioactivity values are, at first, 
averaged over these points and, afterwards adjusted by an 
iterative protocol to fit the experimental activity data of the 
entire training set. This iteratively optimized HASL is then 
used as a standardized model to predict the activities of 
untested molecules. The bioactivity of a specific compound 
is forecasted by summing all the partial activity values at 
points in common with the composite reference lattice. Some 
of the successful applications of HASL approach include the 
analysis of the in vitro antimalarial activity of artemisinin 
analogs [58], in vitro biochemical and in vivo gastric 
antisecretory activity of substituted imidazo[1,2-a]pyridines 
[59], sequence specificity of DNA alkylation by uracil 
mustard [60], and the generation of putative pharmacophoric 
models of the HIV-1 protease inhibitors [61]. HASL is a 
copyrighted program of Hypothesis Software and eduSoft 
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LC [62], and also comes as one of the modules in Sybyl 
Software [33].  

CoMSIA 

 Comparative Molecular Similarity Indices Analysis 
(CoMSIA) was developed to overcome certain limitations of 
CoMFA. In CoMSIA, molecular similarity indices calculated 
from modified SEAL similarity fields are employed as 
descriptors to simultaneously consider steric, electrostatic, 
hydrophobic and hydrogen bonding properties. These indices 
are estimated indirectly by comparing the similarity of each 
molecule in the dataset with a common probe atom (having a 
radius of 1 Å, charge of +1 and hydrophobicity of +1) 
positioned at the intersections of a surrounding grid/lattice. 
For computing similarity at all grid points, the mutual 
distances between the probe atom and the atoms of the 
molecules in the aligned dataset are also taken into account. 
To describe this distance-dependence and calculate the 
molecular properties, Gaussian-type functions are employed. 
Since the underlying Gaussian-type functional forms are 
‘smooth’ with no singularities, their slopes are not as steep 
as the Coulombic and Lennard-Jones potentials in CoMFA; 
therefore, no arbitrary cut-off limits are required to be 
defined. These functions tend to produce values within a 
reasonable range, even in the case of overlapping atoms. 
Despite the fact that CoMSIA also suffer from most of the 
limitations of CoMFA, it offers following distinctive 
advantages: 

• Use of the Gaussian distribution of similarity indices, 
which avoids the abrupt changes in grid-based probe–
atom interactions  

• The choice of similarity probe, is not limited to either 
steric or electrostatic potential fields but also include 
hydrophobic and hydrogen bonding (hydrogen bond 
acceptors and donors) fields 

• Effect of the solvent entropic terms can also be included 
by using a hydrophobic probe 

• The standard CoMFA contours highlights those regions 
in space where the aligned molecules would favorably 
or unfavorably interact with a possible receptor 
environment. On the other hand, the CoMSIA contours 
indicate those areas within the region occupied by the 
ligands that “favor” or “dislike” the presence of a group 
with a particular physicochemical property. This rela-
tionship between the required properties and a probable 
ligand shape is a more direct guide to substantiate 
whether all features imperative for activity are present in 
the structures being considered. 

 Some of the recent applications of CoMSIA include 
generation of predictive 3D-QSAR models of boron-con-
taining dipeptides as proteasome inhibitors [63], hydroxamic 
acid derivatives as urease inhibitors [64], thiazolidin-4-one 
derivatives as anti-HIV-1 agents [65], and thiazolidinediones 
derivatives as aldose reductase inhibitors [66]. CoMSIA is 
provided by Tripos Inc. in the Sybyl software [33], along 
with CoMFA.  

 

 

GERM 

 Genetically Evolved Receptor Models (GERM) is a 
technique for 3D-QSAR and for constructing useful three-
dimensional models of macromolecular binding sites in the 
absence of a crystallographically-determined or homology-
modeled structure of the target receptor [67]. The primary 
requirement for GERM is a structure–activity series for 
which a sensible alignment of realistic conformers has been 
determined. The methodology consists of enclosing the 
superimposed set of molecules in a shell of atoms (analogous 
to the first layer of atoms in the active site) and allocating 
these atoms with explicit atom types (aliphatic H, polar H, 
etc. to match the types of atoms usually found in the pro-
teins). Aliphatic carbon atoms are disseminated uniformly 
over a sphere surrounding the training set of aligned ligands, 
and their positions are adjusted to obtain maximum van der 
Waals interaction between the model carbon atoms and the 
ligand molecules. Once the positions of the carbons have 
been recognized, they can be occupied by any of the atom 
types, including no atom at all. One practical problem arises 
when the number of shell atoms and their atom types 
increases, since the number of possible combinations rises to 
a huge value thereby rendering it impossible to syste-
matically find a best possible model. The method therefore 
makes use of the genetic algorithms (GA) to solve this 
highly multi-dimensional search problem. The ligands in the 
training set are then docked into a GA generated receptor 
active site model, one at a time, and the intermolecular non-
bonded interaction energies (van der Waals and electrostatic 
terms) are computed using a CHARMm molecular 
mechanics force field. Finally these calculated interaction 
energies are correlated with the biological activities of the 
molecules. The affirmative feature of this method is that the 
model is presented as a 3D-display of the receptor properties 
in space. The limitation of GERM methodology is that it 
considers only a single conformation of each ligand in the 
training set, as well as its single orientation in the binding 
site. Since this method is based on the computation of 
interaction energies with the hypothetical receptor, it is 
subjected to all the limitations of such methods including the 
alignment problem. However, if all the molecules of the set 
do bind in a manner that doesn’t alter the binding site too 
much; GERM could be a good approach. The method has 
been applied profitably on a series of sweeteners, correlating 
their bioactivities with the calculated intermolecular energy 
[68]. The methodology has a fair potential for application in 
screening 3D-structural databases to find new leads, or in 
combination with de novo ligand-design programs. The 
program GERM is available from D. Eric Walters [69], 
Associate Professor, Finch University of Health Sciences, 
North Chicago, USA.  

COMBINE 

 Comparative Binding Energy Analysis (COMBINE) 
method was developed to take advantage of the structural 
data from ligand-macromolecule complexes, in a 3D-QSAR 
paradigm. The technique is based upon the hypothesis that 
the free energy of binding can be correlated with a subset of  
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energy components calculated from the structures of 
receptors and ligands in bound and unbound forms [70, 71]. 
The ligands are divided into fragments and the same number 
of fragments is allocated to all the compounds, adding 
“dummy” fragments to the ligands lacking a particular 
fragment. The non-bonded (van der Waals and electrostatic) 
interaction energies are computed between each residue of 
the receptor and every fragment of the ligand, using a 
molecular mechanics force field. The energies are also 
calculated between all pairs of residues/fragments for the 
complexes and for the free ligands and receptor. The elec-
trostatic interactions are computed using a distance-depen-
dent dielectric constant, and no cutoff limits are employed 
for the non-bonded interactions. The insignificant descriptors 
are then eliminated from the data using the variable selection 
utility in GOLPE program, and finally the biological 
activities of the molecules are correlated with the interaction 
energy values by employing PLS technique. Like all other 
interaction energy based 3D-QSAR approaches, COMBINE 
also suffers from the inherent errors involved in the 
computation of these energies. Also, the predictive ability of 
the method can be enhanced by making improvements in 
various aspects like the description of the electrostatic term, 
the inclusion of suitable descriptors for solvation and entro-
pic effects, and the optimization of particular facets of the 
methodology, such as the choice of ligand fragment defi-
nitions and the details of the variable selection protocol. 
Recently COMBINE methodology has been utilized to build 
3D-QSAR models to determine the selectivity and speci-
ficity of Ras proteins [72], predict binding affinity of non-
peptide inhibitors of HIV-1 protease [73], and to identify 
amino acid residues in haloalkane dehalogenase LinB that 
modulate its substrate specificity [74]. 

CoMMA 

 Comparative Molecular Moment Analysis (CoMMA) is 
one of the unique alignment-independent 3D-QSAR 
methods, which involves the computation of molecular simi-
larity descriptors based on the spatial moments of molecular 
mass (shape) and charge distributions up to and including 
second order as well as related quantities [75]. With respect 
to each molecular structure, two Cartesian reference frames 
are then defined. One frame is the principal inertial axes 
calculated with respect to the center-of-mass. For neutral 
molecular species, the other reference frame is the principal 
quadrupolar axes calculated with respect to the molecular 
“center-of-dipole”. Dipolar, quadrupolar, and displacement 
descriptors are then calculated with reference to the principal 
inertial axes translated such that its origin is superposed on 
the center-of-dipole. It is noteworthy that these descriptors 
are obtained after translation to the center of mass as well as 
the center of dipole for each molecule, to keep the system 
alignment-independent. Finally these mole-cular moment 
descriptors are correlated with the biological activities of 
molecules using the PLS technique. Literature reports 
suggest that CoMMA descriptors are sensitive to molecular 
conformations, but less sensitive than CoMFA field para-
meters. The authors propose that the CoMMA descriptors 
have a potential role in addressing the issues like large scale 
screening and molecular diversity. The method has been 
used to build robust 3D-QSAR models to comprehend the 

structure-activity relationships of the benchmark steroid data 
set [75], and to develop combinatorial QSAR of ambergris 
fragrance compounds [76]. A web version of the CoMMA 
program is provided by the IBM informatics group [77]. A 
slight variant of this approach, termed as CoMMA2, has also 
been developed by the author [78]. 

CoMSA 

 Comparative Molecular Surface Analysis (CoMSA) is a 
non-grid 3D-QSAR approach that makes use of the mole-
cular surface for defining those regions of the compounds 
which are required to be compared using the mean 
electrostatic potentials [79, 80]. The methodology proceeds 
by subjecting the molecules in the data set to geometry 
optimization and assigning them with partial atomic charges. 
The Kohonen’s self-organizing maps (SOM, a type of neural 
network) are then employed to transform the three-
dimensional surface of the molecules into two-dimensional 
topographical maps, by extracting the signals from the 
Cartesian coordinates of the points sampled randomly at the 
van der Waals surface of the molecules. The partial atomic 
charges of the atomic molecular represen-tations are also 
projected onto the 2D-topographical maps. The molecular 
electrostatic potentials (MEPs) are calculated at the surface 
points and a mean value of the potential analogous to the 
respective points found in each grid cell (of CoMFA like 
methods) is utilized to explain this cell. The calculated mean 
electrostatic potential values are converted into vectors and 
the vectors expressing all the molecules in the series are 
superimposed onto a matrix, by comparing the respective 
topographical maps of the molecules. The ensuing com-
parative matrix of the mean electrostatic potentials (trans-
formed into vectors) is finally used to develop a 3D-QSAR 
model using the PLS technique. The distinctive feature of 
CoMSA is that, in contrast to CoMFA and related approa-
ches, it compares the molecular properties explaining not a 
discrete set of points but the average property values (MEPs) 
calculated for a certain area of the molecular surface. 
Recently a receptor-dependent CoMSA model, using multi-
pose molecular docking and iterative variable elimination 
PLS (IVE-PLS), has been developed and applied on 
sulforaphane compounds as activators of quinone reduc-tase 
[81]. Other recent applications of CoMSA include the 
modeling of pKa values of benzoic acids [82], and hypo-
lipidemic asarones [83], virtual combinatorial library 
screening of styrylquinoline HIV-1 blocking agents [84], and 
determination of the binding mode for a series of benzo-
xazine oxytocin antagonists using docking and 3D-QSAR 
studies [85]. 

