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Both qualitative and quantitative modeling methods relating

chemical structure to biological activity, called structure-activity

relationship analyses or SAR, are applied to the prediction and

characterization of chemical toxicity. This minireview will discuss

some generic issues and modeling approaches that are tailored to

problems in toxicology. Different approaches to, and some facets

and limitations of the practice and science of, SAR as they pertain

to current toxicology analyses, and the basic elements of SAR and

SAR-model development and prediction systems are discussed.

Other topics include application of 3-D SAR to understanding of

the propensity of chemicals to cause endocrine disruption, and the

use of models to analyze biological activity of metal ions in toxi-

cology. An example of integration of knowledge pertaining to

mechanisms into an expert system for prediction of skin sensiti-

zation to chemicals is also discussed. This minireview will consider

the utility of modeling approaches as one component for better

integration of physicochemical and biological properties into risk

assessment, and also consider the potential for both environmental

and human health effects of chemicals and their interactions.

Key Words: structure-activity relationships (SAR); SAR science;

elements; models; prediction systems; issues in toxicology.

Why SAR?

Structure-activity relationships (SARs) are basic to toxico-

logical investigations. Biological properties of new compounds

are often inferred from properties of similar existing materials

whose hazards are already known. However, toxicologists to-

day are faced with the task of screening large numbers of

diverse chemicals in different media, for an increasing array of

toxicity endpoints, using limited resources and fewer animals.

Animal and in vitro testing are still considered essential to the

support of risk assessment and regulatory action, but are often

too costly and time consuming to be applied to the full range

of chemicals for which some level of toxicological screening is

necessary and desired. Computer-based modeling methods re-

lating chemical structure to qualitative biological activity

(SAR) and quantitative biological potency (QSAR) have been

applied in many diverse problem settings. The resulting models

are aimed toward the prediction and characterization of chem-

ical toxicity (Golberg, 1983; Haque, 1980; Hansch and Leo,

1995; Hermens and Opperhuizen, 1991; Kaiser, 1987; Karche

and De Villers, 1990; McKinney, 1985; Rand and Petrocelli,

1985). In addition, with accelerating trends toward improved

understanding of the chemical mechanisms of toxicological

endpoints and consolidation of toxicological data into data-

bases, there are enhanced opportunities to incorporate such

methods into existing toxicological investigations. Hence, it is

important for both those who plan to use SAR models and

those who plan to develop them to have a basic understanding

of how an SAR model is constructed, as well as to learn the

limits and potential of the technology.

This minireview is in large part a summary of material

provided in a continuing education course at the Society of

Toxicology 38th Annual Meeting in March 1999, entitled “The

Practice of Structure Activity Relationships in Toxicology,”

and it is not intended to be an exhaustive review of the subject

area. It will discuss some of the modeling approaches that are

tailored to issues in toxicology and will stress QSAR as a

valuable complement to experimental data and as a departure

point for further inquiry into molecular mechanisms. Examples

illustrate different approaches to, and some facets of, the prac-

tice of SAR as they pertain to current in vitro and in vivo

toxicology analyses. Topics include the science of SAR in the

context of toxicology and important elements for sound appli-

cation, special application of 3D SAR methods and ap-

proaches, use of models to analyze biological activity of metal

ions in toxicology, and the application of expert systems for

screening and prediction of toxicologic outcome. There is
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growing awareness (Conolly et al., 1999; McKinney, 1996) of

the importance of basic research on mechanisms of toxic action

of chemicals as a means for enhancing understanding and

providing a more rational basis for risk assessment. Structure-

based modeling approaches are one component for better in-

tegration of physicochemical and biological properties into risk

assessment.

Background

A structure activity relationship relates features of a chem-

ical structure to a property, effect, or biological activity asso-

ciated with that chemical. In so doing there can be both

qualitative and quantitative considerations. The fundamental

premise is that the structure of a chemical implicitly determines

its physical and chemical properties and reactivities, which, in

interaction with a biological system, determine its biological/

toxicological properties. The process of developing a SAR is

one of attempting to understand and reveal how properties

relevant to activity are encoded within and determined by the

chemical structure.

In the pharmaceutical and chemical industries, SARs have

long been used to design chemicals with commercially desir-

able properties. This has been particularly the case in the area

of drug design where chemicals with desired pharmacologic

and therapeutic activities are sought. In the environmental

health protection field, SAR is being used to predict ecological

and human health effects, with applications varying widely. It

is even being used to help industry design safer chemicals for

commercial use as a part of their desirable properties.

