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Proteochemometrics is a machine learning based

modeling approach relying on a combination of ligand

and protein descriptors. With ongoing developments in

machine learning and increases in public data the tech-

nique is more frequently applied in early drug discov-

ery, typically in ligand–target binding prediction.

Common applications include improvements to single

target quantitative structure-activity relationship

models, protein selectivity and promiscuity modeling,

and large-scale deep learning approaches. The increase

in predictive power using proteochemometrics is ob-

served in multi-target bioactivity modeling, opening

the door to more extensive studies covering whole

protein families. On top of that, with deep learning

fueling more complex and larger scale models, proteo-

chemometrics allows faster and higher quality compu-

tational models supporting the design, make, test cycle.

Introduction
Proteochemometrics (PCM) is a statistical modeling tech-

nique used in bioactivity prediction [1,2]. PCM typically
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comprises the modeling of a biologically relevant endpoint

using a concatenation of explicit ligand derived and explicit

target derived descriptors via supervised machine learning

[3,4]. These descriptors describe the properties and character-

istics of the ligands and targets in a way that is compatible

with machine learning. Frequently PCM uses non-linear

machine learning techniques such as random forests (RF)

or support vector machines (SVM), but it has also been

applied using partial least squares (PLS) [1,3]. In the case of

PLS, or other linear methods, cross-terms are needed for

proper modeling. Cross terms are an additional set of descrip-

tors which rely on mathematically combining ligand and

targets descriptor blocks (e.g. via multiplication) [1]. PCM is

based on the same principles as machine learning-based

Quantitative Structure-Activity Relationship (QSAR) model-

ing and hence also uses similar validation methods (Fig. 1). In

good practice, PCM models are validated using both (nested)

cross-validation and external validation [5]. As with QSAR,

PCM can either be classification or regression depending on

the data set modeled. Hence model quality can be estimated

using typical measures such as correlation coefficient (R2) and

root mean square error (RMSE) for regression-based models.

Conversely, for classification-based models, use can be made

of receiver operating characteristic (ROC) curves, sensitivity,

specificity, and the Matthews correlation coefficient.

Descriptors
We consider PCM as any method that combines the interac-

tions of multiple targets (typically proteins) with a group of
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Fig. 1. A schematic overview of the difference between quantitative structure-activity relationship and proteochemometric modeling. QSAR uses only the
ligand descriptors calculated from the ligands in the data and is typically single target. PCM on the other hand uses both ligand and protein descriptors to
build its model and is typically multi-target. Consequently, a PCM model built on a single target is identical to a QSAR as there is no variation in target space.
ligands (typically small molecules) via supervised machine

learning using an explicit target descriptor. The main reason

of applying PCM over QSAR is that PCM allows pooling of

data from related targets to increase the data available for

modeling and allow use cases which are not possible with

QSAR. Following our definition, targets can be a single pro-

tein with multiple binding sites (e.g. allosterism) or multiple

related proteins. But also more complex targets such as cells

can be converted to descriptors compatible with PCM model-

ing [6]. By using descriptors extracted from both targets and

ligands, the ligand–target interaction space is modeled allow-

ing for extrapolation in target space which is not possible

with ligand only data [7]. To use sequence-based target

descriptors, aligning these sequences is typically a require-

ment for best performance, but usage of alignment-indepen-

dent descriptors has also been described [8]. Sequence based

descriptors can be based on the whole protein sequence,

limited to the known binding site, or limited to the varying

amino acids (Table 1). Moreover, target descriptors do not

necessarily need to be protein sequence based, other ways to

describe targets can also be used (Table 1). To describe ligands,

use can be made of well-established ligand descriptors such as

physicochemical properties, circular fingerprints, or 3D

descriptors.

Summarizing, PCM exploits the combination of the varia-

tion in multiple ligands and multiple targets. The resulting

data set is larger and covers more information, which has

been observed to lead to more robust models and allows

insights and applications not available to ligand-only models

(see below) [9].

Model interpretation and scope
After training and validating a PCM model, this model is then

commonly interpreted to understand which descriptors cor-

relate with the observed bioactivity. As PCM covers target and

ligand information, interpretation can provide additional

information beyond QSAR and lead to the identification of

important ligand features (e.g. substructures) or target fea-

tures (e.g. relevant amino acids) [10,11]. One thing to note is
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that a single target PCM is essentially a QSAR model as the

variation in target space is then absent.

