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Historical Background

The cytochromes P450 (P450s or CYPs) form a
superfamily of enzymes found in organisms from
archaea and bacteria through to man (Munro
et al. 2007). P450s were discovered as a conse-
quence of their unusual UV-visible absorbance
properties, originating from their heme cofactor,
which is bound to the protein through a cysteine
sulfur in its thiolate form (Denisov et al. 2005).
This heme iron coordination state gives rise to an
absorption band at ~450 nm when the P450 heme
iron is in the reduced (ferrous) state and bound to
the inhibitor carbon monoxide (CO). This absor-
bance spectrum explains the title P450
(or pigment at 450 nm). Early studies were done
independently by Martin Klingenberg and by
David Garfinkel (Klingenberg 1958; Garfinkel
1958). This P450 spectrum was first reported by
Klingenberg, who prepared rat liver microsomes
and then reduced the sample with NADPH
(or dithionite) and bubbled it with CO. The P450
spectrum was revealed as an absorption peak at
450 nm in an absorbance difference spectrum
produced by subtraction of the reduced (FeII)
spectrum from the CO-bound (FeII-CO) spectrum
(Klingenberg 1958). Subsequent studies by
Tsuneo Omura and Ryo Sato demonstrated that
the P450s bind heme and that the retention of
cysteine thiolate coordination in their FeII-CO
state typically leads to a shift of the heme Soret
maximum to ~450 nm (Omura and Sato 1964;
Fig. 1a). Moreover, through studies to solubilize

membrane-associated P450 from microsomal
membranes, Omura and Sato identified a new
form of the protein with its FeII-CO Soret band
at ~420 nm (hence P420). The P420 FeII-CO
spectral state is common to P450s that are struc-
turally disrupted or otherwise denatured and is
likely due to protonation of the cysteine thiolate
to the thiol form (Perera et al. 2003). The process
was shown to be reversible in selected P450
enzymes following addition of a P450 substrate
or by changing solution pH (Ogura et al. 2004;
Dunford et al. 2007; Driscoll et al. 2010). P450s
also typically show other characteristic changes
on binding (i) substrates and (ii) heme iron-
coordinating inhibitors. In case (i), P450 substrate
binding often displaces a weakly bound “distal”
water ligand that ligates the heme iron on the
opposite face to the cysteine thiolate. This induces
electronic reorganization in the ferric heme iron
3d orbitals and a switch from a low-spin to a high-
spin state that is accompanied by a heme Soret
shift from ~418 to ~390 nm. In case (ii), inhibitors
such as azole drugs (e.g., ketoconazole,
econazole) and nitric oxide displace the distal
water and bind tightly to inhibit catalysis, while
inducing a Soret band shift to longer wavelength
(~425 nm and 434 nm, respectively) (Quaroni
et al. 2004; Driscoll et al. 2010).

In early studies, P450s were shown to be
monooxygenases involved in the insertion of an
oxygen atom from dioxygen (O2) into substrates
including 17-hydroxy-progesterone (by bovine
P450c21, now known as CYP21A1) and
D-camphor (by Pseudomonas putida P450cam,
CYP101A1 (Cooper et al. 1963; Katagiri
et al. 1968). Subsequent research has revealed
that the P450s are found in almost all life forms,
including mammals (with 57 CYP genes in
humans), amphibians, fish, plants, algae, insects,
bacteria, and archaea (Crespi et al. 1991;
Heilmann et al. 1988; Fujita et al. 2004; Rodgers
et al. 1993; Ramaswamy et al. 2007; Mayer
et al. 1978; Belcher et al. 2014; Yano
et al. 2000). CYP genes have also been identified
in viruses, presumably obtained from infected
host organisms (Lamb et al. 2009). The number
of CYP genes identified was >35,000 as of April
2016 (Nelson 2016), and numbers continue to
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grow at a pace with new data emanating from
genome sequences. The P450s are now known
to have numerous roles across different life
forms, including metabolism and interconversion
of steroids (Yoshimoto and Auchus 2015), oxida-
tion of fatty acids and eicosanoids (Johnson
et al. 2015), drug and xenobiotic metabolism
(Guengerich 2006), synthesis of antibiotics
(Haslinger et al. 2014), catabolism of unusual
carbon sources in microbes (Hedegaard and
Gunsalus 1965), and synthesis of alkenes,
diterpenoids, and alkaloids (Rude et al. 2011;
Matsuba et al. 2015; Farrow et al. 2015).

Classification and Diverse Functions
of Cytochromes P450

The advent of genome sequencing resulted in the
identification of large numbers of new cyto-
chrome P450 (CYP) genes in organisms from all
the domains of life. Notable examples include
cow (Bos taurus) with at least 62 CYP genes
(Nelson 2015); Mycobacterium tuberculosis
H37Rv with 20 CYP genes, compared to

Mycobacterium leprae (which has a single func-
tional CYP gene and which has undergone exten-
sive gene deletion and decay, resulting in less than
half of the genome containing functional genes)
(Cole et al. 1998, 2001); the malaria mosquito
Anopheles gambiae with ~104 CYP genes (Holt
et al. 2002), tomato (Solanum lycopersicum) with
~457 CYP genes (including pseudogenes) (The
Tomato Genome Consortium (TGC) 2012; Nel-
son 2012); and ~111 CYP genes in Aspergillus
nidulans (Nelson 2007). Eukaryotes typically
have larger numbers of CYP genes than prokary-
otes. However, this is not always true, and the
genomes of the bacteria Streptomyces avermitilis
and Mycobacterium smegmatis have 33 and
39 CYP genes, respectively (Ikeda et al. 2003,
UCSC Microbial Genome Browser), while the
eukaryotic protozoan parasite Leishmania
donovani has only three P450s and the parasite
Trypanosoma brucei (and other Trypanosoma
species) may only have two CYP genes based on
current data (Nelson 2004; Verma et al. 2011).
S. avermitilis produces the antiparasitic com-
pounds the avermectins, and it was proposed that
around one third of its CYP genes are involved in

Cytochrome P450 (cyp), Fig. 1 UV-visible spectral fea-
tures of cytochrome P450. Panel (a) UV-visible spectra for
the heme (P450) domain of the Bacillus megaterium P450
BM3 enzyme (CYP102A1, ~10 mM) in its low-spin, oxi-
dized (FeIII) form with Soret maximum at 418 nm (black);
its dithionite-reduced (FeII) state with Soret maximum at
409 nm (red); and its reduced/CO-bound (FeII-CO) form
with a diagnostic “P450” peak at 449 nm (blue). Panel (b)
Typical substrate binding-induced heme spectral changes
observed during a substrate (arachidonic acid)-binding

titration of the BM3 heme domain (~10 mM). As substrate
binds (in the range from 0 to 25 mM), the ferric P450
undergoes a conversion from the low-spin form
(~418 nm, down arrow) to the near-fully substrate-bound,
high-spin form (~393 nm, up arrow). Intermediate spectra
at different substrate concentrations are shown, revealing
isosbestic points at approximately 406 nm and 465 nm, as
well as the development of a small peak at ~650 nm that is
characteristic of a cysteine thiolate-to-ferric high-spin
heme iron charge transfer transition
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synthesis of secondary metabolites (Ikeda
et al. 2003). The bacterium Escherichia coli is
devoid of CYP genes but has proven to be an
excellent expression system for the production of
P450 enzymes from both prokaryotes and eukary-
otes (Green et al. 2001; Gillam et al. 1993).