AFMoC 

 Adaptation of Fields for Molecular Comparison 
(AFMoC) is a 3D-QSAR method involving fields derived 
from the protein environments (and not from the superim-
posed ligands as in CoMFA), therefore it is also known as a 
‘reverse’ CoMFA (=AFMoC) approach [86]. The 
methodology begins by placing a regularly-spaced grid into 
the receptor binding site, followed by mapping of the 
knowledge based pair-potentials between protein atoms and 
ligand atom probes onto the grid intersections resulting in 
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the potential fields. Based on these potential fields, inter-
action fields are generated by multiplying distance-depen-
dent atom-type properties of actual ligands docked into the 
active site with the neighboring grid values. These atom-type 
specific interaction fields are then correlated with the 
binding affinities of the molecules using PLS technique, 
which assigns individual weighting factors to each field 
value. Finally the results are displayed graphically by using 
contribution maps, and binding affinities of novel ligands are 
predicted by applying the derived 3D-QSAR equation. The 
distinctive features of this approach include: 

• A tailor-made scoring function is combined with a 
protein-based CoMFA approach, thereby overcoming 
the prerequisite to involve complete ligand training sets 

• The gradual shift from generally valid knowledge-based 
potentials to protein-specific pair-potentials, reflects the 
amount and the degree of structural diversity existing in 
the ligand training data 

• Atom-type specific interaction fields are used which are 
mutually orthogonal in nature and thus eases the 
interpretation of PLS results 

• In addition of the enthalpic contribution, the methodo-
logy is also expected to include the entropic effects 
resulting from (de-)solvation, since structural knowledge 
from experimentally determined complexes is converted 
into statistical pair potentials 

 Some of the thriving applications of AFMoC include 
building predictive 3D-QSAR models for 1-deoxyxylulose-
5-phosphate (DOXP)-reductoisomerase inhibitors [87], 3-
oxybenzamides as potent inhibitors of the coagulation pro-
tease factor Xa [88], thermolysin and glycogen phos-
phorylase b inhibitors [86], and for analyzing selectivity- and 
affinity-determining features of carbonic anhydrase isozy-
mes [89]. Recently the methodology has been modified to 
account for the multiple ligand conformations in an ensem-
ble of protein configurations. The improved method has been 
termed as consensus AFMoC (AFMoCcon), and was vali-
dated on the thrombin inhibitors [90]. 

CoRIA AND ITS VARIANTS 

 Comparative Residue Interaction Analysis (CoRIA) is a 
3D-QSAR approach which uses the descriptors that describe 
the thermodynamic events involved in ligand binding, to 
explore both the qualitative as well as the quantitative facets 
of the ligand–receptor recognition process. Initial CoRIA 
methodology simply consisted of calculating the non-bonded 
(van der Waals and Coulombic) interaction energies between 

the ligand and the individual active site residues of the 
receptor that are involved in interaction with the ligand [91-
93]. Employing the genetic version of PLS technique 
(G/PLS), these energies were then correlated with the 
biological activities of molecules, along with the other 
physiochemical variables describing the thermodynamics of 
binding like, lipophilicity, molar refractivity, surface area, 
molecular volume, Jurs descriptors, strain energy etc.  

 Later on to deal with the problems of peptide QSAR, this 
approach was further extended and modified to develop two 
new variants of CoRIA: reverse-CoRIA (rCoRIA) and 
mixed-CoRIA (mCoRIA). In these methodologies, the 
peptide (ligand) is fragmented into individual amino acids 
and the interaction energies (van der Waals, Coulombic and 
hydrophobic interactions) of each amino acid in the peptide 
with the receptor as a whole (rCoRIA) and with individual 
active site residues in the receptor (mCoRIA) are calculated, 
which along with other thermodynamic descriptors (like free 
energy of solvation, entropy loss on binding, strain energy, 
and solvent assessable surface area) are used as independent 
variables that are correlated to the biological activity by 
G/PLS chemometric method [94]. 

 CoRIA methodologies makes full use of the wealth of 
knowledge contained in the ligand-receptor complexes and 
extract crucial information regarding the nature and type of 
important interactions at the level of both the receptor and 
the ligand, which can be directly employed in the design of 
new molecules and receptors. The approaches have the 
ability to forecast modifications in both the ligand as well as 
the receptor, provided structures of some ligand–receptor 
complexes are available. The methodology has been success-
fully applied to study the interactions of inhibitors with 
Cyclooxygenase-2 [91], MurF Enzyme of Strepto-coccus 
pneumonia [92], HIV-1 integrase [93], and peptides binding 
to MHC class-I molecule HLA-A*0201 [94]. However, 
these methods are difficult to be applied on small organic 
molecules, because unlike peptides there is no logical or 
universally accepted protocol for fragmenting small mole-
cules. Also the methodologies can be further improved by 
solvating entire ligand-protein complexes, extensive confor-
mational sampling by molecular dynamics, inclusion of other 
important interactions like hydrogen bonding etc. 

OTHER 3D-QSAR METHODOLOGIES 

 In addition of the above mentioned formalisms, several 
other 3D-QSAR methodologies have been developed. Some 
of them are as follows: 

 

Method Steps 

Compass • Conformational analysis is carried out to determine the probable bioactive conformation of each ligand 

• descriptors measuring surface shape or polar functionality of each ligand’s pose in a specific alignment in the vicinity of a 

particular point in space are then computed 

• a neural network is constructed and models built, realignment of molecules is continuously carried out to achieve the best fit 

to the binding site with improvements in the neural network model 

• the final model is developed from these improved and realigned molecular poses [95] 
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Method Steps 

RSA/RSM/CoRSA 

(Receptor Surface 

Analysis/Modeling, 

Comparative Receptor 

Surface Analysis) 

• The structures of molecules are optimized and superimposed in their bioactive conformation 

• a receptor-complementary surface is generated using shape fields (defined by some distance-dependent function) that 

encloses a volume common to all the aligned molecules and which represents their aggregate molecular shape 

• the putative chemical properties of the receptor at every surface point are computed 

• PLS models are developed that correlate surface properties with molecular activities [96, 97] 

VFA (Voronoi Field 

Analysis) 

• A conformational analysis, minimization and superimposition of all the molecules is first carried out. 

• the volume occupied by superimposed set of molecules is divided into subspaces referred to as Voronoi polyhedral, each 

including a reference point (an atom) with certain coordinates as explained in the following steps 

• first a template (the simplest) molecule is selected and all the atoms of the template molecule are allocated as initial 

reference points 

• next the largest molecule in the dataset is superimposed on the template in terms of the number of atoms and new reference 

points are designated if this point is greater than 1 Å distance of the reference points identified in the above step. 

• the above two steps are repeated with superimposition of other molecules in decreasing order of their size, each time 

defining isolated atoms as new reference points by the criteria stated above, until all compounds are superimposed 

• a cuboid with six tangential planes divided into a 3D-lattice with a spacing of 0.3 Å, surrounding the union volume of the 

superposed set of molecules is constructed. This gives the Voronoi polyhedral. 

• the potential and electrostatic energy indices at each lattice point is computed according to the ‘hard-sphere potential’ model 

and Coulomb’s law respectively 

• the PLS algorithm is then applied to correlate independent steric and electrostatic latent variables with the activity index 

[98] 

PARM (Pseudo Atomic 

Receptor Model) 

• fifteen types of pseudo receptor atoms types possibly found in a protein are selected 

• the molecules are superimposed and a 3D-grid around their common surface is generated 

• pre-defined atom types and formal charge at these grid points are assigned using a genetic algorithm; this is based on the 

charge of the ligand atom closest to the grid point 

• a GA-based initial population of individuals or receptor models are generated 

• van der Waals and electrostatic interaction energies between each ligand and the receptor model are computed and are 

correlated to their molecular activities using a linear regression technique [99] 

SOMFA (Self-

Organizing Molecular 

Field Analysis) 

• Firstly the mean activity of training set is subtracted from the activity of each molecule to obtain their mean centered 

activity values 

• a 3D-grid around the molecules with values at the grid points signifying the shape or electrostatic potential is generated 

• the shape or electrostatic potential value at every grid point for each molecule is multiplied by its mean centered activity 

• the grid values for each molecule are summed up to give the master grids for each property 

• the so called SOMFAproperty,i descriptors from the master grid values are then calculated and correlated with the log-

transformed molecular activities [100] 

FLUFF-BALL • A semiautomatic superimposition of the molecules based on a novel field-fitting procedure called Flexible Ligand Unified 

Force Field (FLUFF) is carried out; this is a MMFF94 force field that is customized to impart flexibility to the ligand to 

maximize adaptation/similarity between the steric and electrostatic field volumes of the ligand and the template 

• the internal coordinate system is attached to the template molecule by placing the vertices of the local grid at the atomic 

centers of the template, using the Boundless Adaptive Localized Ligand (BALL) approach, thus rendering the system grid-

independent 

• the similarity between ligands and template is evaluated, and the computed steric and electrostatic descriptors are correlated 

with the biological activities using the PLS technique [101] 

CoMASA (Comparative 

Molecular Active Site 

Analysis) 

• The molecules are first superimposed and their interatomic distances calculated 

• then is extracted the co-ordinates of the molecular representation (instead of the lattice points as in CoMFA) by 

continuously removing the atoms that are closer to each other, and replacing them with pseudo atoms (created from their 

weighted average), until the distances between all the atoms/pseudo atoms are greater than the threshold value of 0.75 Å 

• the interaction energies (steric, electrostatic and hydrophobic properties) are then computed for each molecule at these 

points by different evaluation functions and finally these are correlated with their molecular activities using PLS [102] 
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Method Steps 