The property of PCM that it couples multiple targets into

one large model lends itself for deep learning techniques

rather well while it can also be applied using shallow learning

techniques such as RF, SVM, and PLS [1,8]. Recently, deep

learning techniques are more focused on making bioactivity

predictions on very large datasets of targets and ligands, while

shallow learning leans toward extracting expert knowledge

about the system. The diverse applications make PCM an

excellent tool for early drug design; multiple sources of

knowledge can be integrated into a single model, and pre-

dictions can be made on which ligands will work on which

targets.

Related approaches
However, the concept of combining data on multiple targets

into one large bioactivity space has been explored in other

applications as well. A detailed overview of all these other

techniques was deemed out of scope of the current review,

but we would like to highlight two specific examples. The

first, matrix factorization, is a form of collaborative filtering

that has been shown to work well on bioactivity data. The

main approach in matrix factorization is approximating the

weights in a ligand–target interaction matrix and their re-

spective weighted similarity matrices by using the inner

products of feature vectors. Essentially, the similarities be-

tween ligands and the similarities between targets are com-

pared to create the combined ligand–target interaction space.

Contrary to PCM these models cannot be readily interpreted

to identify features leading to selectivity or promiscuity in

descriptor space, however the approach has been shown to

work well and we would like to refer the reader to interesting

literature in the field on this [12–14].

Secondly, the creation of (chemogenomic) multi-task

models that are built on the ligand (chemical) information

of multiple targets, without explicit protein information.

Multi-task models co-learn multiple tasks and can profit from

shared knowledge, but cannot explicitly link this to features



Vol. 32, No. 2019 Drug Discovery Today: Technologies |

Table 1. Overview of reviewed literature.

Reference Section Protein family/database Main model quality
parameter

Molecular descriptors Protein descriptors

Giblin et al. [9] Applications Bromodomain MCC = 0.83 Circular (Morgan) Binding-site
Physicochemical

Nazarshodeh et al.
[24]

Applications Carbonic Anhydrases R2 = 0.78,
RMSE = 0.55

Circular and 3D Alignment independent/
physicochemical

Shar et al. [25] Applications Psychoactive Drug Screen
Program version 17

CV-CoD = 0.61 (SVM),
0.63 (RF)

Autocorrelation/
physicochemical

Autocorrelation/
physicochemical

Yordanov et al.
[26]

Applications Human Leukocyte
Antigens

MCC = 0.86, 86% hit rate
in top 10%

Physicochemical Physicochemical

Cortés-Ciriano
et al. [29]

Applications Poly(ADP-ribose)
polymerases

R2 = 0.65, RMSE = 0.95 Circular (Morgan) Alignment/binding site
based

Rasti and
Shahangian [30]

Applications Thymidylate synthases R2 = 0.92 Grind Grind

Rasti and
Shahangian [31]

Applications Phosphodiesterases R2 = 0.97, Grind Interaction-based (Grind)
and Physicochemical

Hariri et al. [32] Applications Dihydrofolate reductase R2 = 0.87–0.89 Grind Physicochemical (non-
conserved binding site)

Hariri et al. [33] Applications Phosphoinositide 3-
kinases

R2 = 0.77 Grind Binding-site

Physicochemical
Merget and
Sorgenfrei et al.
[34]

Selectivity/
promiscuity

Kinases/ChEMBL version
22

AUC = 0.81, Kappa = 0.27 Circular (Morgan) Binding site
Physicochemical

Christmann-
Franch et al. [35]

Selectivity/
promiscuity

Collected literature R2 = 0.74, RMSE = 0.41 Circular (Morgan) Physicochemical

Lenselink et al. [8] Selectivity/
promiscuity

ChEMBL version 20 MCC = 0.33, Circular (Morgan) Physicochemical

Rasti et al. [36] Selectivity/
promiscuity

Carbonic anhydrases R2 = 0.77–0.88 Grind Binding site/
physicochemical

Manoharan et al.
[37]

Selectivity/
promiscuity

BACE1 R2 = 0.77, CVpred = 0.73 Interaction fingerprints/
Glide XP score

Interaction Fingerprints/
Glide XP score

Tresadaern et al.
[38]

