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Abstract 

Homology modeling is one of the computational structure prediction methods that are used to 
determine protein 3D structure from its amino acid sequence. It is considered to be the most 
accurate of the computational structure prediction methods. It consists of multiple steps that are 
straightforward and easy to apply. 

There are many tools and servers that are used for homology modeling. There is no single modeling 
program or server which is superior in every aspect to others. Since the functionality of the model 
depends on the quality of the generated protein 3D structure, maximizing the quality of homology 
modeling is crucial. 

Homology modeling has many applications in the drug discovery process. Since drugs interact with 
receptors, which consists mainly of proteins in their structure, protein 3D structure determination, 
and thus homology modeling is important in drug discovery. Accordingly, there has been the 
clarification of protein interactions using 3D structures of proteins that are built with homology 
modeling. This contributes to the identification of novel drug candidates. 

Homology modeling plays an important role in making drug discovery faster, easier, cheaper and 
more practical. As new modeling methods and combinations are introduced, the scope of its 
applications widens. 

 

http://crossmark.crossref.org/dialog/?doi=10.1111%2Fcbdd.13388&domain=pdf&date_stamp=2018-09-06


A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Keywords: Current application; Drug discovery; Homology modeling; Structure prediction; 3D 
structure 

 

Introduction 

The world wide Protein Data Bank (wwPDB) (https://www.wwpdb.org/) contains approximately 144, 
000 experimentally determined protein three dimensional (3D) structures currently [1]. In contrast 
the last reference sequence, which is a non redundant sequence, release  of National Center for 
Biotechnology Information (NCBI) (https://www.ncbi.nlm.nih.gov/) consists of annotated 155 million 
sequences including approximately 106 million protein sequences [2]. This represents a protein 
sequence number that is 736 times larger than the protein 3D strucuture deposited in the wwPDB. In 
2006 the annotated sequence in NCBI was nearly 120 times larger than experimentally solved 3D 
structures deposited in wwPDB [3]. This means the number of protein sequences has increased 6 
times faster than the number of experimentally determined protein 3D structures. Since the protein 
data banks available contain redundancy but the sequences in NCBI are non redundant, the 
difference is higher than the numbers given here. This growing gap between the sequences available 
and the protein 3D structures determined is in an alarming condition. Thus, computational structural 
determination methods are needed in filling this widening gap between the number of sequences 
available and protein 3D structures solved experimentally.   

Since crystal structure of the first protein myoglobin was solved in 1960, there has been an 
improvement in the quality of the 3D structures determined. This has been achieved with the 
introduction of experimental methods like X-ray crystallography and NMR spectroscopy [4]. 
However, these experimental methods can not be used for each protein.  For NMR analysis protein 
molecules should be small and for X-ray crystallography the molecules should be crystallized. 
Additionally, these methods are time consuming. Thus, there is deficiency in high resolution 3D 
structure of proteins, especially membrane proteins due to the difficulties in purification and 
crystallization of such proteins in relative to other small water soluble proteins [5]. Since membrane 
proteins constitute important proportion of therapeutic drug targets, advances in the determination 
of membrane proteins will speed up the drug discovery process. Here computational protein 3D 
structure prediction can play a crucial role. 

Homology modeling (comparative modeling) is one of the computational structure prediction 
methods that are used to determine 3D structure of a protein from its amino acid sequence based on 
its template. The basis for homology modeling are two major observations. First protein 3D structure 
is particularly determined by its amino acid sequence. Second the structure of proteins is more 
conserved and the change happens at a much slower rate in relative to the sequence during 
evolution. As a result, similar sequences fold into identical structures and even sequences with low 
relation take similar structures [6]. 

Homology modeling is considered to be the most accurate of the computational structure prediction 
methods [7]. 3D structure predictions made by computational methods like de novo prediction and 
threading were compared to homology modeling using Root Mean Square Deviation (RMSD) as a 
criteria. Homology modeling was found to give 3D structures with the highest accuracy [8]. 
Furthermore, it is a protein 3D structure prediction method that needs less time and lower cost with 
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clear steps. Thus, homology modeling is widely used for the generation of 3D structures of proteins 
with high quality. This has changed the ways of docking and virtual screening methods that are based 
on structure in the drug discovery process [9]. 

