
# **Stereochemistry**

**Stereochemistry**, a subdiscipline of chemistry, involves the study of the relative spatial arrangement of atoms that form the structure of molecules and their manipulation.[1]The study stereochemistry focuses on stereoisomers, which by definition have the same molecular formula and sequence of bonded atoms (constitution), but differ in the three-dimensional orientations of their atoms in space. For this reason, it is also known as 3D chemistry—the prefix "stereo-" means "threedimensionality".[2]

An important branch of stereochemistry is the study of <u>chiral</u> molecules. [3] Stereochemistry spans the entire



The different types of  $\underline{isomers}$ . Stereochemistry focuses on stereoisomers

spectrum of <u>organic</u>, <u>inorganic</u>, <u>biological</u>, <u>physical</u> and especially <u>supramolecular chemistry</u>. Stereochemistry includes methods for determining and describing these relationships; the effect on the <u>physical</u> or <u>biological</u> properties these relationships impart upon the molecules in question, and the manner in which these relationships influence the reactivity of the molecules in question (dynamic stereochemistry).

#### **Contents**

History

**Significance** 

Thalidomide example

**Definitions** 

**Types** 

See also

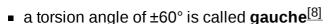
References

# History

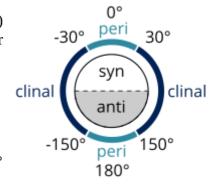
<u>Louis Pasteur</u> could rightly be described as the first stereochemist, having observed in 1842 that <u>salts</u> of <u>tartaric acid</u> collected from <u>wine</u> production vessels could rotate the plane of <u>polarized light</u>, but that salts from other sources did not. This property, the only physical property in which the two types of tartrate salts differed, is due to <u>optical isomerism</u>. In 1874, <u>Jacobus Henricus van 't Hoff</u> and <u>Joseph Le Bel</u> explained optical activity in terms of the tetrahedral arrangement of the atoms bound to carbon. Kekulé used tetrahedral models earlier in 1862 but never published these; Emanuele Paternò probably knew of these but was the first to draw and discuss three dimensional structures, such as of 1,2-dibromoethane in the *Gazetta Chimica Italiana* in 1893. [4]

# **Significance**

<u>Cahn–Ingold–Prelog priority rules</u> are part of a system for describing a molecule's stereochemistry. They rank the atoms around a stereocenter in a standard way, allowing the relative position of these atoms in the molecule to be described unambiguously. A <u>Fischer projection</u> is a simplified way to depict the stereochemistry around a stereocenter.


#### Thalidomide example

An often cited example of the importance of stereochemistry relates to the thalidomide disaster. Thalidomide is a pharmaceutical drug, first prepared in 1957 in Germany, prescribed for treating morning sickness in pregnant women. The drug was discovered to be <u>teratogenic</u>, causing serious <u>genetic</u> damage to early embryonic growth and development, leading to limb deformation in babies. Some of the several proposed <u>mechanisms</u> of teratogenicity involve a different biological function for the (*R*)- and the (*S*)-thalidomide enantiomers. [5] In the human


body however, thalidomide undergoes <u>racemization</u>: even if only one of the two enantiomers is administered as a drug, the other enantiomer is produced as a result of metabolism. [6] Accordingly, it is incorrect to state that one stereoisomer is safe while the other is teratogenic. [7] Thalidomide is currently used for the treatment of other diseases, notably cancer and <u>leprosy</u>. Strict regulations and controls have been enabled to avoid its use by pregnant women and prevent developmental deformations. This disaster was a driving force behind requiring strict testing of drugs before making them available to the public.

## **Definitions**

Many definitions that describe a specific conformer (<u>IUPAC Gold Book</u>) exist, developed by <u>William Klyne</u> and <u>Vladimir Prelog</u>, constituting their Klyne–Prelog system of nomenclature:



- a torsion angle between 0° and ±90° is called **syn** (s)
- a torsion angle between ±90° and 180° is called anti (a)
- a torsion angle between 30° and 150° or between –30° and –150° is called clinal



- a torsion angle between 0° and 30° or 150° and 180° is called periplanar (p)
- a torsion angle between 0° to 30° is called **synperiplanar** or **syn-** or **cis-conformation** (sp)
- a torsion angle between 30° to 90° and  $-30^\circ$  to  $-90^\circ$  is called **synclinal** or **gauche** or **skew** (sc)<sup>[9]</sup>
- a torsion angle between 90° to 150°, and –90° to –150° is called **anticlinal** (ac)
- a torsion angle between ±150° to 180° is called antiperiplanar or anti or trans (ap).