Selectivity/
promiscuity

Metabotropic glutamate 7 ROC = 0.97, MCC = 0.58 Circular/physicochemical Binding site
Physicochemical

Qiu et al. [39] Selectivity/
promiscuity

Nuclear receptors/
ONRLDB

AUC_int = 0.87,
AUC_ext = 0.75

Physicochemical Structure based/
physicochemical

Simeon et al. [40] Selectivity/
promiscuity

Aromatase R2 = 0.90, RMSE = 0.42 Circular (Morgan) Varying positions
Physicochemical

Paricharak et al.
[41]

Virtual screening Dihydrofolate reductases R2 = 0.78, RMSE = 0.59 Circular/physicochemical Binding site
Physicochemical

Cortés-Ciriano
et al. [11]

Virtual screening Cyclooxygenases R2 = 0.65, RMSE = 0.71 Circular/physicochemical Binding site
Physicochemical

Burggraaf et al.
[42]

Virtual screening Sodium-dependent
glucose co-transporters
1/2

MCC = 0.49,
Hitrate = 39%

Circular/physicochemical Full sequence alignment
Physicochemical

Shaikh et al. [43] Virtual screening Zinc Database MCC_int = 0.80–0.95,
MCC_ext = 0.71–0.82

Circular (Morgan) Alignment independent
Physicochemical/3D
structural

Zakharov et al.
[45]

Deep learning ChEMBL/PubChem R2 = 0.53, RMSE = 0.66
(best)

Circular (Morgan)/
Path-based (Avalon)

Alignment independent
Physicochemical

Reker et al. [46] Deep learning ChEMBL SARfari/GLASS MCC = 0.61 (best) Circular (Morgan) Alignment independent
Physicochemical

Kim et al. [47] Deep learning ChEMBL version 20 MCC = 0.35,
BEDROC = 0.84

Learned Vector-based
(CDDD)

Learned sequence based
(UniRep)

Jaeger et al. [48] Deep learning Kinases CVpred = 0.86,
MSE = 0.62

Learned Vector-based
(Mol2Vec)

Learned Vector-based
(ProtVec)

Jiménez et al. [49] Deep learning PDBind R2 = 0.82, RMSE = 1.27 Voxelized 3D-
representation

Voxelized 3D
representation

Playe and Stoven
[50]

Deep learning DrugBank subset ROCAUC = 50–73,
AUPR = 17–38

Learned graphNeural
networks/circular

One-hot encoded CNN/
Physicochemical
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Table 1 (Continued )

Reference Section Protein family/database Main model quality
parameter

Molecular descriptors Protein descriptors

Öztürk et al. [51] Deep learning Kinase datasets Davis and
KIBA

DAVIS: R2 = 0.63,
AUPR = 0.71;
KIBA: R2 = 0.67,
AUPR = 0.79

Learned smiles
embedding

Learned sequence
embedding

Lopez-del Rio et al.
[52]

Deep learning Collected literature AUC = 0.85,
BEDROC = 0.68,
Kappa = 0.46
(recommended CV)

Learned smiles
embedding/circular

Learned sequence
embedding

Shown are protein (family) studied or data source, the numeric values of their primary parameter for model quality, and descriptor types used. When present external validation values are
shown, and when present temporal validation is preferred over random split based validation. See main text for further details.
in the targets (whereas PCM can do this by using explicit

descriptors). Similar to PCM, multi-task learning is especially

useful in cases where there is little information for an indi-

vidual target. Multi-task models have also been shown to

perform better than individual QSAR models and sometimes

on par with PCM. The reader is invited to read some of the

recent work in this area [8,15].

Scope of the review
PCM has been utilized in very diverse applications to explore

the ligand–target interaction space as we have reviewed

before. Since then, in the last 5 years, usage of the technique

has become more widespread (Fig. 2). More specifically, a

shift can be observed from PCM applications as proof of

concept in bioactivity modeling toward it becoming a more

established technique with (diverse) applications, undergo-

ing method refinement, and being applied by more groups.