  

In this review, the main features of steps of homology modeling are presented. The popular tools and 
servers that have been used for homology modeling in recent years are also summarized. Overview 
of the striking homology modeling applications in the prediction of protein 3D structures and recent 
applications  in the drug discovery are also discussed. This review also provides insight into the 
opportunities and possible challenges in homology modeling. 

Steps of Homology Modeling 

Homology modeling is a structure prediction method that consists of multiple steps. Homology 
modeling has common standard procedures with minor differences. The standard steps of homology 
modeling are summarized in Figure 1 and the detail explanation is given below the figure. 

 

Identification and Selection of Templates 

In this step of the process target (query) sequence is used for the identification of template 
structures in the PDB (https://www.rcsb.org/) [10] or similar databases. There are popular tools in 
searching for eligible templates for target sequence with different approaches. Among of them, Basic 
Local Alignment Search Tool (BLAST) [11] is the one which provides pairwise sequence-sequence 
alignment. This service is available inside databases like NCBI [2] and UniProt 
(http://www.uniprot.org/) [12]. The other approaches used in template identification are profile-
profile alignments [13] and Hidden Markov Models (HMMs) [14]. Some other advanced approaches 
use profile-profiles and HMMs in combination with structural properties. 

After template candidates are identified, the best structures must be selected. Sequence similarity 
level of the template sequence in relative to the target sequence is important in generating 3D 
structures with high accuracy. However, sequence similarity is not the only factor that determines 
the accuracy of the structures generated in homology modeling. Regarding the minimum sequence 
similarity limit in homology modeling, there are ambiguities about the exact value but >25% suggests 
that the template and target will take similar 3D structures [15].  

Apart from high sequence similarity, various factors are considered in choosing an eligible template. 
These factors include phylogenetic similarity between template and target sequences. Templates 
from identical or analogous phylogenetic tree to the target sequence may result in a 3D structure 
with high accuracy [16]. The other factors are environmental factors such as pH, solvent type and 
existence of bound ligand. These are also important in choosing the most eligible template as it has a 
role in ensuring the most optimal conditions in building an accurate target structure. The resolution 
of the experimental structure under consideration is also a factor in choosing the eligible template 
[17]. 
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Sequence Alignments and Alignment Correction 

After the most appropriate alignments are selected, alignments and correction of them in case it is 
necessary is undertaken. The alignments are target-template and template-template when more 
than one template is used. The error in the alignment of a residue causes shifting of α carbon. A 
single residue gap in an α helix section triggers rotation of the rest of the residues in the helix. As a 
result, the alignment of sequences in the right way is crucial in homology modeling [18]. Careful 
checkups and correction while performing alignments may enhance building 3D protein structures 
with high quality. The most widely used alignment methods are Clustal W 
(http://www.genome.jp/tools-bin/clustalw) [19], T-Coffee (http://tcoffee.crg.cat/) [20], 3Dcoffee 
(http://phylogeny.lirmm.fr/phylo_cgi/) [21] and MUSCLE 
(https://www.ebi.ac.uk/Tools/msa/muscle/) [22]. 

 

Model Building  

Various methods are used to generate 3D models for the target sequence based on its templates. 
Model building approaches can be classified as rigid body-assembly methods, segment matching 
methods, spatial restraint methods and artificial evolution methods. 

In rigid-body assembly the protein structure is broken down into basic conserved core regions, loops 
and side chains. This approach depends on the natural dissection that enables the building of a 
protein 3D structure by bringing this rigid bodies together which are picked up from the aligned 
template protein structures [23]. This can be done by tools like 3D-JIGSAW [24], BUILDER [25] and 
SWISS-MODEL [26]. 

In segment matching method a cluster of atomic positions obtained from the template structures are 
used as leading positions. Selection of segments from known structures in a database for matching 
the segments is done based on the sequence identity, geometry and energy. Then the entire atom 
model is generated by using the leading structure as a pillar to lay the segments. This can be done by 
using SEGMOD/ENCAD [27]. 

Spatial restraint method builds the model by meeting restraints came from the template structure. 
The restraints are framed onto the target structure depending on the alignment. These restraints are 
determined by stereochemical restraints on bond length, bond angle, dihedral angles and van der 
waals contact distances. This can be performed with MODELLER [28]. 

Artificial evolution method uses rigid-body assembly method and stepwise template evolutionary 
mutations together until the template sequence is the same as the target sequence. This can be 
performed with NEST [29].  