CoMPIA (Comparative 

Molecule/Pseudo 

receptor Interaction 

Analysis) 

• The geometry of the molecules is optimized which is followed by their superimposition based on a common template 

molecule 

• the resulting space encompassed by the set of superimposed molecules is partitioned into grids with sufficient number of 

lattice points to accommodate all the probe atoms 

• nine different types of hybrid atoms/probes are distributed at each lattice point using a genetic algorithm, 

• the steric, electrostatic and hydrophobic interactions between different probes and every molecule in the set are computed 

and then correlated with the biological activities using PLS [103] 

 

STATISTICAL METHODS USED FOR BUILDING 
QSAR MODELS 

 Statistical or chemometric techniques form the mathe-
matical foundation for building a QSAR model. Some of 
these methods are briefly described below: 

Table 2. Statistical Techniques for Building QSAR Models 

Linear Regression Analysis (RA) 

Simple linear regression 

Multiple linear regression (MLR) 

Stepwise multiple linear regression 

Multivariate data analysis 

Principal component analysis (PCA)  

Principal components regression (PCR) 

Partial least square analysis (PLS) 

Genetic function approximation (GFA) 

Genetic partial least squares (G/PLS) 

Pattern recognition 

Cluster analysis 

Artificial neural networks (ANNs) 

k-nearest neighbor (kNN) 

 

 Among the increasing pool of various statistical methods 
available in the literature, Linear Regression analyses are 
considered as an easily interpretable methods indicated for 
QSAR analysis [104]. These regression techniques construct 
a statistical model to represent the correlation of one or more 
independent variables (x) with a dependent explicative 
variable (y). The model can be utilized to predict y from the 
knowledge of x variables, which can be either quantitative or 
qualitative. Simple linear regression, multiple linear regres-
sion, and stepwise multiple linear regression are some of its 
variants. 

 Simple linear regression method performs a standard 
linear regression calculation to generate a set of QSAR 
equations that include a single independent descriptor x and 
a dependent variable y [104]. Thus, a one-term linear equa-
tion is produced separately for each independent variable 
from the descriptor set. This technique is suitable for gene-

rating simple relationships between structure and activity 
exploring some of the most important descriptors governing 
the activity. However, the interaction of multiple descriptors 
is ignored. The simple linear regression can be expressed by 
the equation: 

y= a + bx 

where the dependent variable y is expressed in terms of the 
independent variable x by means of two parameters: the 
constant a, also referred to as the intercept and the regression 
coefficient b. 

 Multiple linear regression (MLR) also referred to as 
the linear free-energy relationship (LFER) method, is an 
extension of the simple regression analysis to more than one 
dimension [105]. MLR generates QSAR equations by perfor-
ming standard multivariable regression calculations to 
identify the dependence of a drug property on any or all of 
the descriptors under investigation. The possibility of chance 
correlation is checked through the values of multiple 
correlation coefficient (r), Student’s t-value; Fisher’s F ratio, 
standard deviation (s), and through independent tests like the 
leave-one-out (LOO) method. The significance of correlation 
can be judged through cross-validated correlation coefficient 
(r2

cv or q
2) values and also by the y-scrambling technique. 

MLR assumes that all variable are independent, and not 
correlated. However, in the multivariate case, i.e., MLR 
analysis involving more than one independent variable, the 
relationship is expressed with the following single multiple-
term linear equation: 

y = b0 + b1 x1 + b2x2 +………… + bm xm + e 

 the MLR analysis estimates the regression coefficients 

(bi), by minimizing the residual error (e), which quantify the 
deviation of a particular point from the regression line, as in 
the case of simple linear regression. 

 Stepwise multiple linear regression is a commonly used 
variant of MLR which also creates a multiple-term linear 
equation, but not all the independent variables are used 
[106]. In contrast to MLR, each independent variable is 
sequentially added to the equation and new regression is 
performed every time. The new term is preserved only if the 
model passes a test for significance. This regression techni-
que is especially useful when the number of descriptors is 
large and the key descriptors are unknown.  

 The methods described above have now been replaced by 
multivariate chemometric methods which try to explain an 
extended set of variables by means of a reduced number of 
new latent variables possessing the maximum amount of 
information relevant to the problem. These techniques 
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project multivariate data into a space of lower dimensions 
providing insight to visualize, classify, and model large data 
sets. These latent variables are orthogonal and hence can be 
used in multiple linear regressions. 

 Partial least squares (PLS) is an iterative regression 
procedure that produces its solutions based on linear 
transformation of a large number of original descriptors to a 
small number of new orthogonal terms called latent variables 
[107]. PLS gives a statistically robust solution even when the 
independent variables are highly interrelated among them-
selves, or when the independent variables exceed the number 
of observations. Thus, PLS is able to analyze complex 
structure-activity data in a more realistic way, and effectively 
interpret the influence of molecular structure on biological 
activity. This is one of the standard statistical methods used 
for the development of predictive 3D-QSAR models.  

 Principal components analysis (PCA) is another data 
reduction technique that does not generate a QSAR model 
but seeks for relationships among independent variables 
[108]. It then creates a new set of orthogonal descriptors - 
referred to as principal components (PCs) which describe 
most of the information contained in the independent vari-
ables in order of decreasing variance. Consequently, PCA 
reduces dimensionality of a multivariate data set of descrip-
tors to the actual amount of data available. When principal 
components are employed as the independent variables to 
perform a linear regression, the method is termed as the 
principal components regression (PCR). In other words, 
PCR applies the scores from PCA decomposition as regres-
sors in the QSAR model, to generate a multiple-term linear 
equation [109].  

 Genetic function approximation (GFA) serves as an 
alternative to standard regression analysis for building 
QSAR equations [110]. It employs the natural principles of 
evolution of species which leads to improvements by 
recombination (mutation and crossover) of independent 
variables. This method results in multiple models generated 
by evolving random initial models using genetic algorithm. 
The method is suitable for obtaining QSAR equations when 
dealing with a larger number of independent variables. It can 
build linear as well as higher-order nonlinear equations, 
perform automatic outlier removal and classification by 
utilizing spline-based terms. Genetic partial least squares 

(G/PLS or GA-PLS) is a valuable analytical tool that has 
evolved by combining the best features of GFA and PLS 
[111], and has been widely preferred by the researchers [91-
94].  

 In recent years, other methods to perform qualitative or 
classification studies have been spurred in the field of 
QSAR. The so-called pattern recognition methods based on 
the principle of analogy are used for the detection of the 
distance or closeness within the large amount of multivariate 
data [112]. It searches for structural features such as the 
presence (or absence) of certain groups, number of a certain 
type of atom, or mass spectral-fragmentation so that new 
compounds can be classified as similar or dissimilar to the 
members of the existing classes. 

 Cluster analysis is a statistical pattern recognition 
method used to investigate the relationship between obser-

vations associated with several properties and to partition the 
data set into categories consisting of similar elements [113]. 
It allows for the consideration of the inactive compounds in 
the analysis and can be used to study a large set of subs-
tituents to identify which of the subsets share similar 
physical properties. 

 The technique of artificial neural networks (ANNs) has 
its origin from the real neurons present in an animal brain. 
ANNs are parallel computational systems consisting of 
groups of highly interconnected processing elements called 
neurons, which are arranged in a series of layers [114]. The 
first layer is termed the input layer, and each of its neurons 
receives data from outside/user, corresponding to one of the 
independent variables used as inputs in QSAR. Subsequent 
to the input layer, there are one or many layers of neurons, 
collectively termed as the hidden layers. The last layer is the 
output layer, and its neurons handle the output from the 
network. Each layer may make its independent computations 
and may pass the results yet to another layer. The working of 
ANNs is given below: 

• Each input descriptor value is multiplied by the connec-
tion weight, as per its significance 

• The weighted inputs are summed up and supplied to the 
hidden layers, where a nonlinear transfer function does 
all the required processing 

• The results of the transfer function are communicated to 
the neurons in the output layer, where the results are 
interpreted and finally presented to the user.  

 The k-Nearest Neighbor (kNN) method is one of the 
simplest machine learning algorithms, most commonly used 
for classifying a new pattern (e.g. a molecule). The technique 
is based on a simple distance learning approach whereby an 
unknown/new molecule is classified according to the 
majority of its k-nearest neighbors in the training set [115]. 
The nearness is determined by a Euclidean distance metric 
(e.g. a similarity measure computed using the structural 
descriptors of the molecules). Typically, the kNN approach 
is executed as follows:  

• Euclidean distances between an unknown object (u) and 
all the objects in the training set are computed 

• Based on the calculated distances, k objects from the 
training set most similar to object u are selected  

• Object u is assigned to the group to which the majority 
of the k objects belong 

• An optimal k value is selected by optimization through 
the categorization of a test set of samples or by leave-
one out cross-validation. 

VALIDATION OF 3D-QSAR MODELS 

 Validation is a crucial element of any QSAR analysis. 
The reliability of a 3D-QSAR model depends on how well 
the model can predict the activity of compounds outside the 
training set rather than how well the model reproduces the 
biological activity of compounds included in the model. 
Various approaches used for this purpose are described 
below: 
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 The correlation coefficient, r is a measure of the degree 
of linearity of the relationship. It signifies the quality of fit of 
the model and quantifies the variance in the data [116]. In an 
ideal situation the correlation coefficient must be equal to or 
approach 1, but in reality due the complexity of biological 
data, any value above 0.9 is appreciable. Correlation coef-
ficients for the variables in a dataset are compiled in a 
correlation matrix, which shows the relationship of one 
descriptor with another. The correlation matrix ensures that 
variables of significance are orthogonal to each other. The 
addition of every new variable to the model always increases 
the r, unless the new variable is a constant of a linear 
combination of other variables, which would not produce 
any effect. The increase in r caused by adding new variable 
signifies over-fitting of the data.  

 The coefficient of multiple determinations also called 
Pearson’s correlation coefficient, r

2 is the squared corre-
lation coefficient which informs about how well the model 
reproduces the experimental data [116]. It is a quantitative 
measure of the precision of adjustment for the fitted values 
to the observed ones. The closer it approaches to the unity, 
the more similar are the adjusted values to the experimental 
ones, suggesting that the model fits the data unerringly. 
However, an r

2 close to 1 does not mean that the model is 
perfect; the addition of any new descriptor to the model 
induces an ever-increasing of r

2, even if the newly added 
descriptor does not contribute to the model. Thus, other 
measures are required to determine the predictive capacity of 
the model. 