Many different protein families were investigated (e.g.

kinases [16] and GPCRs [17]), and PCM was also actively

explored in deep learning approaches [8,18]. Accompanied
Number of publications conta

500

400

300

200

100

0
Until 2000 2000-2004 2005

Fig. 2. Overview of published literature mentioning the term proteochemometr
text. Totals were subsequently binned per period of 5 years. Compared to the 

proteochemometrics (data was obtained from Google Scholar in July 2020).
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by a steady increase in computational power, the complexity

of these PCM models increased as well. In this review, results

from several recent key publications involving PCM devel-

opments are highlighted; for earlier work the reader is re-

ferred to our previous reviews from 2011 and 2015 [2,19]. In

Table 1, an overview of all literature in this review is listed,

alongside which protein (family) the authors studied, valida-

tion parameter values, and descriptor types used.

Applications of PCM
In the early 2000s, the use of machine learning in chemo-

metrics became increasingly more popular in the form of

Support Vector Machines (SVM) and Random Forests (RF)

[20,21]. These applications were using the descriptions of

compounds (features or independent variables) and linked

them to biological activity (dependent variables) for individ-

ual targets. After the introduction of PCM, the use of protein

descriptors in bioactivity modeling has become more wide-

spread in the literature as also shown in Fig. 2 [22,23].
ining ‘proteochemometric*’

-2009 2010-2014 2015-2019
Drug Discovery Today: Technologies

ics on Google Scholar. The keyword was retrieved in abstract, title or full
early 2000s, an almost 20-fold increase is found in literature referencing
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One of the main application areas was and is the modeling

of several or all members of a protein family at once. As

information about several proteins is contained in a PCM

model, differences in bioactivity profiles between protein

family members is captured. This is reflected in several studies

that use PCM to model a full (sub)family of proteins. Giblin

et al. started from a simple QSAR model using only descriptors

based on the small molecules to generate the first set of

models, and then created PCM models by adding protein

descriptors for the bromodomain containing proteins (BRDs)

[9]. With a Matthews Correlation Coefficient (MCC) of 0.83

(versus 0.50 from their QSAR model) they created a high

performing predictor for this set of proteins. The authors also

showed the use of peptide array data as protein descriptors,

with similar performance (MCC of 0.80).

In a 2017 study from Nazarshodeh et al. carbonic anhy-

drases were the focus [24]. The authors here applied feature

selection to optimize their PCM model, and showed an

increase in performance when using k-nearest neighbor re-

gression over their non-optimized models (R2 = 0.78,

RMSE = 0.55). Similarly, feature selection was applied in a

broad study performed by Shar et al., in which the authors

investigated drug target interactions [25]. Both SVM and RF

were applied on a wide selection of ligand–protein pairs and

highlighted was how to select the most important compound

descriptors from these models. A different approach was

shown by Yordanov et al., creating a PCM model that pre-

dicted binding to the seven most common human leukocyte

antigens based on physicochemical property type descriptors

[26–28].

Similarly, improving on previous work, Cortés-Ciriano et al.

investigated Poly(ADP ribose) polymerases (limiting them-

selves to the binding site) [29]. They showed an increased

performance on both the interpolation, using their 181

compounds for training, and extrapolation to newer com-

pounds. Rasti and Shahangian also extrapolate to novel com-

pounds in their 2017 study, exploring thymidylate synthases

[30] and phosphodiesterases [31]. Hariri et al. designed ligands

that were identified as potent and highly selective toward

dihydrofolate reductase [32] and toward phosphoinositide 3-

kinases [33], respectively.

Whereas PCM is frequently shown to lead to better abso-

lute performance, the addition of target information also

allows applications not possible with QSAR such as extrapo-

lation toward untested targets and selectivity prediction as

will be highlighted below.

Selectivity and promiscuity prediction
While we have addressed the use in defined protein (sub)

families above, PCM can also be applied to full protein super-

families. Merget and Sorgenfrei et al. demonstrated this by using

publicly available kinase profiling data to construct a kinome

PCM model [34]. This extensive model was used to make
kinome-wide predictions after being thoroughly cross-vali-

dated with a hold-out partition (AUC 0.81, kappa 0.27,

sensitivity 0.63). In this way bioactivity of untested com-

pounds can be predicted across the full kinome (provided

their chemical structure is within the applicability domain).

Prior to that, another kinome-wide approach was performed

by Christmann-Franck et al. who applied regression instead of

classification and reached an R2 of 0.74 and RMSE of 0.41[35].

In addition, they were able to interpret their model to ratio-

nalize observed (in)activities of inhibitors on specific kinase

by 3D structural follow up.