The burgeoning numbers of P450 enzymes
identified from gene sequences led to the compar-
ative analysis of the enzymes and their gene
sequences and to their classification into the
P450 superfamily – the first such attempt to clas-
sify related proteins according to their levels of
amino acid sequence similarity (Nebert
et al. 1987, 1991). P450s are classified into the
same family if they share �40% amino acid
sequence identity with other members of that
family, or into the same subfamily if they have
�55% amino acid sequence identity. Typically,
the substrate selectivity is similar for members of
the same family, with substrate specificity and
reactivity even more similar among subfamily
members. Using this system, the 57 human
P450s are classified into 18 different families
(CYPs 1–5,7,8,11,17–21,24,26,27,39,46 and 51)
and then into subfamilies (denoted A,B etc), with
further numbering indicating the specific identity
of the subfamily member. For example, CYP1A1
and 1A2 catalyze typical reactions including
benzo[a]pyrene 3-hydroxylation and caffeine
N3-demethylation, respectively. CYPs 4B1,
4F12 and 4F22 are lipid hydroxylases, catalyzing
lauric acid o-hydroxylation, arachidonic acid
o- and o-1 hydroxylation, and vitamin K
o-hydroxylation; while CYP51A1 is a member
of the sterol 14-alpha demethylases found across
eukaryotes, and which catalyze lanosterol
14a–demethylation en route to cholesterol biosyn-
thesis (Guengerich 2015). Plant P450s are cur-
rently classified in the CYP51,71–99 and
701–722 families, including P450s with functions
including linalool hydroxylation and epoxidation
(CYP71B31) in a monoterpene pathway in
Arabidopsis thaliana, multi-step oxidation of
ent-kaurenic acid in A. thaliana gibberellin syn-
thesis by CYP88A3 and A4, and CYP71AV1 in
the medicinal plant Artemisia annua, that converts
amorphadiene to artemisinic acid in the pathway
for synthesis of the sesquiterpene lactone and

leading antimalarial drug artemisinin (Schuler
2015). Bacterial and archaeal P450s are classified
in the CYP51, 101–299 and 1001–1050 families,
with prominent members being the Pseudomonas
putida D-camphor hydroxylase P450cam
(CYP101A1) and the Bacillus megaterium fatty
acid hydroxylase P450 BM3 (CYP102A1)
(McLean et al. 2015; Nelson 2009).

This classification system continues to be used,
although the large numbers of CYP genes being
identified present significant challenges in their
accurate assignments. However, other features of
P450s lead to simpler routes to different forms of
classification. A major schism occurs between
eukaryotic P450s and those from bacteria and
archaea. The eukaryotic P450s are almost exclu-
sively membrane associated, attached to either the
matrix side of the mitochondrial inner membranes
in animal P450s (mitochondrial P450s are not a
feature of plants and fungi) (Feyereisen 2006) or
to endoplasmic reticulum (ER) membranes
(Poulos and Johnson 2015). The 57 functional
human P450s (not including pseudogenes) consist
of 50 “microsomal” P450s located primarily in the
ER of liver and other tissues and 7 P450s in the
mitochondria of adrenal glands, gonads, liver,
kidney, and other sites. The adrenal mitochondrial
P450s are involved in the transformation of cho-
lesterol into pregnenolone (CYP11A1) and other
steroid oxidations (CYPs 11B1 and 11B2), with
CYPs located mainly in liver and kidney mito-
chondria having roles in 24-hydroxylation of vita-
min D3 and 27-hydroxylation of cholesterol in
formation of bile acids (CYP27A1),
24-hydroxylation of 25-hydroxyvitamin D3
(CYP24A1), and 1a-hydroxylation of
25-hydroxyvitamin D3 (CYP27B1) (Omura
2006). While the physiological function of the
final human mitochondrial P450 (CYP27C1)
remains uncertain, recent studies on zebra fish
and bullfrog CYP27C1 revealed that the enzyme
is a dehydrogenase that converts vitamin A1

(a rhodopsin and the precursor of 11-cis retinal)
into vitamin A2 (a porphyropsin and precursor of
11-cis 3,4-didehydroretinal). This causes a red-
shift in photoreceptor sensitivity and improves
the organisms’ ability to see and respond to near-
infrared light. The authors suggested one potential
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role for the human CYP27C1 ortholog may be in
retinoid biosynthesis in skin (Enright et al. 2015).

In contrast, the bacterial/archaeal P450s are
almost invariably soluble, cytoplasmic enzymes
that lack a membrane-spanning helix (McLean
et al. 2015). The eukaryotic P450s have an
extended N-terminal region (~30 to 50 amino
acids) that crosses the membrane with an ~20
hydrophobic amino acid helical segment that cor-
responds approximately to the ~3 Å span of the
hydrophobic core of the membrane (Andersen and
Koeppe 2007). This membrane “tethering” por-
tion precedes the catalytic core structure of the
P450 itself, as shown recently by the first crystal
structure of a membrane-bound P450 (the Saccha-
romyces cerevisiae sterol 14a-demethylase
CYP51A1) with its transmembrane helix intact
(Monk et al. 2014). P450s are directed to the
mitochondrion by a specific targeting
pre-sequence, which is removed by the matrix
processing protease, followed by integration of
the mature form of the peptide into the mitochon-
drial inner membrane and exposure of the cata-
lytic core of the P450 to the matrix (Omura 2006).
The microsomal and mitochondrial P450s also
use distinct redox partner proteins, as explained
in the Cytochrome P450 Redox Partner Systems
section below.

Although P450s are typically classified as
monooxygenases, they possess several different
catalytic activities dependent on the particular
P450 isoform and the substrate involved.
A typical P450 catalytic cycle shows how reduc-
tion of the P450 ferric heme iron to the ferrous
state allows dioxygen (O2) to bind the iron,
followed by a further reduction event and proton-
ation steps that generate the highly reactive com-
pound I (heme FeIV=O) species that ultimately
leads to oxygen insertion into the substrate
(Munro et al. 2013; Fig. 2). This is usually
shown as substrate hydroxylation, but in reality,
the P450s exhibit a much greater range of reactiv-
ities and have been described as “Nature’s most
versatile catalyst” (Coon 2005). Among the
numerous reaction types known to be catalyzed
by natural and engineered P450s are reduction,
decarboxylation, demethylation and dealkylation
(including N-, O-, and S-dealkylation),

dehydrogenation, epoxidation, N- and
S-oxidation, C-C bond cleavage and C-C and
C-O bond coupling, nitration, polycyclic aromatic
hydroxylation and epoxidation, cyclopro-
panation, intramolecular amination, oxidative
dehalogenation, deformylation of aldehydes, cis-
trans bond isomerization and molecular
rearrangements, aryl dehalogenation and O- and
N-dearylation, phosphatidyl choline hydrolysis,
and aldoxime dehydration. These and other P450
reactions are used in both catabolic and synthetic
reactions in P450s from a range of different organ-
isms (Guengerich 2001; Bernhardt and Urlacher
2014; Guengerich and Munro 2013; Munro
et al. 2007). P450s are crucial to mammalian
xenobiotic metabolism and steroid biosynthesis,
to the production of terpenoids (e.g., limonene
and pinene) and alkaloids (e.g., morphine, nico-
tine, and caffeine) in plants, and for the bacterial
catabolism of unusual compounds (e.g., camphor,
terpineol, and morpholine) as well as for oxidative
processes in the synthesis of several antibiotics
(e.g., teicoplanin, vancomycin, erythromycin,
and pikromycin). Examples of biomedically and
biotechnologically important P450 reactions are
described in the Biotechnological and Biomedical
Aspects of P450s section below.

Structure and Mechanism
of Cytochromes P450

The vast majority of P450s perform mono-
oxygenase reactions, catalyzing the reductive
scission of molecular oxygen (O2) and the inser-
tion of a single oxygen atom into a substrate
bound in the P450 active site, with the second
oxygen atom reduced to water according to the
scheme:

RHþ O2 þ 2e� þ 2Hþ ! ROHþ H2O

In this scheme, RH is the substrate and ROH is
the hydroxylated product. However, as described
in the Structure and Mechanism of Cytochromes
P450 section above, there are many other catalytic
outcomes possible in a P450 reaction. In addition,
the apparent simplicity of this scheme belies the
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complexity of the P450 reaction cycle, as illus-
trated in Fig. 2. This capacity of P450s to perform
regio- and stereo-specific oxygenation reactions
has led to great interest in the exploitation of
P450s for synthetic applications (e.g., in making
drug metabolites and steroids) (Girvan andMunro
2016). As a result, their mechanistic, structural,
and catalytic properties have been intensively
studied. Recent advances include the definitive

characterization of short-lived catalytic cycle
intermediate species, in particular the high-valent
iron-oxo compound I (Rittle and Green 2010).
Crucial to P450 reactivity is that the heme pros-
thetic group (heme b) is ligated by a conserved
proximal cysteine-thiolate. This facilitates cataly-
sis through its electron-donating character,
assisting dioxygen cleavage during the cycle.
Cysteine thiolate coordination also contributes to