Table 1 displays summary of general features of the popular tools and servers that can be used for 
model building. Researchers reported that when the sequence identity is high, the homology models 
derived from different packages are comparable to each other. When the sequence identity is lower, 
the results tend to vary, with some packages performing noticeably better than others [30]. The 
quality of the models is related with the performance of packages in sequence alignment and model 
building. MODELLER is found to be one of the best tools in homology modeling [31]. In addition to 
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this critical assessment of methods of protein structure prediction (CASP) assesses modeling 
methods in a number of different categories. I-TASSER was ranked as the best server for protein 
structure prediction in recent CASP experiments [32]. These tools and servers have their own pros 
and cons. As a result, there is no single modeling tool or server which is superior in every aspects to 
others. 

 

Loop Modeling  

Gaps or insertions called loops are present in sequences of homologous proteins. The structures of 
loops are not conserved during evolution. Even without deletions or insertions different loop 
conformations in query and template are often found. The specificity of the function of a protein 
structure is often determined by the loops. Accuracy of loop modeling is an important factor which 
determines the value of the generated models for further applications. Since loops show higher 
structural variability than strands and helices, the prediction of their structure is more difficult than 
strands and helices [44]. 

There are two important methods that are used in developing the loops. One is database search 
approach and the other is conformation search approach. The database search method browses all 
the known protein structures to detect segments providing the critical core regions. The 
conformational search approach depends on a scoring function optimization [8]. Loop searches are 
done for loops of length 4-7 residues these days. This is because of the conformation variation 
increase as the length of the loop increases. 

To deal with these drawbacks, de novo methods that are used for loop conformation predictions by 
looking for conformational space have been developed. Monte Carlo simulations, simulated 
annealing, genetic algorithms and molecular dynamics simulations often in combination with 
knowledge-based potentials are examples for this. In such methods the length of loop that can be 
modelled is not limited but as the length increases possible conformation number increases rapidly 
which makes the modeling very time consuming [45]. There are servers such as ArchPRED 
(http://www.bioinsilico.org/ARCHPRED/) [46] and Congen 
(http://www.congenomics.com/congen/doc/) [6,47] that are used in loop modeling. 

 

Side Chain Modeling 

Side chain modeling is usually done by putting side chains onto the backbone coordinates that are 
derived from a parent structure and/or from ab initio modeling simulations. In practice side chain 
prediction works at high levels of sequence identity. Protein side chains are present in a limited 
number of structures with low energy known as rotamers. Depending on defined energy functions 
and search strategies, rotamers are selected in accordance with the preferred protein sequence and 
the given backbone coordinates. The accuracy of prediction is usually high for the hydrophobic core 
residues but low for water exposed residues on the surface [48]. Tools like RAMP 
(http://www.ram.org/computing/ramp/) [41] and SCWRL [49] can be used in side chain modeling. 
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Model Optimization 

Optimization of the model usually begins with an energy minimization utilizing molecular mechanics 
force fields [50]. At each energy minimization a few big errors are eliminated but many other small 
errors are introduced at the same time and start accumulating. Therefore, restraining the atom 
positions, implementing energy minimization with a few hundred steps and using more precise force 
fields like quantum force fields [51] and self-parameterizing force fields [52] can be utilized to 
decrease the errors in model optimization. For further model optimization methods such as 
molecular dynamics and Monte Carlo can be used [53]. 

 

Model Validation 

Accuracy of the constructed model can determine its further application in various areas. Thus, 
verification and validation of models are necessary. Depending on sequence similarity, 
environmental parameters and the quality of the templates, the generated models have different 
accuracy. 

Analysis of the stereochemistry of the model is one basic requirement. This analysis is done with 
parameters such as bond length, torsion angle and rotational angle. WHATCHECK 
(https://swift.cmbi.umcn.nl/gv/whatcheck/) [54], PROCHECK (https://www.ebi.ac.uk/thornton-
srv/software/PROCHECK/) [55] and Molprobity (http://molprobity.biochem.duke.edu/) [56] are 
popular tools used for the determination of the stereochemistry of the model in homology modeling. 
The Ramachandran plot (http://mordred.bioc.cam.ac.uk/~rapper/rampage.php) is also powerful 
determinant of the quality of protein structure. Residues with a problem of stereochemistry will fall 
out of the acceptable regions of the Ramachandran plot [57]. 