Building on this work, Lenselink et al. extended the concept

and applied PCM to all high-quality bioactivity data in

ChEMBL (version 20) crossing protein subfamily boundaries

[8] They were able to improve over individual QSAR models,

leading to a PCM with an MCC of 0.33 versus 0.22 for QSAR.

Note that this result was obtained with a deep learning

application of PCM (see below for further studies using deep

learning). These broad studies demonstrate the potential of

PCM to also be applied to diverse protein families.

The opposite of these protein superfamily wide PCM mod-

els can be found in selectivity approaches within protein

families. Rasti et al. opted to investigate the selective power

of their carbonic anhydrase inhibitors models [36]. They

showed that a robust model can predict this selectivity, based

on the selective interactions between individual protein fam-

ily members and compounds by including them as separate

descriptors. This also provides a way to estimate selectivity in

the design of new inhibitors. A similar approach was per-

formed by Manoharan et al. who focused on the BACE1

protein [37]. The authors used structural information, both

interaction fingerprints and docking scores, as their main tool

to create descriptors and subsequently a statistical model was

trained on this data. This led to a predictive BACE1 inhibitor

model, where the docking model provided insight into water

mediated interactions.

Making the link to different species, Tresadern et al. inves-

tigated allosteric modulators for the metabotropic glutamate

7 receptor by inclusion of the entire protein family including

a rat homologue [38]. The authors showed that following this

PCM approach allowed for higher quality hits in their vali-

dation as compared to regular QSAR approaches (mainly by a

reduction of the false positive rates as confirmed by their

prospective validation by a secondary assay).

These examples highlight one of the strengths of creating

protein family specific models, as it also allows bioactivity

predictions between family members lacking affinity mea-

surements. As such, PCM models lend themselves as powerful

tools to compare the effects of slight alterations between

protein family members on the bioactivity. PCM to explore

selectivity can also be applied to investigate both ligand and

protein specific features. A study performed by Qiu et al.

sought out to analyze the bioactivity of compounds toward
www.drugdiscoverytoday.com 93
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nuclear receptors [39]. They used this data to identify scaf-

folds overrepresented in both active and inactive compound-

protein interactions. A similar approach was performed to

aromatase inhibitors by Simeon et al., who analyzed feature

importance in their high-performing PCM models (R2 of 0.90

and RMSE of 0.71) [40]. Combining structural fingerprints as

descriptors with the protein structure for aromatase, individ-

ual amino acid interactions were identified as important.

Noteworthy is that they only focused on the amino acid

positions that varied among the studied variants, effectively

a form of feature selection.

Applications of PCM in virtual screening
As shown previously, main applications of PCM are typically

in improving QSAR predictions and creating prospective

models. However, PCM can also be incorporated in the design

of novel molecules. Paricharak et al. used target prediction

and PCM models applied to dihydrofolate reductase (DHFR)

inhibitors to combine predicting poly-pharmacology and

affinity [41]. For the former, a Bayesian target prediction

approach (Recall: 79%) assessed whether a compound was

active or inactive as a DHFR inhibitor (and estimate activity

on other targets). Affinity on DHFR was predicted using a

PCM model (R2: 0.79; RMSE: 0.59). This combination allowed

for a modeling approach that could identify novel ligands for

the DFHR.

In order to increase prediction reliability in virtual screen-

ing, a common way of combining multiple models is ensem-

ble modeling. In this way multiple models vote and together

form one prediction. Cortés-Ciriano et al. used this ensemble

modeling on the cyclooxygenases (COX) family to improve

their base PCM models [11]. An R2 of 0.59 was found for the

COX selectivity of 1086 compounds, which outperformed

any of the older singular PCM models. Combining several

PCM models can thus be worth investigating as proper im-

plementation leads to an increase in predictive power. One

point of criticism can be that Paracharak and Cortés-Ciriano

did not experimentally validate the models and only per-

formed virtual screening.