Cytochrome P450 (cyp), Fig. 2 The P450 catalytic
cycle. The intermediates in the P450 catalytic cycle are
shown with heme iron colored to approximate the color of
the particular species. In red at the top is the resting (FeIII)
low-spin form of the P450, axially coordinated by cysteine
thiolate and the oxygen of a water molecule. Binding of the
substrate (RH) displaces the distal water ligand, usually
converting the heme iron to the high-spin form. This spe-
cies is reduced by a redox partner to the FeII form, which
binds dioxygen, forming the ferric-superoxo (FeIII-O2)

�

complex. A further single electron reduction forms the
ferric-peroxo complex (FeIII-O2)

2�, which is then proton-
ated twice in processes involving conserved active site
amino acids as proton donors. The first protonation pro-
duces the ferric-hydroperoxo (FeIII-OOH)� compound

0 form. This species is further protonated, resulting in
dehydration of an unstable intermediate to produce the
highly reactive (ferryl-oxo, porphyrin radical cation) com-
pound I (FeIV=O). Compound I abstracts a proton from the
substrate, forming compound II (ferryl-hydroxo) and a
substrate radical (R●). The substrate radical reacts with
compound II and is oxidized (hydroxylated in this case).
In the final step, the product (RH) dissociates, and a water
molecule returns as the sixth ligand to the heme iron. The
brown double-headed arrow across the cycle shows how
hydrogen peroxide (H2O2) can be used to convert
substrate-bound P450 directly to compound 0. This perox-
ide shunt mechanism is used naturally by CYP152 family
P450s, including the alkene-producing OleTJE (Rittle and
Green 2010; Belcher et al. 2014)
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the distinctive UV-visible spectral properties of
P450s (Fig. 1). In the resting form, the ferric
(FeIII) P450 heme iron typically has water bound
as the sixth (axial) ligand at the distal face. Sub-
strate binding usually displaces the distal water,
resulting in an electronic reorganization of the
heme iron d-orbitals from a low-spin (S = 1⁄2) to
a high-spin (S = 5⁄2) form. This is usually accom-
panied by an increase in the heme iron redox
potential, which favors heme iron reduction.
Two single electrons are supplied consecutively
by redox partners. These reduce the heme iron
firstly to the ferrous (FeII) form (facilitating bind-
ing of dioxygen to form a ferric-superoxo species)
and then to the ferric-peroxo species. Two succes-
sive protonation events produce first a ferric
hydroperoxo species (Compound 0) and then the
highly reactive ferryl-oxo (FeIV=O) porphyrin
radical cation (Compound I) species following
the loss of a water molecule. Compound
I abstracts a proton from the substrate, forming a
substrate radical and the ferryl-hydroxy
(FeIV=OH) species (compound II). The substrate
radical attacks compound II by the radical
rebound mechanism (Groves 2006), resulting in
the formation of a transiently heme-bound oxy-
genated product (shown as hydroxylation in
Fig. 2) that rapidly diffuses out from the active
site and is replaced by a water molecule that
coordinates the heme iron to complete the cycle
(Denisov et al. 2005). An alternative mechanism
to the canonical P450 catalytic cycle is the perox-
ide shunt pathway that bypasses the need for NAD
(P)H-derived electrons by using H2O2 (or organic
oxidants, such as iodosylbenzene or cumene
hydroperoxide) (Fig. 3). This mechanism is used
naturally by some P450s, most notably by the
“peroxygenases” in the bacterial CYP152 family,
where substrate-bound, ferric P450 is converted to
compound I (via compound 0) by H2O2 in
enzymes such as the fatty acid decarboxylase
OleTJE (CYP152L1) (Belcher et al. 2014).

The structural features of P450 enzymes are
intensively studied in order to understand, e.g.,
how substrates are bound and oxidized, how
inhibitors can be designed, and how P450s can
be engineered for novel activities. There are cur-
rently over 100 unique P450 crystal structures

deposited in the Protein Data Bank (PDB, www.
rcsb.org), and recent years have seen large
increases in the numbers of structures solved for
mammalian and other eukaryotic P450 enzymes.
The first structurally characterized P450 was the
camphor hydroxylase P450cam (CYP101A1)
from Pseudomonas putida. This is possibly the
most extensively characterized P450 and has pro-
vided many important insights into P450 struc-
ture/folding and catalytic mechanism (Poulos
et al. 1987; Raag and Poulos 1991; Raag
et al. 1991). The second P450 structure solved
was that of the P450 (heme) domain of the natural
P450-cytochrome P450 reductase fusion fatty
acid hydroxylase P450 BM3 (CYP102A1, BM3)
from Bacillus megaterium (Ravichandran
et al. 1993). The P450 BM3 heme domain is
structurally related to mammalian CYP4 family
fatty acid hydroxylases and also catalyzes fatty
acid hydroxylation (Miura and Fulco 1974).
These prokaryotic enzymes continue to be impor-
tant model systems in the P450 superfamily, with
BM3 (in particular) proving to be a popular sys-
tem for protein engineering studies aimed at the
introduction of novel catalytic activities (Butler
et al. 2013). The P450s share a common structural
fold that is well conserved regardless of differ-
ences in amino acid sequences, with a triangular
prism shape and the heme buried in the center of
the molecule (Fig. 3, central image). P450s are
predominantly a-helical proteins with a smaller
amount of b-sheets. The active site is a substrate-
binding pocket of variable size and chemical char-
acter (suited to the relevant substrate(s)) above the
heme prosthetic group on the opposite face from
the thiolate ligand. Conserved secondary struc-
tural elements such as the substrate-binding and
heme-binding regions, the BC- and FG-helix
regions, and the I-helix have subtle variations in
their amino acid composition, positions, flexibil-
ity, and dynamics that contribute to the diversity
of P450 substrate types recognized and the enzy-
matic reactions catalyzed, despite the overall sim-
ilarities in P450 structural fold (Poulos and
Johnson 2015). Unlike their soluble prokaryotic
counterparts, eukaryotic P450s are integral mem-
brane proteins with a single N-terminal transmem-
brane helical region that tethers them to
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Cytochrome P450 (cyp), Fig. 3 Diversity of P450 redox
partner systems. The central panel shows a cartoon repre-
sentation of the secondary structure of a typical P450
enzyme (the cholesterol oxidizing CYP125A1 from
M. tuberculosis), with alpha-helices in yellow, beta-sheets
in green and the heme prosthetic group shown with car-
bons as purple spheres, pyrrole nitrogens in blue, and
oxygens of heme propionates in red. The central iron
atom of the heme is shown in orange. The I-helix is
shown in blue, and the FG region (important to substrate
recognition) is in red. The P450s can obtain electrons from
a variety of proteins and chemicals. (i) A class I redox
system with electrons donated by NAD(P)H and passed
through an FAD-containing reductase and a 2Fe-2S-
ferredoxin, as typified by P450cam (CYP101A1) and its
putidaredoxin reductase and putidaredoxin partners
(Sevrioukova et al. 2010). (ii) A different class I-type
system using a 3Fe-4S ferredoxin, as seen in the case of
the M. tuberculosis sterol demethylase CYP51B1 and its
ferredoxin partner (Rv0764c, Fer) (McLean et al. 2006).
(iii) Another class I-type system using a 4Fe-4S ferredoxin,
as seen for fatty acid hydroxylation by B. subtilis P450
BioI (CYP107H1) driven by a NAD(P)H-dependent,
FAD-binding reductase (Green et al. 2003). (iv) The class
II redox system, with electrons donated by NADPH and
passed through FAD and then FMN cofactors in cyto-
chrome P450 reductase (CPR or POR) to the P450.
A similar system is seen in the cineole oxidizing P450cin
(CYP176A1) from Citrobacter braakii, where NADPH-
dependent electron transfer to the P450 occurs through a

