Introduction to Protein Data Bank Format

Protein Data Bank (PDB) format is a standard for files containing atomic coordinates. It is used for structures in the <u>Protein Data Bank</u> and is read and written by many programs. While this short description will suffice for many users, those in need of further details should consult the <u>definitive description</u>. The complete PDB file specification provides for a wealth of information, including authors, literature references, and the method of structure determination.

PDB format consists of lines of information in a text file. Each line of information in the file is called a *record*. A PDB file generally contains several different types of records, arranged in a specific order to describe a structure.

	Selected Protein Data Bank Record Types
Record Type	Data Provided by Record
АТОМ	atomic coordinate record containing the X,Y,Z orthogonal Å coordinates for atoms in standard residues (amino acids and nucleic acids).
HETATM	atomic coordinate record containing the X,Y,Z orthogonal Å coordinates for atoms in nonstandard residues. Nonstandard residues include inhibitors, cofactors, ions, and solvent. The only functional difference from ATOM records is that HETATM residues are by default not connected to other residues. Note that water residues should be in HETATM records.
TER	indicates the end of a chain of residues. For example, a hemoglobin molecule consists of four subunit chains that are not connected. TER indicates the end of a chain and prevents the display of a connection to the next chain.
HELIX	indicates the location and type (right-handed alpha, <i>etc.</i>) of helices. One record per helix.
SHEET	indicates the location, sense (anti-parallel, <i>etc.</i>) and registration with respect to the previous strand in the sheet (if any) of each strand in the model. One record per strand.
SSBOND	defines disulfide bond linkages between cysteine residues.

The formats of these record types are given in the tables below. Older PDB files may not adhere completely to the specifications. Some differences between older and newer files occur in the fields following the temperature factor in ATOM and HETATM records; these fields are omitted from the <u>examples</u>. Some fields are frequently blank, such as the alternate location indicator when an atom does not have alternate locations.

Protein Data Bank Format: Coordinate Section										
Record Type	Columns	Data	Justification	Data Type						
ATOM	1-4	"ATOM"		character						
	7-11 [#]	Atom serial number	right	integer						
	13-16	Atom name	left *	character						
	17	Alternate location indicator		character						

Introduction to Protein Data Bank Format

1	18-20	Residue name	right	character
			0	
	22	Chain identifier		character
	23-26	Residue sequence number	right	integer
	27	Code for insertions of residues		character
	31-38	X orthogonal Å coordinate	right	real (8.3)
	39-46	Y orthogonal Å coordinate	right	real (8.3)
	47-54	Z orthogonal Å coordinate	right	real (8.3)
	55-60	Occupancy	right	real (6.2)
	61-66	Temperature factor	right	real (6.2)
	73-76	Segment identifier.	left	character
	77-78	Element symbol	right	character
79-80	Charge		character	
HETATM	1-6	"HETATM"		character
	7-80	same as ATOM records		
TER	1-3	"TER"		character
	7-11 [#]	Serial number	right	integer
	18-20	Residue name	right	character
	22	Chain identifier		character
	23-26	Residue sequence number	right	integer
	27	Code for insertions of residues		character

[#]Chimera allows (nonstandard) use of columns 6-11 for the integer atom serial number in ATOM records, and in TER records, only the "TER" is required.

*Atom names start with element symbols right-justified in columns 13-14 as permitted by the length of the name. For example, the symbol FE for iron appears in columns 13-14, whereas the symbol C for carbon appears in column 14 (see <u>Misaligned Atom Names</u>). If an atom name has four characters, however, it must start in column 13 even if the element symbol is a single character (for example, see <u>Hydrogen Atoms</u>).

[§]Chimera allows (nonstandard) use of four-character residue names occupying an additional column to the right.

[¶]Segment identifier is obsolete, but still used by some programs. Chimera assigns it as the atom attribute **pdbSegment** to allow <u>command-line specification</u>.