PCM can also be a powerful tool in the absence of structural

data. In a study by Burggraaff et al., the sodium-dependent

glucose co-transporters 1 and 2 (SGLT1/SGLT2) were

addressed [42]. As there was no structural information avail-

able for SGLT, the authors created a SGLT PCM model derived

from publicly available and in-house data for SGLT1 and

SGLT2. Virtual screening led to an experimentally validated

hit-rate of 39%, underscoring the relevance of the followed

approach. Shaikh et al. concluded in their study on drug-

target interactions that using sequence-based descriptors

performed just as well as structure-based ones [43]. They

assessed the sc-PDB database, which contains annotated

druggable binding sites. The authors suggest that ‘non-inter-

active’ datapoints (i.e. untested experimentally) in the
94 www.drugdiscoverytoday.com
dataset should not be classified as negative by default, as this

skews the model to underpredicting affinities. A better ap-

proach is leaving these datapoints out or predicting their

values with a statistical model trained on the available data,

in a way a form of active learning and interpolation. Their

other major finding, contrary to structure-based descriptors,

sequence-based descriptors are more widely available, allow

for broader coverage of data, and with that a better possibility

of filling in these ‘non-interactive’ datapoints.

Combining the above findings, it appears that structure-

based descriptors are more predictive in protein family spe-

cific instances (with high levels of detail), while sequence-

based descriptors are better suited for wide PCM models

(where such high level is lacking). A careful consideration

must be made on which descriptors to use, and is mainly

dependent on the amount and type of data available.

Deep learning applications of PCM
As the field of computational drug discovery moved forward

in the last decade, Deep Learning (DL) became increasingly

more relevant in both activity modeling and de novo struc-

ture generation [44]. The power of deep learning lies in its

ability to model high dimensional data sets with a high

accuracy and to learn directly on data instead of using engi-

neered features or descriptors. The downside of this method is

the low interpretability and very high hyperparameter di-

mensionality. This low interpretability is found in the (mul-

tiple) hidden layers of neural networks, a black box where

information is transformed and weighted by the algorithms

without any clear feedback. We will highlight some key DL

applications here.

As databases become increasingly larger, so do the data set

size and training time used for PCM models to model bioac-

tivity. DL can be sped up using graphical processing units

(GPUs). This was demonstrated by Lenselink et al. who were to

apply a deep learning PCM model to the whole high-quality

benchmark set they extracted from ChEMBL [8]. Similarly,

Zakharov et al. introduced DL to improve the performance of

these very large PCM models by using GPUs and a novel

architecture [45]. In their work they integrate both multitask

deep learning models and consensus models and observed an

increase in accuracy of the predictions. Conversely, Reker et al.

showed with DL methods that specific, high performing

models can be constructed from large bioactivity datasets

that do not encompass a full matrix [46]. Moreover, the

researchers noted issues with combinatorial screening: pre-

dicting the activity for every possible combination of target/

ligand is time consuming and expensive. Using their devel-

oped method, they extracted the most informative target/

ligand interactions and achieved similar performance with

25% of the data.

Studies applying DL in bioactivity modeling frequently

focus on improving information encoding or learn data
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representations before applying supervised machine learn-

ing. Kim et al. extracted ligand and target descriptors based on

a comprehensive benchmark set of compound-protein inter-

actions [47]. These descriptors were then incorporated into a

PCM model that performed better than previously examined

models based on engineered descriptors. This study shows a

significant improvement in descriptor creation and data

preprocessing, cutting down on the time needed to do this

manually while improving accuracy.

In descriptor representation, Jaeger et al. created deep neu-

ral networks to further automate the integration of structural

information [48]. Compound–target pair information was

extracted from text sources and a learned vector based repre-

sentation was created for both (Mol2Vec and ProtVec) to

function as descriptor. After supervised learning, this ap-

proach showed an increase in predictive power, and could

overcome drawbacks such as sparseness in the original data-

set. Jiménez et al. investigated 3D-convolutional neural net-

works and found that using 3D generated structural

descriptors gave similar results to established methods, but

improved on the speed and performance of the method itself

[49]. Both these methods show increased performance for

PCM models in their respective areas, and allow for better

predictions through the use of DL in descriptor creation and

model application.