FAD-binding flavodoxin reductase and a FMN-containing
flavodoxin (Kimmich et al. 2007). (v) The direct reduction
of two molecules of nitric oxide (NO, one of which is
bound to the P450 heme iron) by NAD(P)H to form N2O,
as exemplified by the CYP55A1 nitric oxide reductase
from Fusarium oxysporum (Shoun et al. 2012). (vi) P450
heme iron reduction by NAD(P)H via FMN and 2Fe-2S
cofactors contained in the phthalate dioxygenase
reductase-like (PDOR) module of CYP116B subfamily
P450-PDOR fusion proteins. An example is the
thiocarbamate herbicide oxidizing CYP116B1 from
Cupriavidus metallidurans (Warman et al. 2012). (vii)
Direct conversion of substrate-bound P450 ferric heme
iron to the compound 0 (ferric-hydroperoxo) form by
H2O2, as seen naturally in P450 peroxygenases such as
the fatty acid decarboxylase OleTJE (CYP152L1) (Belcher
et al. 2014). (viii) P450 reduction by cytochrome b5 (itself
reduced by a NADH-dependent cytochrome b5 reductase)
in eukaryotic P450 systems, as exemplified by hydroxyl-
ation of 4-propylybenzoic acid by fungal CYP5150A2.
Due to its positive potential, it is likely that b5 delivers
only the second electron required for oxidative catalysis,
with the other electron likely derived from NADH through
the FAD-binding b5 reductase (Ichinose and Wariishi
2012). (ix) A non-NAD(P)H-dependent archaeal redox
partner for S. acidocaldarius CYP119A1 that uses pyruvic
acid as an electron donor with a CoA-dependent reductase
and a 7Fe (4Fe-4S and 3Fe-4S cluster-containing) ferre-
doxin delivering electrons to facilitate lauric acid hydrox-
ylation (Puchkaev et al. 2002)
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endoplasmic reticulum or mitochondrial mem-
branes. This presents problems for expression
and purification of intact eukaryotic P450s in het-
erologous hosts and particularly with respect to
isolating P450 samples that can be crystallized for
structural analysis. However, these issues have
been overcome by the deletion of the N-terminal
transmembrane regions in a number of eukaryotic
P450s, usually together with introduction of addi-
tional amino acid mutations that further improve
solubility and/or expression of the truncated
P450s. The first eukaryotic P450 crystal structure
solved was for the Oryctolagus cuniculus (rabbit)
progesterone 21-hydroxylase CYP2C5 (Williams
et al. 2000), and a number of other eukaryotic
P450s have been solved using similar strategies,
e.g., rabbit CYP2B4 (Scott et al. 2003). A major
breakthrough in eukaryotic P450 crystallography
came recently with the determination of the first
full-length (membrane-bound) P450 structure of
the sterol 14a-demethylase (CYP51F1, also
known as ScErg11p) from Saccharomyces
cerevisiae that catalyzes the first step in ergosterol
biosynthesis. This structure was obtained from
CYP51F1 endogenously overexpressed in
S. cerevisiae with an engineered His-tag to enable
efficient purification. The CYP51F1 structure
shows a N-terminal amphipathic helix at the lumi-
nal side of the membrane, connected to a trans-
membrane helix that exposes the P450 catalytic
unit on the cytoplasmic side of the lipid bilayer.
The P450 substrate-binding region is orientated to
face the membrane, from which it likely accesses
its natural hydrophobic substrate (lanosterol)
(Monk et al. 2014).

Cytochrome P450 Redox Partner
Systems

The majority of P450 enzymes require redox part-
ner proteins for functionality. The redox partners
transfer electrons derived from NAD(P)H to the
substrate-bound P450 at two different steps in the
catalytic cycle (Fig. 2). In a productive reaction,
the first electron is transferred from the redox
partner to the ferric, substrate-bound form reduc-
ing it to the ferrous state. In various P450s, this

step may be facilitated by an increase in the heme
iron FeIII/FeII redox potential that occurs due to a
substrate-dependent electronic reorganization in
the heme iron d-orbitals, converting the ferric
low-spin state to a high-spin state (Daff
et al. 1997). The ferrous heme iron can then bind
dioxygen and form a ferric-superoxo state, which
is then further reduced by the redox partner to
form the ferric-peroxo form. Subsequent proton-
ation and dehydration steps lead to the production
of compound I, the major species responsible for
catalyzing P450 substrate oxidation reactions
(Rittle and Green 2010). In eukaryotic P450 sys-
tems, the redox partner to the microsomal P450s is
NADPH-cytochrome P450 oxidoreductase
(abbreviated as CPR or POR), which is a diflavin
enzyme (containing FAD and FMN cofactors)
that is also bound to the ER membrane by an
N-terminal transmembrane anchor region
(Waskell and Kim 2015; Fig. 3). The FAD and
FMN cofactors reside on two distinct domains of
the CPR, with the FMN located in a smaller
flavodoxin-like N-terminal domain and FAD
bound to the larger C-terminal ferredoxin reduc-
tase (FDR)-like domain. NADPH binds to the
FDR domain, and two electrons are donated to
the CPR FAD as a hydride ion (H�) to reduce this
cofactor to its hydroquinone (HQ) state. However,
in the cell, it is considered that the CPR FMN
cofactor is predominantly in its one-electron
reduced semiquinone (SQ) state as a consequence
of its high redox potential. The main mechanism
for electron transfer from CPR to P450 likely
involves a 1-3-2-1 cycle in which the digits reflect
the number of electrons on the flavins and in
which the FAD HQ passes its two electrons one
at a time to the FMN SQ, forming FMN HQ
species that donate single electrons to the ferric-
superoxo and then the ferric-peroxo species in the
catalytic cycle. The FMN HQ has a much lower
potential than the FMN SQ, making these reac-
tions feasible, and the CPR inter-domain “hinge”
region enables the FMN domain to rotate away
from its partner FAD/NADPH-binding domain in
order for electron transfers to the P450 (Munro
et al. 2013). A similar type of reaction occurs in
some soluble, bacterial P450 enzymes, most nota-
bly in flavocytochrome P450 BM3 (CYP102A1)
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in which a soluble CPR (devoid of a membrane
anchor region) is covalently attached to a soluble
fatty acid hydroxylase P450. This is a biotechno-
logically important P450 enzyme that has the
highest catalytic rate reported for a mono-
oxygenase P450, primarily due to the very fast
electron transfer mediated by its fused CPR part-
ner (Noble et al. 1999). However, the BM3 CPR
undergoes a 0-2-1-0 cycle in which the CPR is
fully oxidized in the resting state and where elec-
trons are delivered to the P450 by an FMN SQ
(Hanley et al. 2004). In animals, the mitochondrial
P450 redox partner system has similarities to the
apparatus used widely in bacteria and archaea,
likely consistent with the proposed endosymbiotic
origin of mitochondria (Sagan 1967). The partners
are the NADPH-dependent, FAD-binding
adrenodoxin reductase (ADR) and the 2Fe-2S
iron-sulfur cluster-binding protein adrenodoxin
(AD). NADPH reduces the ADR FAD to its HQ
state, and two single electron transfers from the
ADR reduce two oxidized AD clusters from the
[2Fe-2S]2+ to the [2Fe-2S]+ state. AD molecules
then reduce substrate-bound mitochondrial P450s
(primarily involved in steroidogenesis) at the
same catalytic cycle stages as described for CPR
above (Grinberg et al. 2000).

The CPR (class II) and ADR/AD (class I)
redox partner systems represent the major path-
ways of P450 electron transfer in higher organ-
isms. However, studies in recent years have
unveiled a greater diversity of P450 redox partner
systems in microbes. These include bacterial/
archaeal systems that use FDRs along with differ-
ent types of ferredoxins (containing 3Fe-4S and
4Fe-4S clusters). For example, an unusual P450
redox partner system was characterized in the
thermophilic archaeon Sulfolobus acidocaldarius
(formerly S. solfataricus), involving the P450
(CYP119A1), a 2-oxo-acid ferredoxin reductase,
and a 7Fe (3Fe-4S and 4Fe-4S)-containing ferre-
doxin. Hydroxylation of lauric acid at 70 �C was
demonstrated using pyruvic acid as an electron
source (Puchkaev and Ortiz de Montellano
2005). Another example is the cineole degrading
P450cin (CYP176A1) from Citrobacter braakii,
in which an FMN-binding flavodoxin (cindoxin)
replaces the ferredoxin in a novel class I system

and where the P450 catalzyes enantioselective
hydroxylation of the monoterpenoid 1,8-cineole
(eucalyptol) to form (1R)-6b-hydroxycineole in
the pathway to its degradation and use as a carbon
source by C. braakii (Stok et al. 2015; Fig. 3).