 Cross-validation (CV) is one of the most extensively 
employed methods for the internal validation of a statistical 
model [117]. In cross-validation, the predictive ability of a 
model is estimated using a reduced set of structural data. 
Usually, one element of the set is extracted each time, and a 
new model is derived based on the reduced dataset, which is 
then employed to predict the activity of the excluded 
molecule. The procedure is repeated n number of times until 
all compounds have been excluded and predicted once. This 
is the so-called leave-one-out (LOO) method [38]. Analo-
gously, leaving out more than one molecule of the dataset at 
a time is termed as leave-n-out or leave-many-out CV 
method [38]. The outcome of LOO procedure is a cross-
validated correlation coefficient r

2
cv (or q

2) which is a 
criterion of both robustness and predictive ability of the 
model: 

r
2

cv= (PRESS0 – PRESS) / (PRESS0) 

where PRESS0 is the mean of the observed biological 
activity while PRESS is the sum of the squares of the 
differences between the predicted and the observed activity 
values [118]. Many researchers consider high q

2 as the 
ultimate proof of high predictive power of the QSAR model 
which is incorrect. It has been established that, in cases 
where test sets with known values of biological activities 
were available for prediction, there existed no correlation 
between the q2 and r2. Therefore, q2 should be regarded as a 
measure of internal consistency of the derived model rather 
than as a true indicator of the predictability. It should be 
noted that, since it is easier to fit the experimental data than 
to predict them from the QSAR model, r

2 of the model is 
always higher than q

2. Cross-validation is not foolproof. In 

highly redundant data sets with fewer degrees of freedom, it 
can give an over-optimistic result. It may also improperly 
indicate a lack of correlation if all the compounds in the 
dataset are unique. Therefore, we can conclude that despite 
its wide acceptance, a high value of q

2 alone is an insuf-
ficient criterion for a QSAR model to be highly predictive.  

 Bootstrapping is another technique that can be used 
along with cross-validation to evaluate the robustness and 
the statistical confidence of the QSAR model. It involves 
simulating a large number of datasets which are of the same 
size as original and are produced by randomly selecting 
samples from the original dataset [119]. In each PLS run 
some objects may be excluded while some others might be 
sampled more than once. The statistical calculation is run on 
each of these bootstrap samplings. The difference between 
the parameters calculated from the original dataset and the 
mean of the parameters calculated from many bootstrap 
samplings is a measure of the biasness of the original calcu-
lations. Since it demands heavy computation with relatively 
smaller gains compared to cross-validation, the technique is 
not very attractive. 

 A rigorous alternative to cross-validation and boot-
strapping is randomization or y-scrambling in which the 
biological activity values are re-assigned arbitrarily to 
different molecules in the same data set, and a new regres-
sion is performed [120]. Only if the results from a PLS 
model, using the original sequence of the biological data, is 
significantly better than the results from the ‘scrambled’ 
models, can one be sure that significant correlation indeed 
exists between the biological data and the independent 
variables, and it has not been resulted from a chance 
correlation. The randomization test analyses the ability of the 
statistical model to derive real structure-activity relation-
ships. 

 Predictive ability of the model can also be evaluated by 
forecasting the activity of an external test set of molecules 
using the models derived from the training set. Predictive 

correlation coefficient (r
2

pred), which is analogous to cross-
validated r2 (or q2) is a measure of the predictive ability of 
the derived QSAR model and is calculated by the following 
formula [121]: 

r
2

pred = (SD – PRESS) / SD 

where SD is the sum of squared deviations between the 
biological activities of the test set molecules and the mean 
activity of the training set molecules, while PRESS is the 
sum of squared deviations between the observed and the 
predicted activities of the test set molecules. 

 The Fischer statistic (F value) parameter is one of the 
several variance-related parameters that can be used as a 
measure of the level of statistical significance of the regres-
sion model [122]. A higher F value implies that a more signi-
ficant correlation has been reached. It is used as a criterion to 
determine whether a more complex model is significantly 
better than a less complex one.  

GUIDELINES FOR DEVELOPING A GOOD QSAR 
MODEL 

 Various guidelines have been proposed for developing a 
valid and universally acceptable QSAR model, some of 
which are given below: 
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SETUBAL / OECD PRINCIPLES 

 These principles were agreed by OECD (Organization for 
Economic Cooperation and Development) member countries 
at the 37th Joint Meeting of the Chemicals Committee and 
Working Party on Chemicals, Pesticides and Biotechnology 
in November 2004 at Setubal in Portugal [123]. According to 
these principles, a QSAR model should be associated with 
the following information so as to be applicable for regu-
latory purposes: 

• a defined biological/biochemical/pharmaco-toxicolo-
gical endpoint or intent which it serves to predict 

• an unambiguous and easily applicable algorithm for 
predicting the endpoint 

• a clearly defined domain of its applicability 

• an appropriate measures of goodness-of–fit, robustness 
and predictivity assessed by internal and external 
validation 

• a clear mechanistic basis, if possible apparent 

RECOMMENDATIONS FROM TOPLISS & COS-
TELLO AND UNGER & HANSCH 

 A functional QSAR model must comply with the 
following general characteristics proposed by Topliss & 
Costello [124] and Unger & Hansch [125], for the proper 
derivation of extrathermodynamic equations: 

• Sufficient examples must be present in the training set to 
cover the range of properties required to be predicted by 
the model. Generally this includes several log orders of 
magnitude of the end point being predicted. 

• A wide range of different, meaningful and essentially 
independent/non-correlated descriptors, biophysically 
related to the property being predicted, should be 
selected. All “logical” parameters should be pruned and 
validated by appropriate statistical method like stepwise 
regression, F-value, cross-validation, Y-scrambling etc. 
Ideally while using MLR, the selected descriptors 
should be far less numerous than the number of com-
pounds in the training set (at least 5 - 10 fold). 

• In case of multiple models, one should follow the 
principle of parsimony (Occam’s Razor), which states 
that if all things are (approximately) equal, the simplest 
model should preferably be selected. 

• For an intermediate size data set, one should have at 
least 5 - 6 data points per variable (or per component) to 
circumvent chance correlations. 

• In order to evade chance correlations, it is important to 
have a qualitative model which is consistent with the 
known physical-organic and biomedicinal chemistry of 
the process under consideration. 

• The model should be supported by a number of 
statistical parameters to test its internal predictivity. A 
separate test set should be used to validate external 
predictivity of the model. 

 

OTHER IMPORTANT SUGGESTIONS 

 Statistical method should be chosen in such a way to give 
a clear correlation between the descriptors and the biological 
activity. This can be made sure by additional tests like 
scrambling of activity data, boot-strapping, and cross-vali-
dation. 

• Since prediction is the main goal of QSAR, a model 
must be evaluated for its predictive power both 
internally (via cross-validation) and externally (using a 
separate test set). The external testing becomes more 
significant in light of the ‘Kubinyi Paradox’ which states 
that high internal predictivity may often result in low 
external predictivity and vice versa. This probably might 
be due to the fact that the overall error of the prediction 
is compounded when errors inherent in the model are 
coupled with experimental errors in the data from 
external compounds. 

• The QSAR model should be explanatory and inter-
pretable. It should help in understanding the mode of 
action for active compounds originating from different 
data sets. Whenever structural data is available, the 
results should be validated with receptor information. 

• The descriptors selected for model development must be 
pharmacologically or mechanistically relevant to the 
biological endpoint being examined. 

• As far as possible, the descriptors which are simple and 
easier to interpret should be chosen for better under-
standing of the modeled system. 

• QSAR should be applied only to pure compounds. Its 
application on mixtures should be avoided. 

• The QSAR should not be applied outside of its domain 
of validity, i.e., outside of the parameter space covered 
by the training set. 

CONCLUDING REMARKS 

 Despite of all the pitfalls and caveats, it has now been 
globally apprehended by the contemporary drug discovery 
community that QSAR, based on well-established principles 
of statistics, is intrinsically a valuable and viable medicinal 
chemistry tool whose application domain range from 
explaining the structure-activity relationships quantitatively 
and retrospectively, to endowing synthetic guidance leading 
to logical and experimentally testable hypotheses. Ever-
increasing information from structural biology will present 
valuable feedback to the assumptions that form the basis of 
3D-QSAR methods. Before applying the predictive models 
to real-life situations, one must look into the technicalities of 
the underlying QSAR methodologies, in order to circumvent 
their inappropriate use and misinterpretation. More spe-
cifically, the problems associated with alignment-depen-
dency and conformational sensitivity must be taken into 
consideration. In this regard, approaches like COMPASS, 
CoMMA, 4-way PLS etc. are helpful. Similarly whenever 
information about the target receptor is available, it must be 
utilized in building the models or validating the approaches 
developed solely on the basis of ligand data. In other words,  
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receptor-based models like COMBINE, AFMoC, CoRIA etc. 
are more enlightening and extrapolative than the conven-
tional ligand-based methods like CoMFA, CoMSIA etc. 
Also when the inherent relationship between the descriptors 
and the biological endpoint to be modeled, is not expected to 
be linear in nature (e.g., in case of ADMET properties), a 
non-linear chemometric method like neural networks, k-
nearest neighbors etc. should be preferred. Finally, since the 
reliability of QSAR models depends on their statistical 
significance and the ability to predict accurately the activity 
of compounds not included in the training set, the models 
must be thoroughly validated both internally as well as exter-
nally using rigorous cross-validation techniques. Moreover, 
QSAR results should be accepted as a functional hypothesis 
that must be supported by pertinent statistical analysis as 
well as justified by further synthesis and biological testing 
for its approval or disapproval. A comprehensive under-
standing and error-free practice of such strategies in QSAR 
modeling should benefit the medicinal chemists to prioritize 
their experimental endeavors and considerably amplify the 
experimental hit rates. To end with a positive and motivating 
note, QSAR models, if used impeccably within their 
application domains and without unjustifiable extrapolations, 
will continue to impact the in silico drug discovery research.  

REFERENCES 

[1] Crum-Brown, A.; Fraser, T.R. On the connection between chemical 
constitution and physiological action. Part 1. On the physiological 
action of the ammonium bases, derived from Strychia, Brucia, 
Thebaia, Codeia, Morphia and Nicotia. Trans. R. Soc. Edinburgh, 
1868, 25, 151-203. 

[2] Richardson, B.J. Physiological research on alcohols. Med. Times 
Gaz., 1868, 2, 703-706. 

[3] Mills, E.J. On melting point and boiling point as related to 
composition. Philos. Mag., 1884, 17, 173-187. 

[4] Richet, C. On the relationship between the toxicity and the physical 
properties of substances. Compt. Rendus Seances Soc. Biol., 1893, 
9, 775-776. 