Protein Data Bank Format: Protein Secondary Structure and Disulfides								
Record Type	Columns	Data	Justification	Data Type				
HELIX	1-5	"HELIX"		character				

https://www.cgl.ucsf.edu/chimera/docs/UsersGuide/tutorials/pdbintro.html

	_		_	_					
	8-10	Helix serial number	right	integer					
	12-14	Helix identifier	right	character					
	16-18 [§]	Initial residue name	right	character					
	20	Chain identifier		character					
	22-25	Residue sequence number	right	integer					
	26	Code for insertions of residues		character					
	28-30 [§]	Terminal residue name	right	character					
	32	Chain identifier		character					
	34-37	Residue sequence number	right	integer					
	38	Code for insertions of residues		character					
	39-40	Type of helix [±]	right	integer					
	41-70	Comment	left	character					
	72-76	Length of helix	right	integer					
SHEET	1-5	"SHEET"		character					
	8-10	Strand number (in current sheet)	right	integer					
	12-14	Sheet identifier	right	character					
	15-16	Number of strands (in current sheet)	right	integer					
	18-20 [§]	Initial residue name	right	character					
	22	Chain identifier		character					
	23-26	Residue sequence number	right	integer					
	27	Code for insertions of residues		character					
	29-31 [§]	Terminal residue name	right	character					
	33	Chain identifier		character					
	34-37	Residue sequence number	right	integer					
	38	Code for insertions of residues		character					
	39-40	Strand sense with respect to previous [‡]	right	integer					
	the	The following fields identify two atoms involved in a hydrogen bond, the first in the current strand and the second in the previous strand. These fields should be blank for strand 1 (the first strand in a sheet).							
	42-45	Atom name (as per ATOM record)	left	character					
	46-48 [§]	Residue name	right	character					
	50	Chain identifier		character					

	51-54	Residue sequence number	right	integer
	55	Code for insertions of residues		character
	57-60	Atom name (as per ATOM record)	left	character
	61-63 [§]	Residue name	right	character
	65	Chain identifier		character
	66-69	Residue sequence number	right	integer
	70	Code for insertions of residues		character
SSBOND	1-6	"SSBOND"		character
	8-10	Serial number	right	integer
	12-14	Residue name ("CYS")	right	character
	16	Chain identifier		character
	18-21	Residue sequence number	right	integer
	22	Code for insertions of residues		character
	26-28	Residue name ("CYS")	right	character
	30	Chain identifier		character
	32-35	Residue sequence number	right	integer
	36	Code for insertions of residues		character
	60-65	Symmetry operator for first residue	right	integer
	67-72	Symmetry operator for second residue	right	integer
	74-78	Length of disulfide bond	right	real (5.2)

[†]Helix types:

- 1 Right-handed alpha (default) 6 Left-handed alpha
- 2 Right-handed omega 7 Left-handed omega
- 3 Right-handed pi 8 Left-handed gamma
- 4 Right-handed gamma 9 2/7 ribbon/helix
- 5 Right-handed 3/10 10 Polyproline

[‡]Sense is 0 for strand 1 (the first strand in a sheet), 1 for parallel, and –1 for antiparallel.

For those who are familiar with the FORTRAN programming language, the following format descriptions will be meaningful. Those unfamiliar with FORTRAN should ignore this gibberish:

ATOM HETATM	Format (A6,I5,1X,A4,A1,A3,1X,A1,I4,A1,3X,3F8.3,2F6.2,10X,A2,A2)
HELIX	Format (A6,1X,I3,1X,A3,2(1X,A3,1X,A1,1X,I4,A1),I2,A30,1X,I5)
SHEET	Format (A6,1X,I3,1X,A3,I2,2(1X,A3,1X,A1,I4,A1),I2,2(1X,A4,A3,1X,A1,I4,A1))

SSBOND Format (A6,1X,I3,1X,A3,1X,A1,1X,I4,A1,3X,A3,1X,A1,1X,I4,A1,23X,2(2I3,1X),F5.2)