Other bacterial P450s operate without redox
partners, including the fatty acid hydroxylase
P450SPa (CYP152B1) from Sphingomonas
paucimobilis and the alkene-generating fatty
acid decarboxylase OleTJE (CYP152L1) from
Jeotgalicoccus sp. 8456, which use hydrogen per-
oxide directly to form the reactive catalytic cycle
intermediate compound 0 (ferric-hydroperoxo)
and to bypass requirement for redox partner-
mediated electron transfers (Fujishiro et al. 2011;
Belcher et al. 2014; Fig. 4). In the case of P450nor
(CYP55A1) from the pathogenic fungus Fusar-
ium oxysporum, the enzyme binds NADH in the
P450 active site and reduces two molecules of
nitric oxide (nitrogen monoxide, NO) to form
nitrous oxide (dinitrogen monoxide, N2O) as
part of an anaerobic respiratory process for con-
version of nitrite to N2O (Shoun et al. 2012).
Other novel systems include the bacterial
CYP116B family, in which the P450s are natu-
rally fused to a phthalate dioxygenase reductase-
like FMN- and 2Fe-2S cluster-containing reduc-
tase system. These enzyme favor NADPH over
NADH as the electron donor, with examples
including the Cupriavidus metallidurans
CYP116B1 that was shown to hydroxylate
thiocarbamate herbicides (Warman et al. 2012)
and Acinetobacter radioresistens CYP116B5
that oxidizes alkanes and enables the bacterium
to grow on medium-to-long chain alkanes as a
sole carbon source (Minerdi et al. 2015). The
white-rot basidiomycete fungus Phanerochaete
chrysosporium was also reported to hydroxylate
4-propylbenzoic acid using the P450
CYP5150A2 and cytochrome b5 (b5) and b5
reductase redox partners with NADH reductant.
Similar data were presented for b5 reductase and
b5 in supporting activity of hepatic microsomal
P450s. Given the positive redox potential of b5
proteins (ca 0 mV vs. the normal hydrogen elec-
trode, NHE), it appears likely that they deliver
only the second electron (to the high potential
P450 ferric-peroxo catalytic cycle intermediate),
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with the first electron coming from the b5 reduc-
tase (Ichinose and Wariishi 2012; Henderson
et al. 2013; Fig. 3). Other unusual P450s include
fusions to other potential redox partners and to
non-redox partner proteins (McLean et al. 2015).

Biomedical and Biotechnological
Aspects of P450s

The P450s catalyze numerous important chemical
reactions in humans and other organisms. They
are crucial to xenobiotic detoxification and steroid
metabolism in mammals and are also key to the
production of valuable compounds such as flavors
and fragrances (e.g., the sequiterpene (+)-
nootkatone), the anti-cancer monoterpene-indole
alkaloid drug vinblastine in plants (Cankar
et al. 2011; Butler 2008), and antibiotics including
the anthelmintic drug avermectin in microbes
(Ikeda et al. 1999). As knowledge develops on
structural and catalytic properties of P450s, inter-
est has also increased in the engineering of P450s

and their applications for producing valuable
molecules.

Several mammalian P450 enzymes have piv-
otal roles in steroid metabolism, with steroid syn-
thesis beginning in the mitochondrion with a
three-step oxidation reaction catalyzed by the cho-
lesterol side chain cleaving enzyme CYP11A1
(P450scc) that transforms cholesterol into preg-
nenolone as the committed step (Fig. 4). Human
CYP11A1 deficiencies are very rare but effec-
tively abolish steroid production in gonads and
the adrenal cortex (Tajima et al. 2001). Mitochon-
drial CYP11B1 catalyzes 11b-hydroxylation of
deoxycorticosterone to form corticosterone, as
does CYP11B2 (aldosterone synthase). Mutations
in CYP11B1 result in a form of congenital adrenal
hyperplasia called 11b-hydroxylase deficiency, in
which the mineralocorticoid deoxycorticosterone
accumulates. This results in the masculinization
of females due to rerouting of cortisol precursors
to androgens. Males and females develop hyper-
tension and low serum potassium later in life and
are also prone to adrenal crisis in which low blood

��

Cytochrome P450 (cyp), Fig. 4 Typical P450 reactions.
Panel (a) Arachidonic acid (released from membrane
glycerophospholipids by the action of phospholipase A2
enzymes) is the substrate for P450s that either epoxidize or
hydroxylate the substrate to create epoxyeicosatrienoic
acids (EETs) or hydroxyeicosatetranoic acids (HETEs),
respectively. Arachidonic acid is metabolized to different
products by various eukaryotic P450 subfamily members.
Scheme (i) shows formation of 20-HETE (CYP2U1,
CYP4A, CYP4F) through a o,o-1 hydroxylase reaction.
Scheme (ii) shows formation of the mid-chain HETE
12(R)-HETE in a lipoxygenase-like P450 reaction
(CYP2C9, CYP1B1) .Scheme (iii) shows formation of
the epoxyeicosatrienoic acid 11,12-EET (CYP2C8,
CYP2J2) in an epoxygenase P450 reaction. Other products
formed in these different types of reactions are indicated in
parentheses (Edin et al. 2015). Panel (b) Arachidonic acid
is also metabolized by cyclooxygenase to form prostaglan-
din G2 (PGG2), which rearranges to produce prostaglandin
H2 (PGH2). PGH2 is the substrate for the prostacyclin
synthase (CYP8A1) and thromboxane synthase
(CYP5A1) P450s that catalyze molecular rearrangement
reactions to cleave the epidioxy bond of PGH2 to form
prostacyclin (PGI2) and thromboxane A2, respectively
(Hecker et al. 1987; Hecker and Ullrich 1989). The reac-
tion requires neither electrons from NAD(P)H/redox part-
ners or dioxygen. PGI2 has vasodilatory and platelet anti-
aggregation effects, whereas thromboxane A2 induces

vasoconstriction and platelet aggregation. The balance
between these reactions is thus important in human health
(Munro et al. 2007). Panel (c). The oxidative decarboxyl-
ation of arachidic acid (C20:0) to 1-nonadecene catalyzed
by the P450 peroxygenase OleTJE (CYP152L1) from
Jeotgalicoccus sp. ATCC 8456 (Belcher et al. 2014).
Panel (d) The N-deethylation of the antiarrhythmic drug
lidocaine by CYP1A2 and CYP3A4, producing the metab-
olite monoethylglycinexylidide (MEGX) (Wang
et al. 2000). Panel (e) The deamination of amphetamine
to phenylacetone catalyzed by rabbit CYP2C3 (Yamada
et al. 1997). Panel (f) The conversion of cholesterol to the
steroid hormone pregnenolone by the side-chain cleavage
enzyme CYP11A1 (P450scc). CYP11A1 performs two
successive hydroxylations at the C20 and C22 positions,
followed by a carbon-carbon bond cleavage reaction
between C20-C22 to generate pregnenolone and the side
product 4-methylpentanal. In other P450-dependent reac-
tions, cholesterol is hydroxylated at positions 7a, 24(s),
25, and 27 by CYP7A1, CYP46A1, and CYP3A4, respec-
tively, in the production of bile acids. The C26 hydroxyl-
ation of cholesterol and its ketone derivative 4-cholesten-
3-one is also catalyzed by Mycobacterium tuberculosis
P450 enzymes (CYP125A1 and CYP142A1) in the first
step of host cholesterol catabolism that is important for
infection byM. tuberculosis and for its survival in the host
macrophage (McLean et al. 2012)
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pressure results from cortisol deficiency (Auchus
and Miller 2015). CYP17A1 (a steroid
17-hydroxylase/17,20-lyase) is a microsomal
P450 that catalyzes both the 17-hydroxylation of
pregnenolone and progesterone and the 17,20-
lyase reaction with the hydroxylated steroids to
form dehydroepiandrosterone (DHEA) and
androstenedione, respectively. Mutations cause
effects that range in severity from partial loss of
17-hydroxylase or 17,20-lyase activity through to
complete, combined activity loss. The loss of
17,20-lyase activity prevents synthesis of andro-
gens and estrogens, with catastrophic effects on
male and female sexual development (Auchus and
Miller 2015). Hepatic P450s are also crucial to
oxidative transformations of drugs and other
xenobiotics, usually leading to their inactivation
and excretion. However, a number of these P450s
are also implicated in the activation of chemical
carcinogens, including polycyclic hydrocarbons
(CYP1A1 and 1B1) and nitrosamines (CYP2A6
and 2E1) (Guengerich 2015). For example,
CYP1A1 catalyzes successive hydroxylation and
epoxidation reactions on benzo[a]pyrene that
transform this cigarette smoke component to car-
cinogenic and genotoxic (+) and (�) benzo[a]
pyrene-7,8-diol-9,10-epoxide products (Shimada
and Fujii-Kuriyama 2004). Defects in other
human CYP genes are associated with diseases
such as rickets (CYP2R1, CYP27B1) and hyper-
cholesterolemia (CYP7A1) (Pikuleva and Water-
man 2013).