Why should toxicologists be interested in SAR? Toxicolo-

gists generally operate in the domain of single-chemical inves-

tigations within a particular biological system. SAR offers a

means for relating toxicological data across a spectrum of

chemicals, and possibly biological endpoints, illuminating as-

sociations that transcend the particulars of single-chemical

toxicological experiments, and conceivably revealing aspects

of toxicological mechanisms that can be generalized across

chemicals. When used in a predictive capacity, SARs have the

potential to reduce the need for property measurements and

animal testing, providing for more efficient screening of chem-

icals for a wide range of toxicity endpoints. This can ultimately

lead to better environmental health protection through strategic

application of limited resources aimed toward identifying the

greatest chemical hazards.

The Science of SAR

SAR resides at the intersection of biology, chemistry, and

statistics (Fig. 1). The focused linkage of these disciplines

brought about through SAR activities has permitted the devel-

opment of a research activity resembling the “science of SAR“

(Hansch, 1969; Hansch et al., 1989; Hermens, 1996; Topliss

and Edwards, 1979). In relating structure to activity, the goal of

SAR is to generalize across and outward from specific cases,

developing an understanding of what constitutes a class of

molecules that are active, what determines relative activity, and

what distinguishes these from inactive classes. Included under

the heading of SAR are activities ranging from the use of

heuristics and expert judgment, to considerations of similarity/

diversity of chemicals, to formal mathematical associations of

properties and activity measures. The fundamental assumption

in QSAR is that similar chemicals have sufficiently common

mechanistic elements so as to share a common rate-determin-

ing step and similar energy requirements for activity. It is

further assumed that differences in reaction rates will give rise

to observed differences in activity or quantitative potency. The

key is to identify aspects of structure pertaining to the rate-

determining, molecular-triggering event in the mechanism of

action for the chemical and biological actions of interest.

Hence, the mechanism of action is a guiding concept in deter-

mining both the groupings of chemicals suitable for study and

the molecular descriptors potentially most relevant to activity.

Ultimately, it is the linkage of SAR to mechanism that enables

a scientific rationale to be constructed to account for activity

variations in existing chemicals. This, in turn, provides the

most sound scientific basis for predicting the activity of new

and untested chemicals. Having stated the ideal case, we are

faced with the reality that many toxicity endpoints are com-

plex, often poorly understood and characterized, and not re-

solvable to the level of a common mechanism of action. To the

extent that we can resolve the toxicity problem, SARs may be

capable of global discrimination among different mechanisms,

e.g., categorizing by structural alerting fragments, and/or local

discrimination within a more well-defined, mechanism-based

class.

A good illustration of the former is provided by a recent

report of enhanced MultiCASE models, developed in collabo-

ration with the FDA, for predicting rodent carcinogenicity

potential for pharmaceutical databases (Matthews and Con-

trera, 1988). The classifications are based primarily on Multi-

CASE-identified structural alerting features of molecules, and

FIG. 1. SAR resides at the intersection of biology, chemistry, and statis-

tics.
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are potentially applicable to rough screening of a wide diver-

sity of chemical structures and mechanisms of carcinogenicity.

In contrast, a prominent example of a mechanism-based SAR

application that has impacted risk assessment is the modeling

of Ah receptor-binding capability of dioxin-like compounds,

including the structurally related polychlorinated dioxins,

dibenzofurans, and biphenyls, in particular. Extensive studies

by Safe and coworkers (1990, 1994) and others, demonstrating

rank order correlations between Ah-receptor binding and var-

ious measures of response, both in vivo and in vitro, were

effective in establishing a common mechanism of action for

these toxic responses. This, in turn, led to the development and

use of toxic equivalency factors (TEFs) to arrive at concentra-

tions of dioxin equivalents (TEQs) in human and ecological

risk assessments involving exposures to complex mixtures of

these compounds as they occur in real-world environments

(Van den Berg et al., 1998). In deriving TEF values, a variety

of available data, including from in vivo, in vitro, and QSAR

studies are usually weighed in using a tiered approach. This

overall approach is basically a relative potency-ranking scheme

in which the relative potency of each chemical is expressed as

some fraction of the potency of 2,3,7,8-tetrachlorodibenzo-p-

dioxin (TCDD). A mechanism-based SAR analysis was par-

ticularly important in recognizing the close structural resem-

blance of the “coplanar PCBs” to TCDD and their associated,

highly toxic properties (McKinney et al., 1981).