Examples of PDB Format

Glucagon is a small protein of 29 amino acids in a single chain. The first residue is the amino-terminal amino acid, histidine, which is followed by a serine residue and then a glutamine. The coordinate information (entry **1gcn**) starts with:

ATOM	1	Ν	HIS	А	1	49.668	24.248	10.436	1.00 25.00	Ν
ATOM	2	CA	HIS	А	1	50.197	25.578	10.784	1.00 16.00	С
ATOM	3	С	HIS	Α	1	49.169	26.701	10.917	1.00 16.00	С
ATOM	4	0	HIS	Α	1	48.241	26.524	11.749	1.00 16.00	0
ATOM	5	СВ	HIS	Α	1	51.312	26.048	9.843	1.00 16.00	С
ATOM	6	CG	HIS	А	1	50.958	26.068	8.340	1.00 16.00	С
ATOM	7	ND1	HIS	А	1	49.636	26.144	7.860	1.00 16.00	Ν
ATOM	8	CD2	HIS	А	1	51.797	26.043	7.286	1.00 16.00	С
ATOM	9	CE1	HIS	А	1	49.691	26.152	6.454	1.00 17.00	С
ATOM	10	NE2	HIS	А	1	51.046	26.090	6.098	1.00 17.00	Ν
ATOM	11	Ν	SER	А	2	49.788	27.850	10.784	1.00 16.00	Ν
ATOM	12	CA	SER	А	2	49.138	29.147	10.620	1.00 15.00	С
ATOM	13	С	SER	А	2	47.713	29.006	10.110	1.00 15.00	С
ATOM	14	0	SER	А	2	46.740	29.251	10.864	1.00 15.00	0
ATOM	15	СВ	SER	А	2	49.875	29.930	9.569	1.00 16.00	С
ATOM	16	0G	SER	А	2	49.145	31.057	9.176	1.00 19.00	0
АТОМ	17	Ν	GLN	А	3	47.620	28.367	8.973	1.00 15.00	Ν
ATOM	18	CA	GLN	А	3	46.287	28.193	8.308	1.00 14.00	С
АТОМ	19	С	GLN	А	3	45.406	27.172	8.963	1.00 14.00	С

Notice that each line or record begins with the record type ATOM. The atom serial number is the next item in each record.

The atom name is the third item in the record. Notice that the first one or two characters of the atom name consists of the chemical symbol for the atom type. All the atom names beginning with C are carbon atoms; N indicates a nitrogen and O indicates oxygen. In amino acid residues, the next character is the remoteness indicator code, which is transliterated according to:

α Α β Β γ G δ D ε Ε ζ Ζ η Η

The next character of the atom name is a branch indicator, if required.

The next data field is the residue type. Notice that each record contains the residue type. In this example, the first residue in the chain is HIS (histidine) and the second residue is a SER (serine).

The next data field contains the chain identifier, in this case A.

The next data field contains the residue sequence number. Notice that as the residue changes from histidine to serine, the residue number changes from 1 to 2. Two like residues may be adjacent to one another, so the residue number is important for distinguishing between them.

The next three data fields contain the X, Y, and Z coordinate values, respectively. The last three fields shown are the occupancy, temperature factor (B-factor), and element symbol.

The spacing of the data fields is crucial. If a data field does not apply, it should be left blank.

The glucagon data file continues in this manner until the final residue is reached:

ATOM	239	Ν	THR A	29	3.391	19.940	12.762	1.00 21.00	Ν
ATOM	240	CA	THR A	29	2.014	19.761	13.283	1.00 21.00	C
ATOM	241	С	THR A	29	0.826	19.943	12.332	1.00 23.00	C
ATOM	242	0	THR A	29	0.932	19.600	11.133	1.00 30.00	0
ATOM	243	СВ	THR A	29	1.845	20.667	14.505	1.00 21.00	C
ATOM	244	0G1	THR A	29	1.214	21.893	14.153	1.00 21.00	0
ATOM	245	CG2	THR A	29	3.180	20.968	15.185	1.00 21.00	С
ATOM	246	OXT	THR A	29	-0.317	20.109	12.824	1.00 25.00	0
TER	247		THR A	29					