Beyond improving activity modeling and descriptors, oth-

er areas of improvement have been reported. Playe and Stoven
PCM

Limitatio

Data sparseness Protein length d

DDrug binding
information

Interpolation &
Active Learning

Fig. 3. A schematic overview of several limitations of proteochemometrics and
where interpolation and active learning can be used to infer activity in the empty
how differing protein lengths can hamper protein descriptor creation. Manually as
can mitigate this problem. The right-hand side shows increasing training times wit
time consuming. Feature selection can be applied to limit the data set to the r
compared deep learning based descriptors (graph neural net-

work and one-hot encoded convolutional neural network

based respectively) with literature-based descriptors (i.e. shal-

low learning) [50]. They concluded that while on large data-

sets deep learning performed better than shallow learning,

the opposite was true for the smaller datasets. This reinforces

the idea that expert knowledge works well on specific protein

families, and that PCM models created with that limitation in

mind predict bioactivity well. For larger datasets, deep learn-

ing is preferred to identify relationships and interactions that

are not directly found in experimental validations.

Öztürk et al. showed an effective manner for predicting

affinities using sequence type data for both compounds and

proteins from which an embedding was created. They apply

this description form to PCM models on kinases [51]. Built on

similar descriptor types, Lopez-del Rio et al. compared cross-

validation approaches in a PCM deep learning environment

[52]. The authors concluded that using a restrictive cross-

validation method on a PCM model resulted in more reliable

predictions. These studies reinforce the idea that targeted

predictions (such as a small selected database, expert knowl-

edge on a protein family, 3D structural information) are

valuable to explore as they have more reliable and signifi-

cantly powerful results compared to large dataset wide pre-

dictions.

What is common in all deep learning applications is that

PCM bioactivity predictions are still in their infancy and
ns

ifferences Training times

Relevant
interactions

Feature
selection

NN
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 possible mitigation methods. The left-hand side shows data sparseness,
 cells and complete the matrix as efficiently as possible. The middle shows
signing relevant drug binding information or learning a protein embedding
h increasing data. Each PCM has to be trained over a large matrix, which is
elevant information cutting down training times.
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intensive research is ongoing. As research progresses and

algorithms improve, the quality of these predictions will

increase and ultimately lead to a better hit-to-drug rate.

However, there are also some limitations to PCM, three of

which will be discussed below.

Limitations
There are several known PCM modeling limitations, here we

will address data sparseness, inability to align protein

sequences, and training times (Fig. 3). Sparse data leads to

a reduction in model reliability. Predictive power increases

when coverage of the ligand–protein interaction matrix is

increased, however, these data are not always available. PCMs

can be used to iteratively fill this matrix in an active learning

framework, improving model quality [46]. It should be noted

that expansion of the data ultimately requires experimental

validation beyond only model predictions.

A second limitation is encountered when using PCMs on a

diverse set of proteins that cannot always be easily aligned (in

particular if different families are incorporated). Two poten-

tial mitigations can be considered in such cases, firstly a

manual assignment of relevant amino acids that make up

the ligand binding site. Secondly, a specific neural network (e.

g., learned embeddings [53,54]) can be trained to extract

protein descriptors from the sequence space.

A final limitation is that a massive increase in data can lead

to significant increases in training times. In particular this is

true for PCM, which uses massive ligand–target interaction

matrices when focusing on multiple proteins at once (such as

a superfamily). While GPUs speed up the training process,

this may not be sufficient. Feature selection can then be used

(e.g., on a representative subset of the full dataset) to decrease

the size of the full dataset to a more manageable amount of

data.

Conclusions
As the knowledge about compound-protein interactions

expands, the power of statistical modeling and PCM models

constructed on these data, increases. PCM models perform

best for specific research questions, such as affinity and

selectivity predictions of compounds acting on restricted

protein families. For larger more diverse datasets the quality

of specific predictions tends to be less precise. However, the

application area of PCM models continues to expand, as their

predictive power is shown in an increasing set of studies.

A typical application should be followed by experimentally

validating novel predictions by these models. Concepts such

as ensembling, scaffold-to-target investigation, as well as

deep learning implementations, increase the validity and

usefulness of PCM models. As neural network technology

continues to develop, more powerful applications of PCM

models in deep learning drug design are anticipated along

with novel forms to embed chemical and target information.
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Finally, as drug development is still a long and costly

endeavor, proper usage of PCM models can decrease the cost

and increase the success rate of the early design stages. The

increase in (publicly) available drug interaction data goes

hand in hand with deep learning methods able to handle

this data. Therefore, a combination of both deep learning and

PCM models shows a strong contender for early drug design

and should provide new insights and eventually new drugs.
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