There are also tools that focus on the determination of the spatial features of the model based on 3D 
conformations and mean force statistical potentials. VERIFY3D 
(http://servicesn.mbi.ucla.edu/Verify3d/) [58] and PROSAII (https://www.came.sbg.ac.at/prosa.php) 
[7] are examples for this. These tools consider model construction environmental parameters in 
relative to the expected environmental conditions. 

 

Applications of Homology Modeling 

Homology modeling has a vast range of applications and its importance is increasing as the number 
of structures determined increases. It has applications in structure based drug design, analysis of 
mutations, insight into binding mechanisms, identification of active sites, looking for ligands and 
designing of novel ligands, modeling of substrate specificity, protein–protein docking simulations, 
molecular replacement in experimental structural refinements, rationalizing of known experimental 
results and planning of future computational experiments by using the generated models [59]. 
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Homology modeling has many applications in drug discovery process. This makes the drug discovery 
process faster, easier, cheaper and more practical. In general homology modeling applications in the 
drug discovery need high quality models. As a result, high sequence similarity, good side chain 
modeling and loop modeling are crucial in determining further applications of the model build in the 
drug discovery. 

As an illustration of the case application, for example, homology modeling was used to discover 
novel acetohydroxy acid synthase (AHAS, EC 2.2.1.6) inhibitors against M. Tuberculosis. Several 
studies demonstrated that the plant AHAS inhibitors of sulfonylurea chemicals such as sulfometuron 
methyl (SMM) exhibit antituberculosis activity. However, the 3D structure of M. tuberculosis AHAS 
remains to be elucidated. Thus, homology modeling was performed based on the S. cerevisiae AHAS 
to build a 3D structure of M. Tuberculosis AHAS. Through docking simulation and similarity searches, 
23 novel AHAS inhibitors of E. coli AHAS II enzymatic activity were identified. Five of the identified 
chemicals showed strong inhibitory effects against multidrug-resistant and extensively drug-resistant 
strains. Three of the compounds exhibited more activity than the positive control SMM [60].  

In recent years 3D structure of targets in cancer that can be used for discovering effective 
chemotherapeutic agents has been generated using homology modeling [61,62]. Reliable 3D 
structures of G-protein coupled receptors (GPCRs) which are targets of nearly a third of FDA 
approved drugs has been built similarly [63]. Another recent application of homology modeling is 3D 
structure determination of RNA polymerase of the Ebola virus that helps in the detection of potential 
therapeutic agents [64]. Furthermore 3D structure of NS5 protein of the Zika virus has been 
determined by homology modeling that leads to the discovery of its potential inhibitors [65]. Recent 
case applications of homology modeling in drug discovery are summarized in Table 2. 

 

Opportunities and Possible Challenges in Homology Modeling 

The number of high quality protein 3D structures has increased in the last decades. The introduction 
of new experimental methods like Cryo-electron microscopy (Cryo-EM) is anticipated to increase the 
number of 3D structures determined experimentally [80]. As the experimentally determined number 
of high quality 3D protein structures of protein families increases, the role of homology modeling in 
determining the 3D structures of the rest of the sequences in these families increases. However, 3D 
structures of all protein distinct folds in nature has not been completed yet. As a result, there are 
some difficulties in building 3D structures of proteins in which the structures of their protein families 
have not been determined [18]. 

There are dozens of methods used for model building in homology modeling. New methods with new 
algorithms have been developed. Various studies have demonstrated that there is no single modeling 
program or server which is superior in every properties to others [81]. So, selecting the method/s to 
be used according to the protein in hand and specific aim of future applications of the model is 
important. 

In classical homology modeling the model is built mainly based on sequence similarity. In the 
experimental structure determination, ligands are absent as they are often lost during the 
purification process. Thus, the resulting models that are built without considering the ligand 
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information in the template represent an unliganded state. This shortcoming has been dealed with 
the introduction of ligand sensitive approaches. However, such approaches need expertise and 
manual interventions that takes time. Hence the introduction of fully automated homology modeling 
tools that can deal with such problems is an important issue [82]. Furthermore, there are efforts to 
integrate it with post modeling applications. For instance, there are works to integrate modeling 
tools with thermostabilizing mutations [83]. 