Note that this residue includes the extra oxygen atom OXT on the terminal carboxyl group. Other than OXT and the rarely seen HXT, atoms in standard nucleotides and amino acids in version 3.0 PDB files are named according to the IUPAC recommendations (<u>Markley *et al.*</u>, *Pure Appl Chem* **70**:117 (1998)). The TER record terminates the amino acid chain.

A more complicated protein, hemoglobin, consists of four amino acid chains, each with an associated heme group. There are two alpha chains (identifiers A and C) and two beta chains (identifiers B and D). The first ten lines of coordinates for this molecule (entry **3hhb**) are:

NCCOCCCNCC

ATOM	1	Ν	VAL A	1	6.452	16.459	4.843	7.00 47.38	
ATOM	2	CA	VAL A	1	7.060	17.792	4.760	6.00 48.47	
ATOM	3	С	VAL A	1	8.561	17.703	5.038	6.00 37.13	
ATOM	4	0	VAL A	1	8.992	17.182	6.072	8.00 36.25	
ATOM	5	СВ	VAL A	1	6.342	18.738	5.727	6.00 55.13	
ATOM	6	CG1	VAL A	1	7.114	20.033	5.993	6.00 54.30	
ATOM	7	CG2	VAL A	1	4.924	19.032	5.232	6.00 64.75	
ATOM	8	Ν	LEU A	2	9.333	18.209	4.095	7.00 30.18	
ATOM	9	CA	LEU A	2	10.785	18.159	4.237	6.00 35.60	
ATOM	10	С	LEU A	2	11.247	19.305	5.133	6.00 35.47	

At the end of chain A, the heme group records appear:

ATOM	1058	Ν	ARG	А	141	-6.466	12.036	-10.348	7.00	19.11	Ν
ATOM	1059	CA	ARG	А	141	-7.922	12.248	-10.253	6.00	26.80	C
ATOM	1060	С	ARG	А	141	-8.119	13.499	-9.393	6.00	28.93	C
ATOM	1061	0	ARG	А	141	-7.112	13.967	-8.853	8.00	28.68	0
ATOM	1062	СВ	ARG	А	141	-8.639	11.005	-9.687	6.00	24.11	C
ATOM	1063	CG	ARG	А	141	-8.153	10.551	-8.308	6.00	19.20	C
ATOM	1064	CD	ARG	А	141	-8.914	9.319	-7.796	6.00	21.53	C
ATOM	1065	NE	ARG	А	141	-8.517	9.076	-6.403	7.00	20.93	N
ATOM	1066	CZ	ARG	А	141	-9.142	8.234	-5.593	6.00	23.56	C
ATOM	1067	NH1	ARG	А	141	-10.150	7.487	-6.019	7.00	19.04	N
ATOM	1068	NH2	ARG	А	141	-8.725	8.129	-4.343	7.00	25.11	N
ATOM	1069	ОХТ	ARG	А	141	-9.233	14.024	-9.296	8.00	40.35	0
TER	1070		ARG	А	141						
HETATM	1071	FE	HEM	А	1	8.128	7.371	-15.022	24.00	16.74	FE
HETATM	1072	CHA	HEM	А	1	8.617	7.879	-18.361	6.00	17.74	C
HETATM	1073	CHB	HEM	А	1	10.356	10.005	-14.319	6.00	18.92	C
HETATM	1074	CHC	HEM	А	1	8.307	6.456	-11.669	6.00	11.00	C
HETATM	1075	CHD	HEM	А	1	6.928	4.145	-15.725	6.00	13.25	C

The last residue in the alpha chain is an ARG (arginine). Again, the extra oxygen atom OXT appears in the terminal carboxyl group. The TER record indicates the end of the peptide chain. It is important to have TER records at the end of peptide chains so a bond is not drawn from the end of one chain to the start of another.