Elements of SAR

There are several important elements to keep in mind in

working toward the development of mechanistically based

SARs (Fig. 2). As indicated above, it is desirable, when pos-

sible, to develop a mechanistic classification of the biological/

toxicological activity of interest. This, in turn, determines the

most relevant chemicals, associated properties, and descriptors

to study, pertaining to the controlling/discriminating step(s) for

the activity of interest. In addition, there are descriptors that are

generically important for approximating the ability of a chem-

ical to reach the site of action; the most prominent example of

such a descriptor is the octanol/water partition coefficient

(Hansch and Dunn, III, 1972). Other ways of representing

molecules may extend beyond those based on 2D structure,

atoms and bonds, to those based on 3D structure, steric and

electrostatic fields. The latter are most appropriate if a recep-

tor-mediated mechanism is known or suspected. Finally, ap-

propriate methods of analysis are needed for relating the ac-

tivities and chemical structures of interest, which will depend

on the nature of the activity measure (e.g., qualitative versus

quantitative), and the extent to which the chemical mechanism

of action is understood (e.g., receptor-mediated), etc. The goal

is to strive at every step in the process to consider what is

chemically and biologically plausible, to reasonably constrain

the problem in these terms, and to derive models that have a

strong scientific rationale and basis for interpretation.

SAR Models

An SAR model is defined and limited by the nature and

quality of the data used in model development and is strictly

applicable only in relation to the data set that was used to

generate it, but that possibly has predictive capability within

some reasonable boundary outside that data set. In evaluating

an SAR model, it is important to define boundaries of appli-

cation, by considering what sorts of molecules, and range of

descriptor values, have activities that can be confidently pre-

dicted, and statistical measures of fit, significance, and robust-

ness. Models can also lead to mechanistic hypotheses that

guide future testing and validation. A process for model vali-

dation should test predictive capability, as well as explore the

boundaries for model application and challenge the mechanis-

tic hypotheses suggested by a well-constructed model.

SAR models are useful in research for purposes beyond

prediction. They can offer rationalization of activity variations

in existing data, argue for a common mechanism of activity

(and additivity of effect) for a series of chemicals (Richard and

Hunter III, 1996), identify outliers due to either experimental

error or alternative mechanisms (Lipnick, 1991), narrow a dose

range-finding experiment (by using a predicted dose as a first

estimate), serve as a metric for comparison of different bio-

logical endpoints (Hansch et al., 1995), and direct further

research. The ideal SAR model should consider sufficient

numbers of molecules for adequate statistical representation,

have a broad range of quantitative activities (orders of magni-

tude) or adequate distribution of molecules in each activity

class (active and inactive), and yield to mechanistic interpre-

tation (Hermens, 1996). In toxicology modeling problems, this

ideal is rarely encountered. For many toxicity endpoints of

interest, diverse chemical structures, lack of knowledge of

mechanisms, and large data gaps are more frequently the norm.

These limitations on our ability to construct “classical” QSAR

relationships, i.e., based on well-defined chemical classes, have

led to various attempts to develop “global” SAR prediction

FIG. 2. Important elements in developing mechanistic SARs.
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models for what are termed non-congeneric chemicals, i.e.,

large sets of structurally and mechanistically diverse chemicals

(for some reviews, see, e.g., Benfenati and Gini, 1997; Benigni

and Richard, 1996, 1998). Because SAR ultimately draws its

validity from linkage to mechanism, however, any success

achieved with these methods rests on the degree to which the

global models are able to discern and adequately represent the

mechanism-based SAR components of the larger data set

(Lewis, 1992; Richard, 1995; Wagner et al., 1995).

Prediction Systems

Two main types of commercial toxicity prediction systems

are currently available: the correlative or statistically based

programs and the rule-based expert systems (see Benfenati and

Gini, 1997; Chapter 6 in Hansch and Leo, 1995; and Richard,

1998a,b). Correlative systems, such as CASE/MultiCASE

(Klopman, 1984) and TOPKAT (Enslein, 1993), typically pro-

cess a large group of non-congeneric chemicals, without user

bias or prior organization, and attempt to extract SAR associ-

ations from the data by statistical means. The biggest drawback

of such systems is the ease with which a prediction is generated

versus the need for careful scrutiny of the results. Typically,

such methods are better at gross identification of “alerting”

classes than at discerning finer activity variations within these

classes. Rule-based systems, such as DEREK (Sanderson and

Earnshaw, 1991) and ONCOLOGIC (Woo et al., 1995), build

associations and generalizations from small groups of chemi-

cals, group similar-acting chemicals into classes based on

organic chemistry definitions and limited mechanistic under-

standing, and use expert judgment and mechanism-based ra-

tionale within the classes. The rule-based systems typically are

more limited in their application than the more correlative type

approaches, but they may offer greater chemical and biological

interpretableness for the chemicals they do predict.