[5] Overton, E. Osmotic properties of cells in the bearing on toxicology 
and pharmacology. Z. Physik. Chem., 1897, 22, 189-209. 

[6] Meyer, H. On the theory of alcohol narcosis I. Which property of 
anesthetics gives them their narcotic activity? Arch. Exp. Pathol. 
Pharmakol., 1899, 42, 109-118. 

[7] Hammett, L.P. Some relations between reaction rates and 
equilibrium constants. Chem. Rev., 1935, 17, 125-136. 

[8] Hammett, L.P. The effect of structure upon the reactions of organic 
compounds. benzene derivatives. J. Am. Chem. Soc., 1937, 59, 96-
103. 

[9] Ferguson, J. The Use of Chemical Potentials as Indices of Toxicity. 
Proc. R. Soc. Lond. B, 1939, 127, 387-404. 

[10] Bell, P.H.; Roblin, R.O. Studies in chemotherapy. vii. a theory of 
the relation of structure to activity of sulfanilamide type 
compounds1. J. Am. Chem. Soc., 1942, 64, 2905-2917. 

[11] Albert, A.; Goldacre, R.; Phillips, J. The strength of heterocyclic 
bases. J. Chem. Soc., 1948, 2240-2249. 

[12] Taft, R.W. Polar and steric substituent constants for aliphatic and o-
Benzoate groups from rates of esterification and hydrolysis of 
esters1. J. Am. Chem. Soc., 1952, 74, 3120-3128. 

[13] Hansch, C.; Maloney, P.P.; Fujita, T.; Muir, R.M. Correlation of 
biological activity of phenoxyacetic acids with hammett substituent 
constants and partition coefficients. Nature, 1962, 194, 178-180. 

[14] Hansch, C.; Fujita, T. p- -  Analysis. A Method for the correlation 
of biological activity and chemical structure. J. Am. Chem. Soc., 

1964, 86, 1616-1626. 
[15] Hansch, C. Quantitative approach to biochemical structure-activity 

relationships. Acc. Chem. Res., 1969, 2, 232-239. 
[16] Free, S.M., Jr.; Wilson, J.W. A Mathematical contribution to 

structure-activity studies. J. Med. Chem., 1964, 7, 395-399. 

[17] Fujita, T.; Ban, T. Structure-activity study of phenethylamines as 
substrates of biosynthetic enzymes of sympathetic transmitters. J. 
Med. Chem., 1971, 14, 148-152. 

[18] Kubinyi, H. Quantitative structure-activity relationships. IV. Non-
linear dependence of biological activity on hydrophobic character: a 
new model. Arzneimittelforschung, 1976, 26, 1991-1997. 

[19] Hansch, C.; Gao, H. Comparative QSAR: Radical reactions of 
benzene derivatives in chemistry and biology. Chem. Rev., 1997, 
97, 2995-3060. 

[20] Hurst, T.; Heritage, T. HQSAR - A Highly Predictive QSAR 
Technique Based on Molecular Holograms. In: 213th ACS Natl. 
Meeting, San Francisco, CA, 1997. 

[21] Lowis, D.R. HQSAR: A New, Highly Predictive QSAR Technique. 
In: Tripos Technical Notes; Tripos Inc.: USA, Vol. 1,1997.  

[22] Cho, S.J.; Zheng, W.; Tropsha, A. Rational combinatorial library 
design. 2. Rational design of targeted combinatorial peptide 
libraries using chemical similarity probe and the inverse QSAR 
approaches. J. Chem. Inf. Comput. Sci., 1998, 38, 259-268. 

[23] Labute, P. Binary QSAR: a new method for the determination of 
quantitative structure activity relationships. Pac. Symp. Biocomput., 
1999, 444-455. 

[24] Kubinyi, H. 2D QSAR Models: Hansch and Free-Wilson Analyses. 
In: Comput. Med. Chem. Drug Discov., Bultinck, P., Winter, H.D., 
Langenaeker, W., Tollenaere, J.P., Eds.; Marcel Dekker, Inc: New 
York, USA, 2004, pp. 539-570. 

[25] Akamatsu, M. Current state and perspectives of 3D-QSAR. Curr. 
Top. Med. Chem., 2002, 2, 1381-1394. 

[26] Hopfinger, A.J.; Tokarski, J.S. Three-Dimensional Quantitative 
Structure-Activity Relationship Analysis. In: Practical Application 

of Computer-Aided Drug Design; Charifson, P.S., Ed.; Marcel 
Dekker, Inc.: New York, USA, 1997; pp. 105-164. 

[27] Martin, Y.C. 3D QSAR: Current State, Scope, and Limitations. In: 
3D QSAR in Drug Design - Recent Advances; Kubinyi, H., Folkers, 
G., Martin, Y.C., Eds.; Kluwer Academic Publishers: New York, 
USA, 1998, Vol. 3, pp. 3-23. 

[28] Matyus, P.; Borosy, A.P. Three dimensional structure-activity 
relationships. Acta Pharm. Hung., 1998, 68, 33-38. 

[29] Oprea, T.I. 3D QSAR Modeling in Drug Design. In: Computational 
Medicinal Chemistry for Drug Discovery; Bultinck, P., Winter, 
H.D., Langenaeker, W., Tollenaere, J.P., Eds.; Marcel Dekker, Inc.: 
New York, USA, 2004, pp. 571-616. 

[30] Wise, M.; Cramer, R.D.; Smith, D.; Exman, I. Progress in Three-
Dimensional Drug Design: the use of Real Time Colour Graphics 
and Computer Postulation of Bioactive Molecules in DYLOMMS. 
In: Quantitative Approaches to Drug Design; Dearden, J., Ed.; 
Elsevier: Amsterdam, UK, 1983, pp. 145-146. 

[31] Cramer III, R.D.; Patterson, D.E.; Bunce, J.D. Comparative 
molecular field analysis (comfa). i. effect of shape on binding of 
steroids to carrier proteins. J. Am. Chem. Soc., 1988, 110, 5959-
5967. 

[32] Podlogar, B.L.; Ferguson, D.M. QSAR and CoMFA: a perspective 
on the practical application to drug discovery. Drug Des. Discov., 
2000, 17, 4-12. 

[33] Sybyl, version 7.1; Tripos Associates Inc.: 1699 S Hanley Rd., St. 
Louis, MO 631444, USA, 2005. 

[34] Kim, K.H. Comparative molecular field analysis (CoMFA). In: 
Molecular Similarity in Drug Design; Dean, P.M., Ed.; Blackie 
Academic & Professional: Glasgow, UK, 1995, pp. 291-331. 

[35] Allen, F. The Cambridge Structural Database: a quarter of a million 
crystal structures and rising. Acta Crystallogr. B, 2002, 58, 380-
388. 

[36] Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; 
Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. 
Nucleic Acids Res., 2000, 28, 235-242. 

[37] Norinder, U. Recent progress in CoMFA Methodology and Related 
Techniques. In: 3D QSAR in Drug Design - Recent Advances; 
Kubinyi, H., Folkers, G., Martin, Y.C., Eds.; Kluwer Academic 
Publishers: New York, USA, 1998, Vol. 3, pp. 24-39. 

[38] Richard, D.; Cramer III, R.D.; Bunce, J.D.; Patterson, D.E.; Frank, 
I.E. Crossvalidation, bootstrapping, and partial least squares 
compared with multiple regression in conventional QSAR studies. 
Quant. Struct.-Act. Relat., 1988, 7, 18-25. 

[39] Kim, K.H. List of CoMFA References. In: 3D QSAR in Drug 

Design - Recent Advances; Kubinyi, H.; Folkers, G.; Martin, Y.C.; 
Eds.; Kluwer Academic Publishers: New York, USA, 1998, Vol. 3, 
pp. 316-338. 

http://www.ingentaconnect.com/content/external-references?article=0931-8771(1988)7L.18[aid=488330]
http://www.ingentaconnect.com/content/external-references?article=0305-1048(2000)28L.235[aid=2897971]
http://www.ingentaconnect.com/content/external-references?article=1055-9612(2000)17L.4[aid=7108964]
http://www.ingentaconnect.com/content/external-references?article=1055-9612(2000)17L.4[aid=7108964]
http://www.ingentaconnect.com/content/external-references?article=0002-7863(1988)110L.5959[aid=459941]
http://www.ingentaconnect.com/content/external-references?article=0001-6659(1998)68L.33[aid=9053716]
http://www.ingentaconnect.com/content/external-references?article=1568-0266(2002)2L.1381[aid=9053717]
http://www.ingentaconnect.com/content/external-references?article=1568-0266(2002)2L.1381[aid=9053717]
http://www.ingentaconnect.com/content/external-references?article=0095-2338(1998)38L.259[aid=8103673]
http://www.ingentaconnect.com/content/external-references?article=0009-2665(1997)97L.2995[aid=433657]
http://www.ingentaconnect.com/content/external-references?article=0009-2665(1997)97L.2995[aid=433657]
http://www.ingentaconnect.com/content/external-references?article=0004-4172(1976)26L.1991[aid=9053718]
http://www.ingentaconnect.com/content/external-references?article=0022-2623(1971)14L.148[aid=3007263]
http://www.ingentaconnect.com/content/external-references?article=0022-2623(1971)14L.148[aid=3007263]
http://www.ingentaconnect.com/content/external-references?article=0022-2623(1964)7L.395[aid=3305404]
http://www.ingentaconnect.com/content/external-references?article=0001-4842(1969)2L.232[aid=420430]
http://www.ingentaconnect.com/content/external-references?article=0002-7863(1964)86L.1616[aid=488689]
http://www.ingentaconnect.com/content/external-references?article=0002-7863(1964)86L.1616[aid=488689]
http://www.ingentaconnect.com/content/external-references?article=0002-7863(1952)74L.3120[aid=9053719]
http://www.ingentaconnect.com/content/external-references?article=0002-7863(1942)64L.2905[aid=474948]
http://www.ingentaconnect.com/content/external-references?article=0962-8452(1939)127L.387[aid=8560287]
http://www.ingentaconnect.com/content/external-references?article=0002-7863(1937)59L.96[aid=383777]
http://www.ingentaconnect.com/content/external-references?article=0009-2665(1935)17L.125[aid=480157]


114    Current Topics in Medicinal Chemistry, 2010, Vol. 10, No. 1 Verma et al. 

[40] Coats, E.A. The CoMFA Steroids as a Benchmark Dataset for 
Development of 3D QSAR Methods. In: 3D QSAR in Drug Design 
- Recent Advances; Kubinyi, H., Folkers, G., Martin, Y.C., Eds.; 
Kluwer Academic Publishers: New York, USA, 1998, Vol. 3, pp. 
199-213. 