In the example above, the TER record is correct and should be present, but the molecule chain would still be terminated at that point even without a TER record, because HETATM residues are not connected to other residues or to each other. The heme group is a single residue made up of HETATM records.

After the heme group associated with chain A, chain B begins:

HETATM	1109	CAD	HEM	Α	1	7.618	5.696	-20.432	6.00 21.38	C
HETATM	1110	CBD	HEM	Α	1	8.947	5.143	-20.947	6.00 29.03	C
HETATM	1111	CGD	HEM	Α	1	9.047	5.155	-22.461	6.00 30.08	C
HETATM	1112	01D	HEM	Α	1	10.139	5.458	-22.959	8.00 33.72	0
HETATM	1113	02D	HEM	Α	1	8.096	4.833	-23.177	8.00 33.55	0
ATOM	1114	Ν	VAL	В	1	9.143	-20.582	1.231	7.00 48.92	Ν
ATOM	1115	CA	VAL	В	1	8.824	-20.084	-0.109	6.00 52.26	C
ATOM	1116	С	VAL	В	1	9.440	-20.964	-1.190	6.00 57.72	C
ATOM	1117	0	VAL	В	1	9.768	-22.138	-0.985	8.00 55.05	0
ATOM	1118	СВ	VAL	В	1	9.314	-18.642	-0.302	6.00 58.48	C
ATOM	1119	CG1	VAL	В	1	8.269	-17.606	0.113	6.00 59.43	C
ATOM	1120	CG2	VAL	В	1	10.683	-18.373	0.331	6.00 45.96	C

Here the TER card is implicit in the start of a new chain.

Protein Data Bank format relies on the concept of *residues*:

- Each atom in a residue must be uniquely identifiable. Two atoms in the same residue can only have the same name if they have different alternate location identifiers.
- Residue names are a maximum of three characters long[§] and uniquely identify the residue type. Thus, all residues of a given name should be the same type of residue and have the same structure (contain the same atoms with the same connectivity).

Common Errors in PDB Format Files

If a data file fails to display correctly, it is sometimes difficult to determine where in the hundreds of lines of data the mistake occurred. This section enumerates some of the most common errors found in PDB files.

Program-Generated PDB Files

Spurious Long Bonds

A couple of common errors in program-generated PDB files result in the display of very long bonds between residues:

- Missing TER cards Either a TER card or a change in the chain ID is needed to mark the end of a chain.
- Improper use of ATOM records instead of HETATM records HETATM records should be employed for compounds that do not form chains, such as water or heme. The first *six* columns of the ATOM record should be changed to HETATM so that the remaining columns stay aligned correctly.

Apart from any format errors, Chimera also uses long bonds to indicate the underlying connectivity across chain segments that lack coordinates (*e.g.*, regions of missing density due to crystallographic disorder). Regardless of their cause, long bonds in Chimera can be hidden with the command $\underline{\sim longbond}$.

Misaligned Atom Names

Incorrectly aligned atom names in PDB records can cause problems. Atom names are composed of an atomic (element) symbol *right*-justified in columns 13-14, and trailing identifying characters *left*-justified in columns 15-16. A single-character element symbol should not appear in column 13 unless the atom name has four

characters (for example, see <u>Hydrogen Atoms</u>). Many programs simply left-justify all atom names starting in column 13. The difference can be seen clearly in a short segment of hemoglobin (entry **3hhb**):

Correct:

HETATM 1071 FE	HEM A	1	8.128	7.371 -15.022	24.00 16.74	FE
HETATM 1072 CHA	HEM A	1	8.617	7.879 -18.361	6.00 17.74	C
HETATM 1073 CHB	HEM A	1	10.356	10.005 -14.319	6.00 18.92	С
HETATM 1074 CHC	HEM A	1	8.307	6.456 -11.669	6.00 11.00	С
HETATM 1075 CHD	HEM A	1	6.928	4.145 -15.725	6.00 13.25	C
Incorrect:						
HETATM 1071 FE	HEM A	1	8.128	7.371 -15.022	24.00 16.74	FE
НЕТАТМ 1072 СНА	HEM A	1	8.617	7.879 -18.361	6.00 17.74	С
НЕТАТМ 1073 СНВ	HEM A	1	10.356	10.005 -14.319	6.00 18.92	С
НЕТАТМ 1074 СНС	HEM A	1	8.307	6.456 -11.669	6.00 11.00	С
HETATM 1075 CHD	HEM A	1	6.928	4.145 -15.725	6.00 13.25	C

Hand-Edited PDB Files

Duplicate Atom Names

One possible editing mistake is the failure to uniquely name all atoms within a given residue. In the following example, two atoms in the same residue are named CA:

ATOM	185	Ν	VAL	Α	23	13.455	17.883	10.517	1.00	7.00	Ν
ATOM	186	CA	VAL	Α	23	12.574	17.403	11.589	1.00	7.00	C
ATOM	187	С	VAL	Α	23	11.283	18.205	11.729	1.00	7.00	C
ATOM	188	0	VAL	Α	23	10.233	17.600	12.052	1.00	7.00	0
ATOM	189	CA	VAL	А	23	13.339	17.278	12.906	1.00	10.00	C
ATOM	190	CG1	VAL	А	23	12.441	17.004	14.108	1.00	13.00	C
ATOM	191	CG2	VAL	А	23	14.455	16.248	12.794	1.00	13.00	C
ATOM	192	Ν	GLN	А	24	11.255	19.253	10.941	1.00	8.00	Ν
ATOM	193	CA	GLN	А	24	10.082	20.114	10.818	1.00	8.00	C
ATOM	194	С	GLN	А	24	9.158	19.638	9.692	1.00	8.00	C

Depending on the display program, the residue may be shown with incorrect connectivity, or it may become evident only upon labeling that the residue is missing a CB atom.

Residues Out of Sequence

In the following example, the second residue in the file is erroneously numbered residue 5. Many display programs will show this residue as connected to residues 1 and 3. If this residue was meant to be connected to residues 4 and 6 instead, it should appear between those residues in the PDB file.

ATOM	1	Ν	HIS	А	1	49.668	24.248	10.436	1.00 25.00	Ν
ATOM	2	CA	HIS	А	1	50.197	25.578	10.784	1.00 16.00	С
ATOM	3	С	HIS	А	1	49.169	26.701	10.917	1.00 16.00	С
ATOM	4	0	HIS	Α	1	48.241	26.524	11.749	1.00 16.00	0
ATOM	5	СВ	HIS	Α	1	51.312	26.048	9.843	1.00 16.00	С
ATOM	6	CG	HIS	Α	1	50.958	26.068	8.340	1.00 16.00	С
ATOM	7	ND1	HIS	Α	1	49.636	26.144	7.860	1.00 16.00	Ν
ATOM	8	CD2	HIS	Α	1	51.797	26.043	7.286	1.00 16.00	С
ATOM	9	CE1	HIS	Α	1	49.691	26.152	6.454	1.00 17.00	С
ATOM	10	NE2	HIS	Α	1	51.046	26.090	6.098	1.00 17.00	Ν
ATOM	11	Ν	SER	Α	5	49.788	27.850	10.784	1.00 16.00	Ν
ATOM	12	CA	SER	Α	5	49.138	29.147	10.620	1.00 15.00	С
ATOM	13	С	SER	Α	5	47.713	29.006	10.110	1.00 15.00	С
ATOM	14	0	SER	Α	5	46.740	29.251	10.864	1.00 15.00	0