3D-QSAR

Structure-activity methods that consider the 3D structure of

modeled compounds in spatial relation to one another are

collectively termed 3-dimensional QSAR (3D-QSAR) meth-

ods. These methods attempt to identify spatially-localized fea-

tures across a series of molecules that correlate with activity,

and represent requirements for ligand binding and complemen-

tarity to a postulated receptor binding site (Green and Marshall,

1995; Marshall and Cramer, III, 1988). These procedures ex-

tend the QSAR approach in 3 dimensions by choosing manu-

ally (Cramer III et al., 1988) or automatically (Jain et al.,

1994), one particular geometry for each modeled compound

and using the molecular scaffold (Cramer III, 1988), the phar-

macophore (Van Drie et al., 1989), and/or the molecular field

(Kearsley and Smith, 1990) method for superimposition.

The underlying assumptions of 3D-QSAR methods are as

follows:

● The modeled compound, and not its metabolites or other

transformation products, is responsible for the biological ef-

fect.

● The proposed or modeled conformation is the bioactive

one.

● All compounds are binding in the same way to the same

site.

● The biological activity is largely explained by enthalpic

processes (steric, electrostatic, hydrogen bonding, etc.).

● Entropic terms are similar for all compounds.

● The system is at equilibrium.

● Common solvent effects—diffusion, transport, etc.—ap-

ply to the studied molecules and thus are not considered.

Although enjoying much more extensive use in the area of

drug design, the process of 3D-QSAR (specifically as applied

in comparative molecular field analysis (CoMFA) will be de-

scribed here in the context of its limited applications in the area

of toxicology prediction. CoMFA is one of the earliest fore-

runners of current 3D-QSAR techniques, was developed from

1983–1987 (Cramer III and Bunce, 1987), continues to un-

dergo refinement, and remains one of the most widely used

3D-QSAR methods today. In CoMFA, non-covalent ligand-

receptor interactions are represented by steric (Lennard-Jones)

and electrostatic (Coulombic) interactions with the ligand. The

steric and electrostatic interactions of probe atoms with the

ligand are calculated at uniform grid points, then tabulated for

each molecule (row) in the series. The resulting matrix is

analyzed with multi variate statistics (partial least squares or

PLS), yielding an equation that relates the CoMFA field value

to the activity. This process also highlights those features of the

putative receptor that are being probed by the structure-activity

data set.

In general, the objective of this and other related 3D-QSAR

procedures is to place molecules with common alignments in a

3D grid (or region), calculate interaction values for each grid

point, and place the values for each point in a QSAR table.

Then create an equation, based on PLS regression, to describe

the relationship between the values and the reported activities,

verify the predictive ability of the QSAR by cross-validation

(and determine the optimal number of components), visualize

the final QSAR model by plotting coefficients in the corre-

sponding regions of space, and use the final QSAR equation to

estimate the biological activity for other new compounds not

included in the model.

Requirements for successful development of a 3D-QSAR

model include selecting appropriate compounds and biological

data to serve as the training set and identifying a useful and

meaningful alignment of the molecules for study. A general

guideline is that at least 20 compounds are required to derive

a QSAR, although useful QSARs have been obtained with as

few as 7 compounds in the model. The quality and choice of

biological data to be modeled is critical to successful develop-

ment of a model. The range and distribution of biological data
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are also important, with a normal distribution of data across as

wide a range of activities as possible (minimum of 3 log units).