Important biotechnological applications of
P450s include the engineering of these enzymes,
using either directed evolution (DE) approaches
(i.e., random or semi-random mutagenesis of the
relevant P450 combined with screening of
mutants for desired properties) or structure-
guided mutagenesis to produce novel variants
with desirable catalytic properties. The high activ-
ity mid- to long-chain fatty acid hydroxylase
P450-CPR fusion enzyme P450 BM3 has proven
an excellent template for such programs. Notable
successes include BM3’s conversion to a hydrox-
ylase of short chain alkanes and to an
enantioselective epoxidase of terminal alkenes
using DE approaches (Peters et al. 2003; Kubo
et al. 2006). Other DE and rational mutagenesis

studies have produced BM3 mutants that generate
human drug metabolites that replicate those pro-
duced by the relevant human P450s. Examples
include metabolites of the gastric proton pump
inhibitor (PPI) omeprazole and of other PPI
drugs (Butler et al. 2013, 2014) and of diverse
drugs such as chlorzoxazone, lidocaine, and
diclofenac (Ren et al. 2015). The effective pro-
duction of bona fide human drug metabolites has
become increasingly important due to FDA
requirements for toxicity testing of major human
drug metabolites as well as their parent drugs
(Guengerich 2015). In other work, Frances
Arnold’s group demonstrated that BM3 could be
used to catalyze the asymmetric cyclopropanation
of styrenes, with the efficiency of the reaction
enhanced considerably in the T286A mutant in
which a residue crucial to efficient mono-
oxygenation chemistry is substituted (Coelho
et al. 2013a). Cyclopropanation of olefins is
widely used in fine chemical synthesis, and fur-
ther studies showed more efficient cyclopro-
panation of stytrenes both in vivo (E. coli cells)
and in vitro, using the diazoester ethyl
diazoacetate for carbene transfer in a BM3 variant
in which the cysteine thiolate ligand was mutated
to a serine, resulting in a large increase in potential
of the heme iron and abolition of monooxygenase
activity (Coelho et al. 2013b). A quadruple mutant
of BM3 was also used for the conversion of
amorpha-4,11-diene to its epoxide in a semisyn-
thetic pathway for the production of the antima-
larial artemisinin (Dietrich et al. 2009).
Eukaryotic P450s also provided a test case for
Stephen Sligar and colleagues in the development
of nanodisc technology. Nanodiscs are discoidal
membrane bilayers that are stabilized and made
soluble in aqueous solution through their being
encircled by two amphipathic helical protein belts
known as membrane scaffold proteins. Purified,
detergent solubilized P450s and other membrane
proteins are typically assembled into nanodiscs by
mixing with scaffold protein and phospholipids at
appropriate stoichiometry, followed by detergent
removal using hydrophobic beads (Denisov and
Sligar 2016). Examples of the use of this novel
technology on P450 redox systems include its
application for the analysis of the influence of
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the nanodisc membrane bilayer and its lipid com-
position on the redox potentials of the CPR flavin
cofactors and to explore the complex catalytic
mechanism of the CYP17A1 P450 that converts
pregnenolone to dehydroepiandrosterone (Das
and Sligar 2009; Gregory et al. 2013). Other
recent studies have demonstrated how light can
be used to drive P450 function directly though
covalent attachment of a RuII-diimine complex
to the BM3 heme domain. The ruthenium “pho-
tosensitizer” is continuously reduced photo-
catalytically to the RuI state, which passes
electrons to the heme iron and enables fatty acid
hydroxylation (Tran et al. 2013). The cyanobac-
terium Synechocystis sp. PCC6803 was also
engineered by introduction of a vector encoding
two plant P450s (CYP79A1 and CYP71E1) and
a glycosyltransferase that transform L-tyrosine
into the cyanogenic glucoside and insect anti-
feedant dhurrin. The P450s were successfully
incorporated into the cyanobacterial thylakoid
membranes, close to photosynthetic complexes,
and catalysis was driven by light though
electron transfer via photosystem I and ferredoxin
to the P450s, producing both dhurrin and the
pathway precursor p-hydroxyphenylacetaldoxime
(Wlodarczyk et al. 2016).

Summary

The P450s are remarkable catalysts that are able to
perform a myriad of different chemical reactions.
They span all the major domains of life and were
the first protein group classified into an enzyme
“superfamily”. P450s have pivotal roles in animal
health, particularly with respect to the metabolism
of steroids, other lipids, and xenobiotics. P450
deficiencies are implicated in several human dis-
eases, and the activities of mammalian xenobiotic
metabolizing P450 enzymes with compounds
such as arylamines and polycyclic aromatic
hydrocarbons can result in the activation of these
chemical carcinogens. In plants and microbes,
P450s have diverse roles in the synthesis of mol-
ecules such as terpenoids, alkaloids, macrolide
antibiotics, and mycotoxins. Large numbers of
P450s are found in Streptomyces and other

bacteria, where they are involved in the produc-
tion of industrially important molecules such as
the antibiotics erythromycin and vancomycin and
the anthelmintic avermectin. Numerous P450s are
also encoded in the genome of the pathogen
Mycobacterium tuberculosis, where they are
implicated in bacterial secondary metabolism, in
regulation of respiration through modification of
respiratory menaquinone, and in bacterial infec-
tion and survival in the macrophage through their
role in catabolism of host cholesterol. The aston-
ishing array of oxidative and other activities asso-
ciated with P450s has been further expanded
through characterization of the properties of
engineered variants of biotechnologically impor-
tant P450s, and these enzymes are increasingly
utilized in the industrial scale production of
high-value compounds, such as the antimalarial
artemisinin and the cholesterol-lowering drug
pravastatin (Dietrich et al. 2009; McLean
et al. 2014). The diverse roles of the P450s in
areas such as human and animal health, biotech-
nology, and synthetic biology reveal “Nature’s
most versatile catalyst” to be of economic impor-
tance, with several potential applications in areas
such as chemical synthesis, bioremediation, and
human medicine (Coon 2005; Rylott et al. 2011).
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Synonyms

cPLA2; Group IV phospholipase A2

Historical Background

The phospholipase A2 was the first of the
phopsholipases to be identified when, in 1877,
Bokay observed that the lecithin was degraded
by a ferment obtained from pancreatic juice. Sub-
sequently, in 1902, this enzyme, known as leci-
thinase, was detected also in cobra venomwhere it
was observed to induce hemolytic activity
through the lysis of erythrocytes membrane. The
enzyme was then isolated from human pancreatic
tissue by Gronchi and colleagues in 1936 (Glaser
and Vadas 1995; Vance and Vance 2002). Since
then, an increasing number of PLA2 have now
been identified and grouped according to their
biochemical features. However, the first evidence
that mammalian cells contain a cytosolic calcium-
dependent PLA2 able to specifically cleave
arachidonic acid was reported only 50 years later
by Flesch in 1985 (Flesch et al. 1985 ) and Alonso
in 1986 (Alonso et al. 1986). Subsequently,
important information regarding the role of
cPLA2s in physiological processes and disease
was provided by the knockout mouse model that
revealed that cPLA2a knockout mice have normal
growth and lifespan but exhibit an age-related
renal dysfunction, ulcerative lesions of the small
intestine, enlarged heart, and female reproduction
defects demonstrating that metabolites generated
by cPLA2s catalytic activity regulate several nor-
mal physiological processes (Bonventre et al. 1997;
Downey et al. 2001; Uozumi et al. 1997; Takaku
et al. 2000).