15	СВ	SER A	5	49.875	29.930	9.569	1.00 16.00	C
16	0G	SER A	5	49.145	31.057	9.176	1.00 19.00	0
17	Ν	GLN A	3	47.620	28.367	8.973	1.00 15.00	Ν
18	CA	GLN A	3	46.287	28.193	8.308	1.00 14.00	С
	16 17	16 OG 17 N	16 OG SER A 17 N GLN A	15 CB SER A 5 16 OG SER A 5 17 N GLN A 3 18 CA GLN A 3	16 0G SER 5 49.145 17 N GLN A 3 47.620	16 OG SER A 5 49.145 31.057 17 N GLN A 3 47.620 28.367	16 0G SER A 5 49.145 31.057 9.176 17 N GLN A 3 47.620 28.367 8.973	16 0G SER A 5 49.145 31.057 9.176 1.00 19.00 17 N GLN A 3 47.620 28.367 8.973 1.00 15.00

Common Typos

Sometimes the letter l is accidentally substituted for the number 1. This has different repercussions depending on where in the file the error occurs; a grossly misplaced atom may indicate the presence of such an error in a coordinate field. These errors can be located readily if the text of the data file appears in uppercase, by invoking a text editor to search for all instances of the lowercase letter l.

Hydrogen Atoms

In brief, conventions for hydrogen atoms in version 3.0 PDB format are as follows:

- Hydrogen atom records follow the records of all other atoms of a particular residue.
- A hydrogen atom name starts with H. The next part of the name is based on the name of the connected nonhydrogen atom. For example, in amino acid residues, H is followed by the remoteness indicator (if any) of the connected atom, followed by the branch indicator (if any) of the connected atom; if more than one hydrogen is connected to the same atom, an additional digit is appended so that each hydrogen atom will have a unique name. Hydrogen atoms in standard nucleotides and amino acids (other than the rarely seen HXT) are named according to the IUPAC recommendations (Markley *et al.*, *Pure Appl Chem* **70**:117 (1998)). Names of hydrogen atoms in HETATM residues are determined in a similar fashion.
- If the name of a hydrogen has four characters, it is left-justified starting in column 13; if it has fewer than four characters, it is left-justified starting in column 14.

In the following excerpt from entry **1vm3**, atom H is attached to atom N. Atom HA is attached to atom CA; the remoteness indicator A is the same for these atoms. Two hydrogen atoms are connected to CB, one is connected to CG, three are connected to CD1, and three are connected to CD2.

ATOM	10	Ν	LEU	А	2	4.595	6.365	3.756	1.00	0.00	Ν
ATOM	11	CA	LEU	Α	2	4.471	5.443	2.633	1.00	0.00	C
ATOM	12	С	LEU	Α	2	5.841	5.176	2.015	1.00	0.00	C
ATOM	13	0	LEU	Α	2	6.205	4.029	1.755	1.00	0.00	0
ATOM	14	СВ	LEU	Α	2	3.526	6.037	1.578	1.00	0.00	C
ATOM	15	CG	LEU	Α	2	2.790	4.919	0.823	1.00	0.00	C
ATOM	16	CD1	LEU	Α	2	3.803	3.916	0.262	1.00	0.00	C
ATOM	17	CD2	LEU	Α	2	1.817	4.196	1.769	1.00	0.00	C
ATOM	18	Н	LEU	Α	2	4.169	7.246	3.704	1.00	0.00	Н
ATOM	19	HA	LEU	Α	2	4.063	4.514	2.992	1.00	0.00	Н
ATOM	20	HB2	LEU	Α	2	2.804	6.675	2.065	1.00	0.00	Н
ATOM	21	HB3	LEU	Α	2	4.099	6.623	0.873	1.00	0.00	Н
ATOM	22	HG	LEU	Α	2	2.234	5.353	0.004	1.00	0.00	Н
ATOM	23	HD11	LEU	Α	2	4.648	4.447	-0.148	1.00	0.00	Н
ATOM	24	HD12	LEU	Α	2	3.334	3.331	-0.516	1.00	0.00	Н
ATOM	25	HD13	LEU	Α	2	4.137	3.260	1.052	1.00	0.00	Н
ATOM	26	HD21	LEU	Α	2	0.941	3.892	1.216	1.00	0.00	Н
ATOM	27	HD22	LEU	Α	2	1.522	4.860	2.568	1.00	0.00	Н
ATOM	28	HD23	LEU	Α	2	2.296	3.323	2.188	1.00	0.00	Н