The initial challenge is to choose structural conformers as close

to the actual bioactive conformers as possible. In the absence

of information on the bioactive conformer, default geometry

optimization routines are typically employed, which determine

a minimum energy conformation. The goal of the alignment

procedure is then to superimpose conformers in such as way as

to accurately reflect a common ligand-binding orientation to

the receptor. Since actual bioactive conformers are seldom

known, it has been useful to assume that ligands, regardless of

chemical composition, bind in conformations and orientations

that present similar steric and electrostatic potential patterns to

the target receptor. This is the conceptual basis of a “pharma-

cophore” (Ariens, 1966), which is defined as the critical 3D

arrangement of ligand-functional groups responsible for creat-

ing these patterns complementary to the target site(s). The

alignment process orients a given molecular conformation in

3D-space relative to all the other molecules in the set. It is

extremely important that this be done in a self-consistent

manner since differences in field values must reflect structural

variation. This may mean, in some cases, using conformations

that are not necessarily of lowest energy. Alignment tools (see

Klebe et al., 1994 for a discussion) that have been used range

from simple methods such as RMS fit, field fit, and Multifit

methods to more sophisticated methods such as SEAL and

Receptor/DISCO.

After determining the appropriate alignment of molecules

for comparison, the 3D-QSAR fields are evaluated over a

region usually defined as the “atoms” postulated to comprise a

receptor site of known geometry. Steric and electrostatic fields

are most often used for such purposes and are computed with

a “probe atom” placed at the intersections of a 3D lattice. It is

also possible to define a variety of other fields in 3D-QSAR

that can reflect such things as partitioning and reactivity prop-

erties of molecules, such as HOMO/LUMO fields, polarizabil-

ity grid fields, and hydrophobic fields.

Several statistical tools (see, for example, Cramer III, et

al., 1988) are used to analyze 3D-QSAR parameters to

arrive at the final QSAR model and to examine the stability

of the derived equation. These tools include cross-validation

to examine the internal predictability of the model, cross-

validated r
2

(i.e., q
2
) to estimate the variance predicted by

the model, and bootstrapping to test the stability of QSAR

numerical values. An important aspect of the modeling

process that aids in evaluation and interpretation is the

graphical representation of the 3D-QSAR results. Since

each coefficient in a 3D-QSAR equation corresponds to a

field type and a 3D coordinate in the region, the 3D-QSAR

coefficients can be graphically displayed as scatter or con-

tour plots. The fields may also be color coded according to

their level of contribution to the model (e.g., positive or

negative), to aid in interpretation of the model and to

communicate the nature and role of specific structural prop-

erties in the models. The goal is to ultimately use the final

QSAR equation to make predictions, noting the field points

that are outside of the model’s highlighted graphical regions

requiring extrapolation (i.e., novel structural space). Suc-

cessful 3D-QSAR models in the area of toxicity prediction

have primarily centered on endpoints known to be receptor-

mediated. Examples include models for estrogen, androgen,

and dioxin receptors (Waller et al., 1996b,c; Waller and

McKinney, 1995), associated enzyme induction (Waller and

McKinney, 1992), and specific P-450 bioactivation activi-

ties (Waller et al., 1996a). Graphical representation of the

estrogen receptor binding CoMFA model is shown in Figure

3 (A and B), with steric and electrostatic field contour plots

(with estradiol used as the template structure for alignment)

FIG. 3. The template structure is estradiol and the target property for the

CoMFA model being displayed is estrogen-receptor binding affinity. (A) Steric

fields: negative values represent regions (yellow contours appearing above and

below the plane of the phenolic A-ring portion of the molecule) of space where

steric bulk should be removed relative to the template structure and positive

values (green contours in the vicinity of the D-ring) suggest that steric bulk

should be kept or enhanced. (B) Electrostatic fields; red contours appearing on

either end of the molecule (off A- and D-rings) designate areas where negative

charge appears to be beneficial to binding, whereas blue contours suggest that

partial positive charge is desired.
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indicating areas of positive and negative contributions of

steric bulk and areas of positive or negative charge.

3D-QSAR has been shown to be useful in the identification

of potential toxicants, particularly for activities known to be

receptor-mediated or involving specific binding proteins. 3D-

QSAR holds additional promise as a means to infer and better

understand the specific molecular requirements for the receptor

interaction. Limited data and understanding relative to recep-

tor-mediated toxicities and the necessity for rigorous confor-

mational analysis and superposition analyses (alignment prob-

lem) are presently hampering large-scale application of 3D-

QSAR models as predictive tools. As toxicological

understanding at the molecular level progresses and the com-

putational tools are further developed and validated, rapid and

accurate predictions of certain toxicological activity based on

3D molecular structure will fulfill more of its current promise.