Homology modeling may leave some unresolved questions in the computational models. This can be 
reduced by using models that came from more experimentally determined structures which allow 
better conceivable templates for targets. As consistent, accurate and progressive methods for the 
improvement of models by shifting the coordinates parallel to the native state are developed, 
coverage increases [84]. 

Another limitation of homology modeling is presence of loops and inserts as it is difficult to model 
them without template data [85]. In order to have a model with high accuracy, optimization of the 
loop region and side chains is important. Optimization encompasses refinement of the generated 
models with molecular dynamics simulations. In case there is low sequence similarity level between 
target and template, using multiple templates is advantageous. But using multiple templates may 
lead to aberrations in the alignment unless templates which are from identical or analogous 
phylogenetic tree are used as the target sequence [86]. Using PSI BLAST algorithm instead of normal 
BLAST may provide optimal template selections in evolutionary distant cases. 

At the end of the homology modeling process, many models of a target are built in general. Having 
many models is an opportunity but identification of the best model needs further investigation. In 
order to identify the best model, the constructed models are compared using various parameters. 
Discrete Optimized Protein Energy (DOPE) score [87], Template Modeling (TM) score [88] and Root 
Mean Square Deviation (RMSD) value [89] are used for comparison. The determinant parameter is 
decided depending on the purpose of modeling results. 

 

Conclusion 

The gap between protein sequences available and protein 3D structures determined experimentally 
is growing. Homology modeling aims at building 3D structure of proteins from their sequences by 
using templates with an accuracy which is similar to the experimental methods. Thus, it has a big role 
in filling the widening gap. 

In recent years there are many advances in the tools and servers of homology modeling that improve 
the accuracy of modeling results. This has an impact on each step of homology modeling. Better 
alignment methods, loop modeling, side chain modeling and validation techniques have been 
introduced. As the accuracy of models generated increases, their applications in the drug discovery 
process increase. So, homology modeling contributes much in the drug discovery. Furthermore, in 
the near future integration of homology modeling with other computer aided drug design methods 
and post modeling applications are expected. 

Homology modeling is used in determining 3D structures of proteins and it has many applications in 
the drug discovery process. 
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Figure 1. Steps in Homology Modeling 

Table 1. Popular Homology Modeling Tools and Servers 

Table 2. Recent Applications of Homology Modeling 
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Homology 
Modeling Tools 
or Servers 

URL address Short Discription 

 

MODELLER http://www.salilab.org/modelle
r/  

Is a homology modeling tool that generates 
protein 3D structures with spatial restraints 
method. It is available freely, has powerful 
features and gives reliable results [33]. 

I-TASSER https://zhanglab.ccmb.med.umi
ch.edu/I-TASSER/  

Is a server that provides an internet based 
service for protein structure prediction. It was 
found to be one of the best methods in the 
servers section of CASP experiments [26]. 

SWISS-MODEL http://swissmodel.expasy.org/  Is a server that gives protein 3D structure from 
its amino acid sequence. It provides user friendly 
web interface. This server uses model quality 
estimation to select the most appropriate 
templates and gives the expected accuracy of the 
models built approximately [34]. 

Molecular 
Operating 
Environment 
(MOE) 

https://www.chemcomp.com/
MOE-
Molecular_Operating_Environm
ent.htm  

Is a combination of segment matching and 
modeling of insertion or deletion regions 
approaches. In addition to 3D structure 
prediction, it has advanced loop modeling, 
advanced alignment methods and powerful 
alignment visualizer and editor [35]. 

Phyre2 http://www.sbg.bio.ic.ac.uk/ph
yre2/html/page.cgi?id=index  

This modeling uses various detection tools to 
generate 3D structures. It has special features 
like ligand binding prediction and variant analysis 
among the protein amino acid sequence [36]. 

HHpred http://toolkit.tuebingen.mpg.de
/hhpred  

This tool builds 3D structures using pairwise 
comparison of profile hidden Markov models 
(HMMs) from a single or multiple query 
sequence [37]. 

Robetta http://www.robetta.org/  Based on the ROSETTA fragment insertion 
method, it gives both ab initio and homolog 
models of protein regions [38]. 

Protein Model 
Portal (PMP) 

http://www.proteinmodelportal
.org/  

PMP provides interactive interface for model 
building and quality assessment [39]. 