Introduction

Phospholipases are a ubiquitous group of
enzymes that hydrolyze phospholipids to generate
molecules that may have potent biological activ-
ity. Phospholipids are dynamic molecules local-
ized within lateral phases of membrane bilayers
and in subcellular organelles. Phospholipids
breakdown mediated by phospholipases gener-
ates both hydrophobic and hydrophilic molecules
that can act at the site of production, at distal site
within the cell or can be secreted and act outside
the cell. Many of them exert their cellular function
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through extracellular or intracellular receptors.
The classification of phospholipases is based on
the site of attack. Phospholipases that catalyze the
hydrolysis of the acyl-ester group are classified as
phospholipase A (PLA): PLA1 hydrolizes the
1-acyl ester bond of phospholipids and PLA2
the 2-acyl ester bond. Some phospholipases
hydrolize both acyl ester group and are known
as phospholipase B. Phospholipase C (PLC) and
phospholipase D (PLD) are both phosphodiester-
ases and catalyze the cleavage of
glycerophosphate bond and the removal of the
base group, respectively (Vance and Vance
2002). PLA2 that releases fatty acids from the
second carbon group of glycerol specifically rec-
ognizes the sn-2 acyl bond of phospholipids and
catalytically hydrolyzes the bond releasing
arachidonic acid and lysophospholipids. In par-
ticular, arachidonic acid is converted in inflamma-
tory mediators such as prostaglandins and
leukotrienes which are categorized as potent
inflammatory mediators implicated in many dis-
orders such as asthma and arthritis. However, it
can also directly modulate cellular function by
altering membrane fluidity, activating protein
kinases, and regulating gene transcription
(Katsuki and Okuda 1995). On the other hand,
lysophospholipids are involved in the control of
phospholipid remodeling and membrane pertur-
bation. Thus, PLA2 activity is tightly regulated in
order to maintain levels of arachidonic acid and
lysophospholipids necessary for the correct cellu-
lar homeostasis (Katsuki and Okuda 1995; Vance
and Vance 2002). To date in humans 17 genes and
25 PLA2 isoforms have been identified. PLA2s
can be distinct in groups on the base of their
specific features such as sequence, molecular
weight, disulfide bonding patters, and Ca2+

dependency. They are: (1) the secreted small
molecular weight PLA2s (sPLA2s), (2) the
Ca2+-independent PLA2s (iPLA2s), (3) the
larger cytosolic Ca2+-dependent PLA2s
(cPLA2s), (4) the platelet-activating factor-
acetylhydrolases (PAF-AH), and (5) the lyso-
somal PLA2s. Differently from other PLA2 iso-
forms, considerable information is available about
cPLA2 structure, function, and mechanisms of
regulation (Gentile et al. 2012).

Nomenclature and Structure

The cytoplasmic-calcium dependent PLA2
(cPLA2), also referred to as group IV PLA2, is a
family of enzymes containing six members: IVA
(cPLA2a), IVB (cPLA2b), IVC (cPLA2g), IVD
(cPLA2d), IVE (cPLA2e), and IVF (cPLA2ζ).
The groups IVB, C, E, and F are encoded by a
gene cluster on human chromosome 15, whereas
the cPLA2a is encoded by a gene on human
chromosome 1 and cPLA2g on chromosome 19.
Among the members of the group IV PLA2, the
cPLA2a is the most studied since it specifically
recognizes the sn-2 acyl bond of arachidonic acid
to generate prostaglandins and leukotrienes,
important lipid inflammatory mediators impli-
cated in many disorders such as asthma and
arthritis (Fig. 1). It is highly conserved throughout
evolution since human and mouse homologues
share more than 95% of aminoacid identity and
more that 80% with zebrafish and Xenopus laevis
(Ghosh et al. 2006). X-ray crystal structure of
cPLA2s revealed that they contain an N-terminal
calcium-dependent lipid binding/C2 domain that
promotes interaction of the protein with mem-
branes and a catalytic domain (Fig. 2) (Dessen
et al. 1999).

Catalytic Domain
Classical lipase activity is exerted by a catalytic
domain containing a Ser-Asp/Gln-His triad; how-
ever, the group IV PLA2 family catalytic domain
lacks of the His residue, thus it is composed by an
unusual Ser-Asp dyad located in a deep cleft lined
by hydrophobic residues. This funnel is covered
by a flexible lid that moves to allow the access of
the substrate to the active site (Dessen et al. 1999).
This Ser-Asp dyad catalytic domain is highly
conserved throughout evolution since it has been
described also in the plant lipid acylhydrolase
patatin and in phospholipase from Pseudomonas
aeruginosa (Ghosh et al. 2006; Rydel et al. 2003).
The serine (Ser228 in cPLA2a) is present in the
pentapeptide sequence G-L-S-G-S that is similar
to the lipase consensus sequence G-X-S-X-G. A
conserved arginine (Arg200 in cPLA2a) is also
required for catalysis (Dessen et al. 1999). Com-
parative structural analysis of the catalytic domain
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of the enzymes belonging to the group IV PLA2s
revealed that it is essential for the arachidonoyl
selectivity. In fact, the only differences into the
catalytic domain are in two residues between

cPLA2a and cPLA2g. These differences may be
responsible for the lack in specificity towards
arachidonic acid and in sensitivity to inhibitors
such as pyrrolidine-2 (Ghosh et al. 2006).

Cytosolic Phospholipase
A2 (pla2G4A),
Fig. 1 Cytosolic PLA2

function. cPLA2 catalyze
the hydrolysis of fatty acids
from the sn-2 acyl bond of
phospholipids releasing
arachidonic acid and
lysophospholipids. In
particular, arachidonic acid
is converted in
inflammatory mediators
such as prostaglandins and
leukotrienes which are
categorized as potent
inflammatory mediators
implicated in many
disorders such as asthma
and arthritis

Cytosolic Phospholipase
A2 (pla2G4A),
Fig. 2 Structure of the
human cytosolic PLA2. The
diagram has been obtained
from the protein data bank
(http://www.rcsb.org/pdb/)

Cytosolic Phospholipase A2 (pla2G4A) 1307

C

http://www.rcsb.org/pdb/


Calcium-Binding Domain
It is necessary the mobilization of intracellular
calcium to obtain the maximal cathalytic activity
of the enzyme. Calcium mobilization is mediated
by an N-terminal calcium-dependent lipid-
binding domain that colocalizes the catalytic
domain with its membrane substrate (Ghosh
et al. 2006). The calcium-binding domain of the
cPLA2s is a classical C2 domain, present in a
variety of mammals’ proteins, whose function is
primarily to promote the interaction between pro-
tein and membrane. A C2 domain is composed of
about 120 aminoacids that share a common fold of
eight antiparallel b-sheet. Structural and func-
tional analysis of the C2 domain of cPLA2a
revealed that it contains three calcium-binding
loops (CBL) that bind two calcium ions each
through two acidic residues such as Asp and
Asn. In the unbound state, the membrane-binding
face of the C2 domain is electronegative due to the
presence of these two residues, and do not interact
with membranes. The binding with calcium ions
determines the so-called electrostatic switch of the
C2 domain that can bind anionic phospholipids in
membranes. In particular, calcium binding to the
C2 domain of cPLA2s promotes the interaction
with phosphorylcholine rather than to anionic
phospholipids. Alignment of the C2 domains of
the members of the group IV of phospholipases
revealed that cPLA2a contains seven calcium-
binding residues, four of which are conserved in
the other members of the group. The conserved
residues are present in CBL1 and CBL 2 and are
crucial for the binding to the membrane
phospholipids. Another important structural dif-
ference between cPLA2a and the other members
of the IV group is represented by the length of the
linker that connects the catalytic domain to the C2
domain: in cPLA2a the two domains are
connected by a 5-residues flexible linker that
may undergo rotational changes affecting the
interaction of the catalytic domain with the mem-
brane, whereas in other cPLA2s the C2 and cata-
lytic domain are connected by an approximately
120-residues linker that can influence both
membrane-binding properties and enzyme

tridimensional conformation (Dessen et al. 1999;
Ghosh et al. 2006).