Torsional strain results from resistance to twisting about a bond.

# **Types**

- Atropisomerism
- Cis-trans isomerism
- Conformational isomerism
- Diastereomers
- Enantiomers

#### See also

- Alkane stereochemistry
- Chiral resolution, which often involves crystallization
- Chirality (chemistry) (R/S, d/l)
- Solid-state chemistry
- VSEPR theory
- Skeletal formula#Stereochemistry which describes how stereochemistry is denoted in skeletal formulae.

### References

- Ernest Eliel Basic Organic Stereochemistry ,2001 ISBN 0471374997; Bernard Testa und John Caldwell Organic Stereochemistry: Guiding Principles and Biomedicinal Relevance 2014 ISBN 3906390691; Hua-Jie Zhu Organic Stereochemistry: Experimental and Computational Methods 2015 ISBN 3527338225; László Poppe, Mihály Nógrádi, József Nagy, Gábor Hornyánszky, Zoltán Boros Stereochemistry and Stereoselective Synthesis: An Introduction 2016 ISBN 3527339019
- 2. "the definition of stereo-" (http://dictionary.reference.com/browse/stereo-). *Dictionary.com*. Archived (https://web.archive.org/web/20100609162256/http://dictionary.reference.com/browse/stereo-) from the original on 2010-06-09.
- 3. March, Jerry (1985), Advanced Organic Chemistry: Reactions, Mechanisms, and Structure (3rd ed.), New York: Wiley, ISBN 0-471-85472-7
- Roberto Zingales Chem. Europ. J. 2009, 15, 7760
  https://onlinelibrary.wiley.com/doi/epdf/10.1002/chem.200900200
- 5. Stephens TD, Bunde CJ, Fillmore BJ (June 2000). "Mechanism of action in thalidomide teratogenesis". *Biochemical Pharmacology*. **59** (12): 1489–99. doi:10.1016/S0006-2952(99)00388-3 (https://doi.org/10.1016%2FS0006-2952%2899%2900388-3). PMID 10799645 (https://pubmed.ncbi.nlm.nih.gov/10799645).
- Teo SK, Colburn WA, Tracewell WG, Kook KA, Stirling DI, Jaworsky MS, Scheffler MA, Thomas SD, Laskin OL (2004). "Clinical pharmacokinetics of thalidomide". *Clin. Pharmacokinet.* 43 (5): 311–327. doi:10.2165/00003088-200443050-00004 (https://doi.org/10.2165%2F00003088-200443050-00004). PMID 15080764 (https://pubmed.ncbi.nlm.nih.gov/15080764). S2CID 37728304 (https://api.semanticscholar.org/CorpusID:37728304).
- 7. Francl, Michelle (2010). "Urban legends of chemistry". *Nature Chemistry*. **2** (8): 600–601. Bibcode:2010NatCh...2..600F (https://ui.adsabs.harvard.edu/abs/2010NatCh...2..600F). doi:10.1038/nchem.750 (https://doi.org/10.1038%2Fnchem.750). PMID 20651711 (https://pubmed.ncbi.nlm.nih.gov/20651711).
- 8. Anslyn, Eric V. and Dougherty, Dennis A. *Modern Physical Organic Chemistry*. University Science (July 15, 2005), 1083 pp. <u>ISBN</u> <u>1-891389-31-9</u>

9. IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "gauche (https://goldbook.iupac.org/G02593.html)". doi:10.1351/goldbook.G02593 (https://doi.org/10.1351%2Fgoldbook.G02593)

Retrieved from "https://en.wikipedia.org/w/index.php?title=Stereochemistry&oldid=995070269"

This page was last edited on 19 December 2020, at 01:49 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.