Application to Metals

The study of the biological activities of organic compounds,

which encompass a large proportion of drugs and environmen-

tal chemicals, have often applied QSAR methods and ap-

proaches. In addition, much of our present day knowledge and

understanding of mechanisms by which foreign chemicals af-

fect biological systems is derived from studies with organic

compounds. This work has benefited from SAR-based ap-

proaches and has led to some fundamental principles that help

us to understand and sometimes predict the biological effects

of a given organic chemical. Two basic approaches have been

particularly helpful in guiding our ability to predict biological

activities of organic compounds. These include recognizing

structural similarities to compounds known to be important in

intermediary metabolism and related life-giving processes (i.e.,

concepts of lethal synthesis and antimetabolites [Peters,

1963]), discerning specific actions at discrete pharmacological

receptors (i.e., the concept of pharmacophores and toxico-

phores discussed earlier), and anticipating nonspecific effects

based on physicochemical properties and reactivities of mole-

cules. A special case of the last is the covalent binding hypoth-

esis in which chemically reactive substances are assumed to

react nonenzymatically with cellular macromolecules such as

proteins and nucleic acids.

In attempting to extend the above considerations to metal

compounds (Hanzlik, 1981), one is faced with a much more

limited knowledge about the normal physiological functioning

of metals in biological systems and the considerably greater

range of chemical properties and reactivities offered by metal

compounds of various types. In addition, there has been some

success in drawing parallels between the biochemical toxicol-

ogy of organic and inorganic chemicals based on key chemical

properties or processes that may be common to both groups.

These include the relationship between bonding and binding,

the ability of metals to function as electrophilic species with

“alkylating-like” properties, the relative importance of metal

ion size versus charge, and the role of metals as “antimetabo-

lites” in isomorphous interchange processes. The potential of

3D-QSAR methods to study isomorphous interchange pro-

cesses involving metal ions is of interest. In addition, metal

compounds can act as initiators or catalysts in vivo, and can be

involved in complexing and redox processes in absorption,

storage, metabolism, and excretion.

Recent studies (Newman et al., 1998) using metal-ligand

binding characteristics to predict metal toxicity and the devel-

opment of quantitative ion character-activity relationships

(QICARs) are showing promise as a screening approach and in

situations analogous to those in which QSARs are being ap-

plied. Since the major focus in pharmacology and to a large

extent in human toxicology has been on organic drugs and

poisons, QICARs have not been well developed. In addition,

chemical speciation complicates prediction because several

metal species usually are present simultaneously and the bio-

availability of each is ambiguous. However, some of this

ambiguity can be removed by judicious application of the free

ion-activity model (FIAM). This model is an extension of the

free ion-hypothesis in which the bioactivity of a dissolved

metal is correlated with its free ion concentration or activity.

In recent work (Newman et al., 1998), inter-metal trends in

toxicity were successfully modeled with ion characteristics

reflecting metal binding to ligands associated with a wide range

of effects. In general, models for metals with the same valence

(i.e., divalent metals) were better than those combining mono-,

di-, and trivalent metals. Ion characteristics that were most

useful in QICAR model construction included the softness

parameter and absolute value of the log of the first hydrolysis

constant. The softness index quantifies the ability of the metal

ion to accept an electron during interaction with a ligand. It

reflects the importance of covalent interactions relative to

electrostatic interactions in determining inter-metal trends in

bioactivity. Interestingly, softness or molecular polarizability is

often an important factor in molecular recognition and binding

processes for organic compounds. The hydrolysis constant

reflects the tendency for a metal ion to form a stable complex

with intermediate ligands such as O donor atoms in biomol-

ecules. There is not a clear counterpart for this on the organic

chemical side, and it appears to be a distinctive feature that can

be important in determining the relative bioactivity of metals.

The first stable reduced state also contributed substantially to

several of the 2-variable models. Most models were useful, for

predictive purposes, based on an F-ratio criterion and cross-

validation, but anomalous predictions did occur if speciation

was ignored. The importance of speciation may have con-

founded attempts to model simple mixtures in complex media.

In these cases, quantitative attempts to predict metal interac-

tions in binary mixtures, based on metal-ligand complex sta-

bility, were not successful.

There are several resolvable issues that need further atten-

tion before the QICAR approach has the same general useful-

ness as the QSAR approach. These issues include development
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and testing of more explanatory variables, careful evaluation of

ionic qualities used to calculate explanatory variables, better

understanding of models capable of predicting effects for

widely differing metals (e.g., metals of different valence

states), effective inclusion of chemical speciation, examination

of more effects, and assessment of the applicability of QICARs

to complex phases such as sediments, soils, and food.