[41] Kim, K.H.; Greco, G.; Novellino, E. A Critical Review of Recent 
CoMFA Applications. In: 3D QSAR in Drug Design - Recent 

Advances; Kubinyi, H., Folkers, G., Martin, Y.C., Eds.; Kluwer 
Academic Publishers: New York, USA, 1998, Vol. 3, pp. 257-315. 

[42] Bordas, B.; Komives, T.; Lopata, A. Ligand-based computer-aided 
pesticide design. A review of applications of the CoMFA and 
CoMSIA methodologies. Pest Manag. Sci., 2003, 59, 393-400. 

[43] Hopfinger, A.J. A QSAR investigation of dihydrofolate reductase 
inhibition by Baker triazines based upon molecular shape analysis. 
J. Am. Chem. Soc., 1980, 102, 7196-7206. 

[44] Holzgrabe, U.; Hopfinger, A.J. Conformational analysis, molecular 
shape comparison, and pharmacophore identification of different 
allosteric modulators of muscarinic receptors. J. Chem. Inf. 
Comput. Sci., 1996, 36, 1018-1024. 

[45] Rhyu, K.B.; Patel, H.C.; Hopfinger, A.J. A 3D-QSAR study of 
anticoccidial triazines using molecular shape analysis. J. Chem. Inf. 

Comput. Sci., 1995, 35, 771-778. 
[46] Tokarski, J.S.; Hopfinger, A.J. Three-dimensional molecular shape 

analysis-quantitative structure-activity relationship of a series of 
cholecystokinin-A receptor antagonists. J. Med. Chem., 1994, 37, 
3639-3654. 

[47] Cardozo, M.G.; Iimura, Y.; Sugimoto, H.; Yamanishi, Y.; 
Hopfinger, A.J. QSAR analyses of the substituted indanone and 
benzylpiperidine rings of a series of indanone-benzylpiperidine 
inhibitors of acetylcholinesterase. J. Med. Chem., 1992, 35, 584-
589. 

[48] Cerius2, version 4.8; Accelrys Inc.: San Diego, CA, USA, 1998. 
[49] Goodford, P.J. A computational procedure for determining 

energetically favorable binding sites on biologically important 
macromolecules. J. Med. Chem., 1985, 28, 849-857. 

[50] Kim, K.H. Thermodynamic aspects of hydrophobicity and 
biological QSAR. J. Comput. Aided Mol. Des., 2001, 15, 367-380. 

[51] Caron, G.; Nurisso, A.; Ermondi, G. How to extend the use of grid-
based interaction energy maps from chemistry to biotopics. 
ChemMedChem, 2009, 4, 29-36. 

[52] Ortuso, F.; Langer, T.; Alcaro, S. GBPM: GRID-based pharma-
cophore model: concept and application studies to protein-protein 
recognition. Bioinformatics, 2006, 22, 1449-1455. 

[53] Hoppe, C.; Steinbeck, C.; Wohlfahrt, G. Classification and 
comparison of ligand-binding sites derived from grid-mapped 
knowledge-based potentials. J. Mol. Graph. Model., 2006, 24, 328-
340. 

[54] von Itzstein, M.; Wu, W.Y.; Kok, G.B.; Pegg, M.S.; Dyason, J.C.; 
Jin, B.; Van Phan, T.; Smythe, M.L.; White, H.F.; Oliver, S.W.; 
Colman, P.A.; Varghese, J.N.; Ryan, DM.; Woods, J.M.; Bethell, 
R.C.; Hotham, V.J.; Cameron, J.M.; Penn, C.R.  Rational design of 
potent sialidase-based inhibitors of influenza virus replication. 
Nature, 1993, 363, 418-423. 

[55] Pastor, M.; Cruciani, G.; Watson, K.A. A strategy for the 
incorporation of water molecules present in a ligand binding site 
into a three-dimensional quantitative structure--activity relationship 
analysis. J. Med. Chem., 1997, 40, 4089-4102. 

[56] GRID. Molecular Discovery Ltd. http://www.moldiscovery.com/ 
soft_grid.php [Accessed on 1st July, 2009]. 

[57] Doweyko, A.M. The hypothetical active site lattice. An approach to 
modelling active sites from data on inhibitor molecules. J. Med. 

Chem., 1988, 31, 1396-1406. 
[58] Woolfrey, J.R.; Avery, M.A.; Doweyko, A.M. Comparison of 3D 

quantitative structure-activity relationship methods: analysis of the 
in vitro antimalarial activity of 154 artemisinin analogues by 
hypothetical active-site lattice and comparative molecular field 
analysis. J. Comput. Aided Mol. Des., 1998, 12, 165-181. 

[59] Kaminski, J.J.; Doweyko, A.M. Antiulcer agents. 6. Analysis of the 
in vitro biochemical and in vivo gastric antisecretory activity of 
substituted imidazo[1,2-a]pyridines and related analogues using 
comparative molecular field analysis and hypothetical active site 
lattice methodologies. J. Med. Chem., 1997, 40, 427-436. 

[60] Doweyko, A.M.; Mattes, W.B. An application of 3D-QSAR to the 
analysis of the sequence specificity of DNA alkylation by uracil 
mustard. Biochemistry, 1992, 31, 9388-9392. 

[61] Doweyko, A.M. Three-dimensional pharmacophores from binding 
data. J. Med. Chem., 1994, 37, 1769-1778. 

[62] HASL. eduSoft. http://www.edusoft-lc.com/hasl/ [Accessed on 1st 

July, 2009]. 
[63] Zhu, Y.Q.; Lei, M.; Lu, A.J.; Zhao, X.; Yin, X.J.; Gao, Q.Z. 3D-

QSAR studies of boron-containing dipeptides as proteasome 
inhibitors with CoMFA and CoMSIA methods. Eur. J. Med. Chem., 

2009, 44, 1486-1499. 
[64] Ul-Haq, Z.; Wadood, A.; Uddin, R. CoMFA and CoMSIA 3D-

QSAR analysis on hydroxamic acid derivatives as urease inhibitors. 
J. Enzyme Inhib. Med. Chem., 2009, 24, 272-278. 

[65] Murugesan, V.; Prabhakar, Y.S.; Katti, S.B. CoMFA and CoMSIA 
studies on thiazolidin-4-one as anti-HIV-1 agents. J. Mol. Graph. 

Model., 2009, 27, 735-743. 
[66] Liu, H.Y.; Liu, S.S.; Qin, L.T.; Mo, L.Y. CoMFA and CoMSIA 

analysis of 2,4-thiazolidinediones derivatives as aldose reductase 
inhibitors. J. Mol. Model., 2009. 

[67] Walters, D.E.; Hinds, R.M. Genetically evolved receptor models: a 
computational approach to construction of receptor models. J. Med. 

Chem., 1994, 37, 2527-2536. 
[68] Walters, D.E.; Muhammad, T.D. Genetically Evolved Receptor 

Models (GERM): A Procedure for Construction of Atomic-level 
Receptor Site Models in the Absence of a Receptor Crystal 
Structure. In: Genetic Algorithms in Molecular Modeling; 
Devillers, J., Ed.; Academic Press: London, 1996, pp. 193-210. 

[69] GERM. Walters, D. E. http://www.finchcms.edu/biochem/Walters/ 
germ.html [Accessed on 1st April, 2009]. 

[70] Ortiz, A.R.; Pisabarro, M.T.; Gago, F.; Wade, R.C. Prediction of 
drug binding affinities by comparative binding energy analysis. J. 

Med. Chem., 1995, 38, 2681-2691. 
[71] Lushington, G.H.; Guo, J.X.; Wang, J.L. Whither combine? New 

opportunities for receptor-based QSAR. Curr. Med. Chem., 2007, 
14, 1863-1877. 

[72] Tomic, S.; Bertosa, B.; Wang, T.; Wade, R.C. COMBINE analysis 
of the specificity of binding of Ras proteins to their effectors. 
Proteins, 2007, 67, 435-447. 

[73] Nakamura, S.; Nakanishi, I.; Kitaura, K. Binding affinity prediction 
of non-peptide inhibitors of HIV-1 protease using COMBINE 
model introduced from peptide inhibitors. Bioorg. Med. Chem. 

Lett., 2006, 16, 6334-6337. 
[74] Kmunicek, J.; Hynkova, K.; Jedlicka, T.; Nagata, Y.; Negri, A.; 

Gago, F.; Wade, R.C.; Damborsky, J. Quantitative analysis of 
substrate specificity of haloalkane dehalogenase LinB from 
Sphingomonas paucimobilis UT26. Biochemistry, 2005, 44, 3390-
3401. 

[75] Silverman, B.D.; Platt, D.E. Comparative molecular moment 
analysis (CoMMA): 3D-QSAR without molecular superposition. J. 

Med. Chem., 1996, 39, 2129-2140. 
[76] Kovatcheva, A.; Golbraikh, A.; Oloff, S.; Xiao, Y.D.; Zheng, W.; 

Wolschann, P.; Buchbauer, G.; Tropsha, A. Combinatorial QSAR 
of ambergris fragrance compounds. J. Chem. Inf. Comput. Sci., 

2004, 44, 582-595. 
[77] CoMMA. IBM Bioinformatics Group. http://cbcsrv.watson.ibm. 

com/Tco.html [Accessed on 1st July, 2009]. 
[78] Silverman, B.D. Three-dimensional moments of molecular property 

fields. J. Chem. Inf. Comput. Sci., 2000, 40, 1470-1476. 
[79] Polanski, J.; Walczak, B. The comparative molecular surface 

analysis (COMSA): a novel tool for molecular design. Comput. 
Chem., 2000, 24, 615-625. 

[80] Polanski, J.; Gieleciak, R.; Bak, A. The comparative molecular 
surface analysis (COMSA)--a nongrid 3D QSAR method by a 
coupled neural network and PLS system: predicting pK(a) values of 
benzoic and alkanoic acids. J. Chem. Inf. Comput. Sci., 2002, 42, 
184-191. 

[81] Magdziarz, T.; Mazur, P.; Polanski, J. Receptor independent and 
receptor dependent CoMSA modeling with IVE-PLS: application to 
CBG benchmark steroids and reductase activators. J. Mol. Model., 

2009, 15, 41-51. 
[82] Gieleciak, R.; Polanski, J. Modeling robust QSAR. 2. iterative 

variable elimination schemes for CoMSA: application for modeling 
benzoic acid pKa values. J. Chem. Inf. Model., 2007, 47, 547-556. 