ICM https://www.molsoft.com/hom
ology.html  

Is one of the homology modeling tools that give 
3D structure with good accuracy. Its features 
include fast model building, loop prediction, 
model validation and refinement [40]. 

Prime https://www.schrodinger.com/
prime  

Is a powerful package for accurate protein 
structure prediction. In addition to building 
structures with high accuracy, it provides 
advanced simulation. It makes homology 
modeling and fold recognition merge into a 
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package. It has an easy –to-use interface [41]. 

SCWRL4 http://dunbrack.fccc.edu/scwrl4
/index.php  

It is a tool that is rapid with good accuracy and 
easy-to-use [42]. 

IntFOLD http://www.reading.ac.uk/bioin
f/IntFOLD/   

It is an independent server that predicts intrinsic 
disorders, domains and protein-ligand binding 
sites [43]. 

 

Protein (Molecule) Application Program/Server 

Human angiotensin II type I 
receptor [66] 

Guide for designing novel 
therapeutic agents as angiotensin 
receptor antagonists 

BLAST, CLUSTALW, SYBYL, 
MODELLER, I-TASSER, PROCHECK, 
SurflexDock 

HSP70 from GWD [67] Determination of 3D structure of 
hsp70 chaperone protein which is 
a target of new wide spectrum 
cancer therapeutics candidates 

BLAST, SWISS-MODEL, QMEAN, 
PSVS 

DNA Dependent Protein Kinase 
(DNA-PK) [68]  

Screening of potential candidates 
as DNA-PK inhibitors 

WHATIF, ProSA, AutoDock Vina, 
Discovery Studio, ClustalW, 
Phyre2, WHATCHECK 

Human Concentrative Nucleoside 
Transporter 3 (hCNT3) [69] 

Identification of sodium binding 
site and the determinant residues 
of nucleoside selectivity 

MOE, Gold, Glide, CHARMM 

Peroxisome Proliferator 
Activated Receptor gamma 
(PPARγ) [70] 

Identification of new ligand 
molecules that reduce PPARγ 
receptor in Type II diabetes 
complications 

Prime, GlideXP, Schrodinger 

GABA Transporter 1 (GAT1) [71] Discovering GAT1 inhibitor 
molecules that are potential 
anticonvulsant and 
antidepressant agents 

ClustalW, Prime, GlideXP, 
Schrodinger 

 

α-Glucosidase [72] Designing of new classes of α-
glucosidase inhibitors 

BLAST, Prime, PROCHECK, 
Sitemap, GlideXP, Schrodinger, 
Maesterero 

CD20 antigen [73] Insight into the structure of CD20 
antigen which is a target in 
developing new monoclonal 
antibodies 

PSI-BLAST, T-Coffee, SWISS-
MODEL, I-TASSER, Phyre2, 
MUSTER, Rampage 

Histamine H2 receptor [74] New perspectives into the 
development of a new potent 
drugs against peptic ulcer by 
targeting H2 

BLAST, ClustalX, MODELLER, 
PROCHECK, AutoDock, STRING 

Protein Kinase D 1 (PKD1) [75] Designing new PKD1 inhibitors Schrodinger suit, Maestero, 
MODELLER, PDBSum, Glide XP 
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Ribonucleotide reductase [76] Screening of novel drugs for drug 
resistant Leprosy therapy 

SWISS-MODEL, HHPred, ProFunc, 
ERRAT, WHATIF, ProSA, Glide XP, 
Schrodinger 

Ecto-Nucleoside Triphosphate 
Diphosphohydrolases (E-
NTPDases) [77] 

Structural insights into the binding 
of E-NTPDases to substrates and 
inhibitors 

MOE, BLAST, Rampage, Marvin 
Sketch, FleX X, GROMACS 

Parkinson’s linked mutant 
Leucine-Rich Repeat Kinase 2 
(LRRK2) [78] 

Identification of multiple novel 
points within neuronal death 
signaling pathways that could be 
targeted by potential therapeutic 
candidates 

MOE, Glide 1, Maestero, 
CHARMM 

Alpha-Galactosidase A (α-Gal A) 
[79] 

Detection of six GLA variants that 
cause α-Gal A activity deficiency 
and protein wild type structure 
loss 

Alamut Visual, SWISS MODEL, 
PyMol 
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