Regulation

Expression
cPLA2a is encoded by a gene on human
chromosome 1 next to the gene encoding COX2;
it is ubiquitous and constitutively expressed in
human cells. Its expression is enhanced by
proinflammatory cytokines and growth factors
and is inhibited by glucocorticoids as indicated
by the presence of the INF-g and glucocorticoid
responsive elements on its promoter (Miyashita
et al. 1995). Studies demonstrated that in smooth
muscle cells cPLA2a expression is regulated by
STAT-3 (Ghosh et al. 2006) and, moreover, that in
several types of cancer it is overexpressed and
upregulated by the oncogene ras through the
phosphorylation of the kinases JNK and ERK
(Van Putten et al. 2001).

cPLA2b gene is on human chromosome
15 near a gene cluster that encodes cPLA2g, e,
and ζ and separated from this cluster by the genes
Sptbn5 and Ehd4. These cPLA2s are highly
homologous sharing 45–50% residues in the cat-
alytic domain suggesting that they are arisen from
an ancestral gene by duplication (Ohto
et al. 2005). cPLA2b mRNA is widely expressed
in human pancreas, liver, heart, and cerebellum,
and its gene is immediately downstream of a com-
plete JmjC domain which is a metalloenzyme
present in nuclear protein with the ability to bind
DNA. This implies that cPLA2b mRNA may
undergo complex transcriptional and splicing reg-
ulation resulting in the production of diverse pro-
teins. In fact, when the JmjC domain is completely
transcribed, cPLA2b lacks C2 domain and is not
able to bind membranes (Ghosh et al. 2006).
cPLA2d was found to be expressed in stratified
squamous epithelium of the fetal skin and is sig-
nificantly increased in the upper epidermis of
psoriatic lesions. cPLA2d gene encodes a
90 kDa protein which contains both C2 and cata-
lytic domains (Chiba et al. 2004). cPLA2g gene is

1308 Cytosolic Phospholipase A2 (pla2G4A)



on chromosome 19, and its mRNA is present in
skeletal and cardiac muscle and in brain (Ghosh
et al. 2006).

Localization
cPLA2s exert their activity mainly on membranes
where they access the substrate. Upon stimula-
tion, intracellular calcium concentration increases
and induces the enzyme translocation from cyto-
sol to membrane. cPLA2a has been shown to
translocate primary to the perinuclear envelope,
to Golgi, and to the endoplasmic reticulum.
In particular, it has been shown that short-
duration and low-concentration calcium transients
induce translocation to Golgi, whereas high-
concentration calcium transients induce transloca-
tion to ER. Moreover, CBL1 and CBL3 are
critical for the specific targeting of cPLA2a to
the Golgi apparatus. The localization to Golgi
regulates Golgi architecture and membrane-
trafficking events (Dessen et al. 1999). cPLA2a
can localize also inside the nucleus as demon-
strated by studies on endothelial cells. In particu-
lar, it has been shown that endothelial cells cycle
entry is associated with release of high levels of
arachidonic acid, which has been implicated in
regulating cell proliferation (Herbert et al. 2005).
Other sites of cPLA2a localization are
represented by the membranes of the forming
phagosomes in macrophages and by neutrophils
membranes (Ghosh et al. 2006). Association of
PLA2a with membranes is enhanced by several
binding proteins such as vimentin, p11, annexin-
1, caveolin-1, and cPLA2a-interacting protein
PLIP (Ghosh et al. 2006). The localization of
other members of the group IV PLA2s has been
investigated by GFP-tagged proteins. This strat-
egy demonstrated that cPLA2d localizes to
nuclear envelope in response to calcium iono-
phore and that cPLA2e localizes to punctate struc-
tures in resting cells whereas neither cPLA2e nor
cPLA2ζ localize to membrane after calcium stim-
ulation. Finally, cPLA2g is constitutively bound
to membrane of Golgi and ER since it contains a
CAAX sequence in the C-terminus that is
farnesylated (Ghosh et al. 2006). Moreover,

studies in which cPLA2g is overexpressed in
COS cells revealed that it is bound to mitochon-
dria suggesting that it can play a role in mitochon-
drial function such as initiating apoptosis (Duan
et al. 2001).

Phosphorylation
cPLA2s activity is also regulated by phosphory-
lation. This molecular event is well studied for
cPLA2a which contains several phosphorylation
sites recognized by MAPKs, MNK-1, and
CAMKII. Cellular studies demonstrated that
phosphorylation at these sites only modestly
increases arachidonic acid release after calcium
transient increase, but induces a conformational
change of the enzyme that enhances the interac-
tion of the catalytic domain with its membrane
substrate. However, phosphorylation is not suffi-
cient to promote membrane binding in the absence
of calcium increase (Ghosh et al. 2006).

Summary

Phospholipases are a ubiquitous group of
enzymes that hydrolyze phospholipids to generate
molecules that may have potent biological activ-
ity. Among phospholipases, phospholipase A2
releases fatty acids from the second carbon
group of glycerol, specifically recognizes the
sn-2-acyl bond of phospholipids, and catalytically
hydrolyzes the bond releasing arachidonic acid
and lysophospholipids. Arachidonic acid is then
converted in inflammatory mediators such as
prostaglandin and leukotrienes that are potent
inflammatory mediators implicated in many dis-
orders such as asthma and arthritis. PLA2s can be
distinct in groups on the base of their specific
features such as sequence, molecular weight,
disulfide bonding patterns, and calcium depen-
dency. The group of which considerable informa-
tion are available about structure, function, and
mechanisms of regulation are the large cytosolic
calcium-dependent PLA2 (cPLA2). cPLA2s, also
referred to as group IV PLA2, is a family of
enzymes containing six members: cPLA2a,
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cPLA2b, cPLA2g, cPLA2e, and cPLA2ζ. X-ray
crystal structure of cPLA2s revealed that they all
contain an N-terminal calcium-dependent lipid
binding/C2 domain that promotes interaction of
the enzyme with membrane and a catalytic
domain. The two domains are connected by a
linker that has a variable length from 5 residues
in the cPLA2a to 120 residues in the other mem-
bers of the group. The C2 domains contain
calcium-binding loops that bind calcium ions
through the acidic residues Asp and Asn. The
binding of these two residues with calcium ions
determines the so-called electrostatic switch of the
C2 domain that becomes electropositive and can
bind anionic phospholipids in the membrane. The
catalytic domain is represented by a Ser-Asp dyad
located in a deep funnel lined by hydrophobic
residues and covered by a flexible lid that moves
to allow the access of the substrate to the active
site. The regulation of cPLA2s activity is complex
involving transcriptional and posttranscriptional
processes, localization, phosphorylation, and
intracellular calcium concentration increase.
cPLA2s exert their activity mainly on membranes
where they access the substrate. Upon stimula-
tion, intracellular calcium concentration increases
and induces the enzyme translocation from cyto-
sol to membranes. These latter may be represented
by nuclear envelope, Golgi and ER membranes,
phagosomes, and plasma membranes. Recent
studies revealed that cPLA2s are implicated also
in regulating intracellular membrane trafficking
being involved in the formation of carriers from
donor membranes (Leslie 2015). cPLA2s activity
is also regulated by phosphorylation even if phos-
phorylation alone is not sufficient to promote
membrane binding in absence of calcium
increase.
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Cytotactin
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Cytotoxic Cell Protease-1 (CCP1)

▶Granzyme B

Cytotoxic T Lymphocyte Associated
Serine Esterase 1 (CTLA1)

▶Granzyme B

Cytovillin

▶Ezrin

cyt-PTPe

▶ PTPe (RPTPe and Cyt-PTPe)
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