PQR Variant of PDB Format

Several programs use a modified PDB format called PQR, in which atomic partial charge (Q) and radius (R) fields follow the X,Y,Z coordinate fields in ATOM and HETATM records. An excerpt:

ATOM	1	Ν	ALA	1	46.457	12.189	21.556	0.1414 1.8240
ATOM	2	CA	ALA	1	47.614	11.997	22.448	0.0962 1.9080

https://www.cgl.ucsf.edu/chimera/docs/UsersGuide/tutorials/pdbintro.html

28/2/2021						Introd	uction to Protein Data Bank Format
ATOM	3	С	ALA	1	47.538	12.947	23.645 0.6163 1.9080
ATOM	4	0	ALA	1	46.441	13.476	23.962 -0.5722 1.6612
ATOM	5	СВ	ALA	1	48.911	12.134	21.650 -0.0597 1.9080
ATOM	6	H2	ALA	1	45.672	11.684	21.917 0.1997 0.6000
ATOM	7	H3	ALA	1	46.235	13.163	21.506 0.1997 0.6000
ATOM	8	Н	ALA	1	46.683	11.849	20.642 0.1997 0.6000
ATOM	9	HA	ALA	1	47.603	11.052	22.786 0.0889 1.1000
ATOM	10	HB1	ALA	1	49.041	11.319	21.087 0.0300 1.4870
ATOM	11	HB3	ALA	1	48.855	12.941	21.064 0.0300 1.4870
ATOM	12	HB2	ALA	1	49.679	12.231	22.281 0.0300 1.4870
ATOM	13	Ν	ASP	2	48.702	13.128	24.279 -0.5163 1.8240
ATOM	14	CA	ASP	2	48.826	13.956	25.493 0.0381 1.9080
ATOM	15	С	ASP	2	48.614	15.471	25.323 0.5366 1.9080
ATOM	16	0	ASP	2	49.292	16.362	24.807 -0.5819 1.6612
ATOM	17	CB	ASP	2	50.156	13.635	26.226 -0.0303 1.9080
ATOM	18	CG	ASP	2	49.984	12.419	27.136 0.7994 1.9080
ATOM	19	0D1	ASP	2	50.595	12.308	28.221 -0.8014 1.6612
ATOM	20	0D2	ASP	2	49.198	11.502	26.778 -0.8014 1.6612
ATOM	21	Н	ASP	2	49.511	12.637	23.845 0.2936 0.6000
ATOM	22	HA	ASP	2	48.104	13.630	26.146 0.0880 1.3870
ATOM	23	HB3	ASP	2	50.392	14.413	26.773 -0.0122 1.4870
ATOM	24	HB2	ASP	2	50.832	13.431	25.545 -0.0122 1.4870

PQR format is rather loosely defined and varies according to which program is producing or using the file. For example, <u>APBS</u> requires only that all fields be whitespace-delimited.

If an ATOM or HETATM record being read by Chimera is not in PDB format, Chimera next tries to read it as PQR format. In that case, all fields up to and including the coordinates are still expected to adhere to the <u>standard format</u>, but the next two eight-column fields are each expected to contain a floating-point number: charge is read from columns 55-62 and radius is read from columns 63-70. The values are assigned as the atom <u>attributes charge</u> and **radius**, respectively.

<u>PDB2PQR</u> is a program for structure cleanup, charge/radius assignment, and PQR file generation. See also the <u>PDB2PQR</u> tool in Chimera.

```
UCSF Computer Graphics Laboratory / May 2020
```