Application of Expert Systems

Allergic contact dermatitis is a cell-mediated immunological

response to chemicals that contact and penetrate the skin. It is

the most common occupational skin disease and represents a

major non-occupational, environmentally related problem. Al-

lergic contact dermatitis is a prominent pathological condition

in which understanding of the chemistry has been shown to be

the key to understanding the various elements of the toxicity

(Ashby et al., 1995; Kimber, 1996; Lepoittevin and Berl,

1996). Chemical reactions and interactions are involved

throughout the process, beginning with the crossing of the

cutaneous barrier (mainly controlled by the physicochemical

properties of the allergen), through the formation of the hapten-

protein complex (in which chemical bonds are involved), or

during the recognition process between the antigen and the

receptors on T lymphocytes (involving the rapidly developing

area of supra molecular chemistry).

To cause sensitization, a chemical has to penetrate the skin,

where it may be metabolized, and subsequently react with

Langerhans cell surface proteins to form new chemical struc-

tures that are recognized as foreign. Thus, it might be antici-

pated that SAR approaches and considerations could be par-

ticularly useful in understanding and predicting the relationship

between such contact allergic properties of chemicals and their

molecular structure. Important chemical factors in contact sen-

sitization include molecular properties affecting bioavailability

(appropriate molecular size, polarity, and hydrogen bonding to

bring about skin penetration, slow transit, and initiation of

binding ), chemical stability (sufficient to reach viable tissues

of the skin in a reactive form), and protein reactivity (to form

stable bonds with proteins either directly or via metabolic

activation to, usually, electrophilic species). Reactive chemical

species shown to be important include acylating/alkylating/

arylating agents, Michael electrophiles, aldehydes and related

carbonyl reagents, free-radical generators, and thiol exchange

agents. In view of the previous discussion on the ability of

metals to function as electrophilic species with “alkylating-

like” properties, it should not be surprising to find that certain

metals or metal salts can lead to contact hypersensitivity or

dermatitis. This supports the view that metal coordination

complexes can be sufficiently stable, and the protein modifi-

cation sufficiently important, to lead to allergy.

In addition to the nature and reactivity of certain chemical

groupings in initiating activity, the compatibility of spatial

geometry can also be an important factor contributing to struc-

ture-activity relationships, especially in studies of cross-allergy

among structurally related families of chemicals. Receptor

molecules are typically highly selective with respect to mole-

cule size and shape, and molecules must have similar 3D

characteristics to be recognized by true protein bioreceptors.

This suggests a possible role for 3D-QSAR approaches in

studying the cross-allergic properties of structurally related

allergens.

Modeling of contact hypersensitivity is an area where both

rule-based and correlative SAR methods have been applied

with some success (Ashby et al., 1995; Barratt et al., 1994a,b;

Graham et al., 1996; Payne and Walsh, 1994). Skin sensitiza-

tion databases are available that are searchable by chemical

structure, permitting quick identification of structural analogs

and easy access to their associated skin sensitization data. This

in turn permits one to assess the skin sensitization (predictive

testing) potential of chemicals (whole or as substructures) and

provides a basis for building QSAR models and using SAR

approaches in risk assessment. This can be particularly impor-

tant since currently no validated, regulatory accepted, in vitro

methods are available for assessing the skin sensitizing poten-

tial of chemicals, although methods that can be useful in

fundamental research have been described (Hauser and Katz,

1988). In the absence of in vitro methods, rule-based systems

like DEREK can serve as a first step in a strategic approach for

screening contact allergens and for prioritization of further

testing. In addition to classifying chemicals as potential sensi-

tizers or not, more work is needed to derive QSAR models that

also have the ability to assess the relative potency of chemical

allergens.

DEREK

It has been known for some time that chemical contact

allergens are capable of reacting with skin proteins either

directly or after appropriate biochemical transformation. The

correlation of protein reactivity of chemicals with their skin

sensitization potential is well established (Dupuis et al, 1982;

Lepoittevin et al, 1998). At present, it is not possible to predict

relative sensitization potency on the basis of physicochemical

properties alone. However, one expert rulebase system is avail-

able that correlates the structural alerts for protein reactivity of

chemicals with their skin sensitization potential. DEREK (an

acronym for “deductive estimation of risk from existing knowl-

edge”) is a program that embodies both a controlling program

and a chemical rulebase (Barratt et al., 1994a,b). In the ideal

case, structural alerts used to identify potential sensitizing

chemicals need to include those structural features that deter-

mine skin penetration and metabolism (both activation and

deactivation), chemical reactivity, and immune recognition.