[83] Magdziarz, T.; Lozowicka, B.; Gieleciak, R.; Bak, A.; Polanski, J.; 
Chilmonczyk, Z. 3D QSAR study of hypolipidemic asarones by 
comparative molecular surface analysis. Bioorg. Med. Chem., 2006, 
14, 1630-1643. 

http://www.ingentaconnect.com/content/external-references?article=0968-0896(2006)14L.1630[aid=9053721]
http://www.ingentaconnect.com/content/external-references?article=0968-0896(2006)14L.1630[aid=9053721]
http://www.ingentaconnect.com/content/external-references?article=1549-9596(2007)47L.547[aid=9053722]
http://www.ingentaconnect.com/content/external-references?article=0948-5023(2009)15L.41[aid=9053723]
http://www.ingentaconnect.com/content/external-references?article=0948-5023(2009)15L.41[aid=9053723]
http://www.ingentaconnect.com/content/external-references?article=0095-2338(2002)42L.184[aid=7590689]
http://www.ingentaconnect.com/content/external-references?article=0095-2338(2002)42L.184[aid=7590689]
http://www.ingentaconnect.com/content/external-references?article=0097-8485(2000)24L.615[aid=7590688]
http://www.ingentaconnect.com/content/external-references?article=0097-8485(2000)24L.615[aid=7590688]
http://www.ingentaconnect.com/content/external-references?article=0095-2338(2000)40L.1470[aid=9053724]
http://www.ingentaconnect.com/content/external-references?article=0095-2338(2004)44L.582[aid=8103672]
http://www.ingentaconnect.com/content/external-references?article=0095-2338(2004)44L.582[aid=8103672]
http://www.ingentaconnect.com/content/external-references?article=0022-2623(1996)39L.2129[aid=8399453]
http://www.ingentaconnect.com/content/external-references?article=0022-2623(1996)39L.2129[aid=8399453]
http://www.ingentaconnect.com/content/external-references?article=0006-2960(2005)44L.3390[aid=9053725]
http://www.ingentaconnect.com/content/external-references?article=0960-894X(2006)16L.6334[aid=7847821]
http://www.ingentaconnect.com/content/external-references?article=0960-894X(2006)16L.6334[aid=7847821]
http://www.ingentaconnect.com/content/external-references?article=0887-3585(2007)67L.435[aid=9053726]
http://www.ingentaconnect.com/content/external-references?article=0929-8673(2007)14L.1863[aid=8864128]
http://www.ingentaconnect.com/content/external-references?article=0929-8673(2007)14L.1863[aid=8864128]
http://www.ingentaconnect.com/content/external-references?article=0022-2623(1995)38L.2681[aid=7056833]
http://www.ingentaconnect.com/content/external-references?article=0022-2623(1995)38L.2681[aid=7056833]
http://www.ingentaconnect.com/content/external-references?article=0022-2623(1994)37L.2527[aid=9053727]
http://www.ingentaconnect.com/content/external-references?article=0022-2623(1994)37L.2527[aid=9053727]
http://www.ingentaconnect.com/content/external-references?article=1093-3263(2009)27L.735[aid=9053728]
http://www.ingentaconnect.com/content/external-references?article=1093-3263(2009)27L.735[aid=9053728]
http://www.ingentaconnect.com/content/external-references?article=1475-6366(2009)24L.272[aid=9053729]
http://www.ingentaconnect.com/content/external-references?article=0223-5234(2009)44L.1486[aid=9053730]
http://www.ingentaconnect.com/content/external-references?article=0223-5234(2009)44L.1486[aid=9053730]
http://www.ingentaconnect.com/content/external-references?article=0022-2623(1994)37L.1769[aid=9053731]
http://www.ingentaconnect.com/content/external-references?article=0006-2960(1992)31L.9388[aid=9053732]
http://www.ingentaconnect.com/content/external-references?article=0022-2623(1997)40L.427[aid=478273]
http://www.ingentaconnect.com/content/external-references?article=0920-654x(1998)12L.165[aid=9053733]
http://www.ingentaconnect.com/content/external-references?article=0022-2623(1988)31L.1396[aid=8921550]
http://www.ingentaconnect.com/content/external-references?article=0022-2623(1988)31L.1396[aid=8921550]
http://www.ingentaconnect.com/content/external-references?article=0022-2623(1997)40L.4089[aid=9053734]
http://www.ingentaconnect.com/content/external-references?article=0028-0836(1993)363L.418[aid=1497113]
http://www.ingentaconnect.com/content/external-references?article=1093-3263(2006)24L.328[aid=9053735]
http://www.ingentaconnect.com/content/external-references?article=1367-4803(2006)22L.1449[aid=8399428]
http://www.ingentaconnect.com/content/external-references?article=1860-7179(2009)4L.29[aid=9053736]
http://www.ingentaconnect.com/content/external-references?article=0920-654x(2001)15L.367[aid=9053737]
http://www.ingentaconnect.com/content/external-references?article=0022-2623(1985)28L.849[aid=6425387]
http://www.ingentaconnect.com/content/external-references?article=0022-2623(1992)35L.584[aid=2522264]
http://www.ingentaconnect.com/content/external-references?article=0022-2623(1994)37L.3639[aid=9053738]
http://www.ingentaconnect.com/content/external-references?article=0022-2623(1994)37L.3639[aid=9053738]
http://www.ingentaconnect.com/content/external-references?article=0095-2338(1995)35L.771[aid=9053739]
http://www.ingentaconnect.com/content/external-references?article=0095-2338(1995)35L.771[aid=9053739]
http://www.ingentaconnect.com/content/external-references?article=0095-2338(1996)36L.1018[aid=9053740]
http://www.ingentaconnect.com/content/external-references?article=0095-2338(1996)36L.1018[aid=9053740]
http://www.ingentaconnect.com/content/external-references?article=0002-7863(1980)102L.7196[aid=6518536]
http://www.ingentaconnect.com/content/external-references?article=1526-498x(2003)59L.393[aid=9053741]
http://www.moldiscovery.com/soft_grid.php
http://www.moldiscovery.com/soft_grid.php
http://www.edusoft-lc.com/hasl/[Accessed
http://www.edusoft-lc.com/hasl/[Accessed
http://www.finchcms.edu/biochem/Walters/germ.html
http://www.finchcms.edu/biochem/Walters/germ.html
http://cbcsrv.watson.ibm.com/Tco.html
http://cbcsrv.watson.ibm.com/Tco.html


3D-QSAR in Drug Design - A Review Current Topics in Medicinal Chemistry, 2010, Vol. 10, No. 1    115 

[84] Niedbala, H.; Polanski, J.; Gieleciak, R.; Musiol, R.; Tabak, D.; 
Podeszwa, B.; Bak, A.; Palka, A.; Mouscadet, J.F.; Gasteiger, J.; Le 
Bret, M. Comparative molecular surface analysis (CoMSA) for 
virtual combinatorial library screening of styrylquinoline HIV-1 
blocking agents. Comb. Chem. High Throughput Screen., 2006, 9, 
753-770. 

[85] Jojart, B.; Martinek, T.A.; Marki, A. The 3D structure of the 
binding pocket of the human oxytocin receptor for benzoxazine 
antagonists, determined by molecular docking, scoring functions 
and 3D-QSAR methods. J. Comput. Aided Mol. Des., 2005, 19, 
341-356. 

[86] Gohlke, H.; Klebe, G. DrugScore meets CoMFA: adaptation of 
fields for molecular comparison (AFMoC) or how to tailor 
knowledge-based pair-potentials to a particular protein. J. Med. 
Chem., 2002, 45, 4153-4170. 

[87] Silber, K.; Heidler, P.; Kurz, T.; Klebe, G. AFMoC enhances 
predictivity of 3D QSAR: a case study with DOXP-reducto-
isomerase. J. Med. Chem., 2005, 48, 3547-3563. 

[88] Matter, H.; Will, D.W.; Nazare, M.; Schreuder, H.; Laux, V.; 
Wehner, V. Structural requirements for factor Xa inhibition by 3-
oxybenzamides with neutral P1 substituents: combining X-ray 
crystallography, 3D-QSAR, and tailored scoring functions. J. Med. 
Chem., 2005, 48, 3290-3312. 

[89] Hillebrecht, A.; Supuran, C.T.; Klebe, G. Integrated approach using 
protein and ligand information to analyze selectivity- and affinity-
determining features of carbonic anhydrase isozymes. 
ChemMedChem, 2006, 1, 839-853. 

[90] Breu, B.; Silber, K.; Gohlke, H. Consensus adaptation of fields for 
molecular comparison (AFMoC) models incorporate ligand and 
receptor conformational variability into tailor-made scoring 
functions. J. Chem. Inf. Model., 2007, 47, 2383-2400. 

[91] Datar, P.A.; Khedkar, S.A.; Malde, A.K.; Coutinho, E.C. 
Comparative residue interaction analysis (CoRIA): a 3D-QSAR 
approach to explore the binding contributions of active site residues 
with ligands. J. Comput. Aided Mol. Des., 2006, 20, 343-360. 

[92] Khedkar, S.A.; Malde, A.K.; Coutinho, E.C. Design of inhibitors of 
the MurF enzyme of Streptococcus pneumoniae using docking, 3D-
QSAR, and de novo design. J. Chem. Inf. Model., 2007, 47, 1839-
1846. 

[93] Dhaked, D.K.; Verma, J.; Saran, A.; Coutinho, E.C. Exploring the 
binding of HIV-1 integrase inhibitors by comparative residue 
interaction analysis (CoRIA). J. Mol. Model., 2009, 15, 233-245. 

[94] Verma, J.; Khedkar, V.M.; Prabhu, A.S.; Khedkar, S.A.; Malde, 
A.K.; Coutinho, E.C. A comprehensive analysis of the 
thermodynamic events involved in ligand-receptor binding using 
CoRIA and its variants. J. Comput. Aided Mol. Des., 2008, 22, 91-
104. 

[95] Jain, A.N.; Koile, K.; Chapman, D. Compass: predicting biological 
activities from molecular surface properties. Performance com-
parisons on a steroid benchmark. J. Med. Chem., 1994, 37, 2315-
2327. 

[96] Hahn, M. Receptor surface models. 1. Definition and construction. 
J. Med. Chem., 1995, 38, 2080-2090. 

[97] Ivanciuc, O.; Ivanciuc, T.; Cabrol-Bass, D. 3D quantitative 
structure activity relationships with CoRSA. Comparative receptor 
surface analysis. Application to calcium channel agonists. Analysis, 
2000, 28, 637-642. 