However, DEREK, as presently constituted, places heavy em-

phasis on the chemical reactivity component.

Prior to conducting any preclinical testing on a new ingre-

dient, the chemical can be evaluated for skin sensitization
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alerts using DEREK; this expert system makes it is possible to

evaluate a large number of chemicals without preclinical test-

ing. Thus, the identification of skin sensitization structural

alerts can be extremely helpful in guiding the product devel-

opment process. It is important to note, however, that some

molecules may contain a structural alert, but may not be skin

sensitizers, perhaps because their skin permeability is too low

or they do not form an immunoreactive moiety within the

epidermis. In addition, the fact that the chemical does not

trigger a skin sensitization alert in DEREK doesn’t guarantee

that the chemical is not a sensitizer, since its chemistry may be

new to DEREK. In spite of its current limitations, the use of

DEREK provides a powerful first step in a strategic approach

to the identification of contact allergens.

Structure Database

In addition to using DEREK, a skin sensitization database

has been developed that is searchable by chemical structure.

The system is designed so that structural analogs and their

associated skin sensitization test data can be located in min-

utes. The skin sensitization data has been gathered from mul-

tiple sources. Guinea pig and local lymph-node data on known

skin sensitizers have been obtained from the published litera-

ture (for example Andersen and Maibach, 1985; Ashby et al.,

1993; Cronin and Basketter, 1994). Skin sensitization data

have, in addition, been obtained from public databases such as

TSCATS and IUCLID. Currently, this skin sensitization data-

base contains approximately 3500 chemicals that are associ-

ated with skin sensitization test data. A relational database is

used to store the skin sensitization data.

For new ingredients, the structure or structural fragments are

used to search the skin sensitization database for structural

analogs. Depending on the similarity between the unknown

compound and strength of the skin sensitization data associated

with the analogs identified in the database, valuable informa-

tion can be provided to the risk assessment process. Chemical

structure searching provides an unambiguous method for the

identification of novel compounds as well as structural analogs

that, when associated with skin sensitization test data, can be

used to predict the skin sensitization potential of the chemical.

The use of such structure activity relationships has significantly

reduced development times, test costs and animal usage.

CONCLUSION

Given the huge range and variability of possible interactions

of chemicals in biological systems, it is highly unlikely that

SAR models will ever achieve absolute certainty in predicting

a toxicity outcome, particularly in a whole-animal system.

However, in different degrees, this caveat applies to any ex-

perimental or computational model requiring extrapolation

among levels of biological organization (e.g., biochemical to in

vitro to in vivo) or among species. Much more can be done to

improve the scope and utility of SAR approaches by improving

the linkages among the various scientific elements of the SAR

problem: chemical, biological, and statistical. Certainly, new

technologies to refine biofunctional understanding (e.g., DNA

arrays to classify chemicals according to gene expression path-

ways) and better understanding of the mechanistic elements

pertinent to an expression of toxicity in whole systems will be

useful for refining SAR analyses. In addition, more effective

ways are needed to make toxicity databases widely accessible,

and bring all relevant information to bear, derived from both

expert judgment and quantitative analysis, on the prediction

problem.

SAR is an extremely multi-disciplinary field, potentially

applicable to a wide range of problems and endpoints. In the

environmental and human health area alone, there have been a

number of applications for pollution prevention, toxicity

screening, and risk assessment (for a review, see Walker,

2000). SAR work has also been useful in guiding mechanistic

studies and predicting endocrine-disrupting activities, the en-

vironmental fate and ecological effects of chemicals, and en-

vironmental-human health interactions (Walker, 2000). Al-

though such broad application potential is desirable and useful,

it has also increased the opportunity for the misuse of such

methods and approaches. Toxicology is entering a new era of

mechanistic emphasis (Stevens and Marnett, 1999). Because

SAR ultimately draws its validity from linkage to mechanisms,

a mechanism-based approach has been emphasized that slowly

builds up a database and scientific understanding of the inter-

action of chemicals with various forms of life and life-giving

processes at the molecular level. In this regard, SAR, in con-

junction with the techniques of physical organic chemistry and

biochemistry, will further advance our scientific understanding

of life-giving processes as well as produce practical benefits to

society in terms of improved health outcomes.
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