[98] Chuman, H.; Karasawa, M.; Fujita, T. A novel three-dimensional 
QSAR procedure: voronoi field analysis. Quant. Struct.-Act. Relat., 

1998, 17, 313-326. 
[99] Chen, H.; Zhou, J.; Xie, G. PARM: a genetic evolved algorithm to 

predict bioactivity. J. Chem. Inf. Comput. Sci., 1998, 38, 243-250. 
[100] Robinson, D.D.; Winn, P.J.; Lyne, P.D.; Richards, W.G. Self-

organizing molecular field analysis: a tool for structure-activity 
studies. J. Med. Chem., 1999, 42, 573-583. 

[101] Korhonen, S.P.; Tuppurainen, K.; Laatikainen, R.; Perakyla, M. 
FLUFF-BALL, a template-based grid-independent superposition 
and QSAR technique: validation using a benchmark steroid data set. 
J. Chem. Inf. Comput. Sci., 2003, 43, 1780-1793. 

[102] Kotani, T.; Higashiura, K. Comparative molecular active site 
analysis (CoMASA). 1. An approach to rapid evaluation of 3D 
QSAR. J. Med. Chem., 2004, 47, 2732-2742. 

[103] Zhou, P.; Tong, J.; Tian, F.; Li, Z. A novel comparative molecule/ 
pseudo receptor interaction analysis. Chin. Sci. Bull., 2006, 51, 
1824-1829. 

[104] Berk, R.A. Simple Linear Regression. In: Regression Analysis: A 

Constructive Critique; Berk, R.A., Ed.; SAGE Publications Ltd: 
London, 2003, pp. 21-38. 

[105] Berk, R.A. The Formalities of Multiple Regression. In: Regression 
Analysis: A Constructive Critique; Berk, R.A., Ed.; SAGE 
Publications Ltd: London, 2003, pp. 103-110. 

[106] Berk, R.A. Some Popular Extensions of Multiple Regression. In: 
Regression Analysis: A Constructive Critique; Berk, R.A., Ed.; 
SAGE Publications Ltd: London, 2003, pp. 125-150. 

[107] Wold, S.; Johansson, E.; Cocchi, M. PLS : Partial Least Squares 
Projections to Latent Structures. In: 3D QSAR in Drug Design: 

Theory, Methods and Applications; Kubinyi, H., Ed.; ESCOM 
Science Publishers: Leiden, 1993, pp. 523-550. 

[108] Dunteman, G.H. Basic Concepts of Principal Components Analysis. 
In: Principal Components Analysis; Dunteman, G.H., Ed.; SAGE 
Publications Ltd: London, 1989, pp. 15-22. 

[109] Dunteman, G.H. Uses of Principal Components in Regression 
Analysis. In: Principal Components Analysis; Dunteman, G.H., 
Ed.; SAGE Publications Ltd: London, 1989, pp. 65-74. 

[110] Rogers, D.; Hopfinger, A.J. Application of genetic function 
approximation to quantitative structure-activity relationships and 
quantitative structure-property relationships. J. Chem. Inf. Comput. 
Sci., 1994, 34, 854-866. 

[111] Dunn III, W.J.; Rogers, D. Genetic partial least squares in QSAR. 
In: Genetic algorithms in molecular modeling; Devillers, J., Ed.; 
Academic Press: London, 1996, pp. 109-130. 

[112] Hyde, R.M.; Livingstone, D.J. Perspectives in QSAR: computer 
chemistry and pattern recognition. J. Comput. Aided Mol. Des., 
1988, 2, 145-155. 

[113] Aldenderfer, M.S.; Blashfield, R.K. A Review of Clustering 
Methods. In: Cluster Analysis; Aldenderfer, M.S., Blashfield, R.K., 
Eds.; SAGE Publications Ltd: London, 1984, pp. 33-61. 

[114] Baskin, II; Palyulin, V.A.; Zefirov, N.S. Neural networks in 
building QSAR models. Methods Mol. Biol., 2008, 458, 137-158. 

[115] Ajmani, S.; Jadhav, K.; Kulkarni, S.A. Three-dimensional QSAR 
using the k-nearest neighbor method and its interpretation. J. Chem. 
Inf. Model., 2006, 46, 24-31. 

[116] Archdeacon, T.J. Regression and explained variance. In: Corre-
lation and Regression Analysis: a Historian's Guide; Archdeacon, 
T.J., Ed.; Univ of Wisconsin Press: USA, 1994, pp. 178-196. 

[117] Stone, M. Cross-validatory choice and assessment of statistical 
predictions. J. Stat. Soc. B, 1974, 36, 111-147. 

[118] Deep, R. Regression. In: Probability and Statistics; Deep, R., Ed.; 
Academic Press: UK, 2006, pp. 455-515. 

[119] Shao, J. Bootstrap model selection. J. Am. Stat. Assoc., 1996, 91, 
655-665. 

[120] Rucker, C.; Rucker, G.; Meringer, M. y-Randomization and its 
variants in QSPR/QSAR. J. Chem. Inf. Model., 2007, 47, 2345-
2357. 

[121] Marshall, G.R. Binding-Site Modeling of Unknown Receptors. In: 
3D QSAR in Drug Design: Theory Methods and Applications; 
Kubinyi, H.; Martin, Y.C.; Folkers, G.; Eds.; Springer Publications: 
London, UK, 1998, pp. 80-116. 

[122] Archdeacon, T.J. Evaluating the Regression Equation. In: 
Correlation and Regression Analysis: a historian's Guide; 
Archdeacon, T.J., Ed.; Univ of Wisconsin Press: USA, 1994, pp. 
160-177. 

[123] Gramatica, P. Principles of QSAR models validation: internal and 
external. QSAR Comb. Sci., 2007, 26, 694-701. 

[124] Topliss, J.G.; Costello, R.J. Chance correlations in structure-activity 
studies using multiple regression analysis. J. Med. Chem., 1972, 15, 
1066-1068. 

[125] Unger, S.H.; Hansch, C. On model building in structure-activity 
relationships. A reexamination of adrenergic blocking activity of 
beta-halo-beta-arylalkylamines. J. Med. Chem., 1973, 16, 745-749. 

 
 

Received: May 6, 2009    Revised: September 20, 2009 

 

http://www.ingentaconnect.com/content/external-references?article=0022-2623(1973)16L.745[aid=9053742]
http://www.ingentaconnect.com/content/external-references?article=0022-2623(1972)15L.1066[aid=3464450]
http://www.ingentaconnect.com/content/external-references?article=0022-2623(1972)15L.1066[aid=3464450]
http://www.ingentaconnect.com/content/external-references?article=1611-020x(2007)26L.694[aid=8399411]
http://www.ingentaconnect.com/content/external-references?article=1549-9596(2007)47L.2345[aid=8864151]
http://www.ingentaconnect.com/content/external-references?article=0162-1459(1996)91L.655[aid=9053743]
http://www.ingentaconnect.com/content/external-references?article=0162-1459(1996)91L.655[aid=9053743]
http://www.ingentaconnect.com/content/external-references?article=1549-9596(2006)46L.24[aid=8566109]
http://www.ingentaconnect.com/content/external-references?article=1549-9596(2006)46L.24[aid=8566109]
http://www.ingentaconnect.com/content/external-references?article=1064-3745(2008)458L.137[aid=9053744]
http://www.ingentaconnect.com/content/external-references?article=0920-654x(1988)2L.145[aid=9053745]
http://www.ingentaconnect.com/content/external-references?article=0920-654x(1988)2L.145[aid=9053745]
http://www.ingentaconnect.com/content/external-references?article=0095-2338(1994)34L.854[aid=561377]
http://www.ingentaconnect.com/content/external-references?article=0095-2338(1994)34L.854[aid=561377]
http://www.ingentaconnect.com/content/external-references?article=1001-6538(2006)51L.1824[aid=9053746]
http://www.ingentaconnect.com/content/external-references?article=1001-6538(2006)51L.1824[aid=9053746]
http://www.ingentaconnect.com/content/external-references?article=0022-2623(2004)47L.2732[aid=9053747]
http://www.ingentaconnect.com/content/external-references?article=0095-2338(2003)43L.1780[aid=9053748]
http://www.ingentaconnect.com/content/external-references?article=0022-2623(1999)42L.573[aid=9053749]
http://www.ingentaconnect.com/content/external-references?article=0095-2338(1998)38L.243[aid=9053750]
http://www.ingentaconnect.com/content/external-references?article=0931-8771(1998)17L.313[aid=9053751]
http://www.ingentaconnect.com/content/external-references?article=0931-8771(1998)17L.313[aid=9053751]
http://www.ingentaconnect.com/content/external-references?article=0022-2623(1995)38L.2080[aid=7995166]
http://www.ingentaconnect.com/content/external-references?article=0022-2623(1994)37L.2315[aid=7481568]
http://www.ingentaconnect.com/content/external-references?article=0920-654x(2008)22L.91[aid=9053753]
http://www.ingentaconnect.com/content/external-references?article=0948-5023(2009)15L.233[aid=9053754]
http://www.ingentaconnect.com/content/external-references?article=1549-9596(2007)47L.1839[aid=8916837]
http://www.ingentaconnect.com/content/external-references?article=0920-654x(2006)20L.343[aid=9053755]
http://www.ingentaconnect.com/content/external-references?article=1549-9596(2007)47L.2383[aid=8916840]
http://www.ingentaconnect.com/content/external-references?article=1860-7179(2006)1L.839[aid=9053756]
http://www.ingentaconnect.com/content/external-references?article=0022-2623(2005)48L.3290[aid=8734742]
http://www.ingentaconnect.com/content/external-references?article=0022-2623(2005)48L.3290[aid=8734742]
http://www.ingentaconnect.com/content/external-references?article=0022-2623(2005)48L.3547[aid=8734743]
http://www.ingentaconnect.com/content/external-references?article=0022-2623(2002)45L.4153[aid=8734744]
http://www.ingentaconnect.com/content/external-references?article=0022-2623(2002)45L.4153[aid=8734744]
http://www.ingentaconnect.com/content/external-references?article=0920-654x(2005)19L.341[aid=9053757]
http://www.ingentaconnect.com/content/external-references?article=0920-654x(2005)19L.341[aid=9053757]
http://www.ingentaconnect.com/content/external-references?article=1386-2073(2006)9L.753[aid=8587180]
http://www.ingentaconnect.com/content/external-references?article=1386-2073(2006)9L.753[aid=8587180]

