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ABSTRACT: Lead optimization (LO) in medicinal chemistry is largely
driven by hypotheses and depends on the ingenuity, experience, and
intuition of medicinal chemists, focusing on the key question of which
compound should be made next. It is essentially impossible to predict
whether an LO project might ultimately be successful, and it is also very
difficult to estimate when a sufficient number of compounds has been
evaluated to judge the odds of a project. Given the subjective nature of LO
decisions and the inherent optimism of project teams, very few attempts have been made to systematically evaluate project
progression. Herein, we introduce a computational framework to follow the evolution of structure−activity relationship (SAR)
information over a time course. The approach is based on the use of SAR matrix data structures as a diagnostic tool and enables
graphical analysis of SAR redundancy and project progression. This framework should help the process of making decisions in
close-in analogue work.

■ INTRODUCTION

Lead optimization (LO) aims to transform selected active
compounds into clinical candidates through iterative close-in
analogue evaluation and is one of the most important
challenges in the practice of medicinal chemistry.1 To date,
the multiparametric LO process1 has been largely driven by a
combination of hypotheses and empirical rules that vary based
on chemical intuition and experience. The key question faced
by medicinal chemists during LO is which compound(s) should
be made next, and educated guesses about suitable chemical
modifications typically provide the basis for generating
analogues and advancing LO projects.
In addition to improving compound potency and selectivity,

other properties that are also considered during optimization
include solubility, permeability, metabolic stability, and
bioavailability. Balancing multiple compound properties in the
course of lead optimization is a significant challenge that
strongly depends on the specifics of the therapeutic applications
and compound classes under study.
Given the multiparametric nature of LO, computational

approaches focusing on multiobjective optimization have been
developed to aid compound design.2,3 These methods often
employ desirability functions or probability estimates to model
and balance multiple drug-relevant properties and select
computationally designed candidate compounds with preferred
property profiles.3 However, it is probably fair to say that
advanced multiobjective optimization is more popular in library
design efforts or in limiting an area of property space on which

to focus rather than practical LO, where the pivotal which
compound should be made next question rules day-to-day efforts.
LO projects often require long periods of time and a large

amount of resources. It is not uncommon for hundreds or
thousands of compounds to be generated over the course of
several years by project teams pursuing multiple lead series,
often while facing many roadblocks along the way. In light of
this situation, it is difficult to objectively assess LO progression.
If a project faces roadblocks, then there is always hope that the
next compound(s) might present a breakthrough. This
optimism might carry a LO project for a long period of time,
and the more time and effort that are expended on it, the more
difficult it typically becomes to let go and terminate a project
due to limited success. It is therefore not surprising that
medicinal chemistry leaders are equally concerned about
positive, neutral, or negative project progression and that
questions such as how many more compounds do we need to
make in close-in analogue space until we reach a go/no-go
decision are common place in industry. Accordingly, metrics to
assess and quantify LO project progression in a more objective
manner are highly desirable. However, only small advances
have thus far been made to conceptualize and implement such
metrics for the practice of medicinal chemistry.
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Although many computational methods for compound
design and activity prediction are available, only very few
attempts have been reported to computationally evaluate LO
progression, a task that principally differs from compound
design. For example, structure−activity relationships (SARs)
contained in evolving compound data sets have been
monitored in molecular network representations annotated
with activity information as well as using three-dimensional
activity landscape models.4 In similarity-based compound
networks, positive SAR progression over time is reflected by
the formation of compound communities rich in SAR
information, whereas lack of progression is indicated by
increasing numbers of compounds populating flat SAR
regions.4 Comparison of networks generated at different time
points of a project provides a qualitative view of SAR
progression. However, the interpretation of SAR networks is
not trivial for non-experts.
Furthermore, in a recent investigation, a statistical framework

for assessing LO progress has been introduced.5 For multiple
LO parameters, the risk associated with a compound set is
quantified from value distributions as the deviation from
desired threshold values, and the global risk is obtained by
combining all parameter contributions. During the LO process,
the risk is expected to be minimized. Risk as a function of
(temporal) project progression can be graphically analyzed in
different ways, and key compounds making the largest
contributions to risk minimization can be identified.5 Pros of
this statistical approach include the ability to monitor multiple
properties, individually or in concert, and that it quantifies risk;
cons include the requirement of the approach to define
property thresholds and that it does not take structural
information or relationships as parameters into account (for
similarity or diversity assessment, additional computational
methods must be employed). Therefore, it is not designed for
systematic SAR exploration. In another recent investigation, LO
attrition analysis has been introduced6 to classify compounds
according to the number of LO criteria they meet. For this
purpose, (project-specific) preferred ranges of numerical
properties must be defined and expressed as binary yes/no
queries, and the number of compounds meeting an increasing
number of queries is determined. Attrition curves are generated
by plotting compound count vs parameter count (i.e., x
compounds meet y parameters) and used to evaluate LO
success.6 As presented, the approach does not include a
temporal component to monitor progress. For a given LO set,
the attrition curves are suitable to provide a global view of
compound quality. Further analyses performed thus far do not
capture the totality of SAR information content for available
analogues but, rather, debate the merits of each compound
individually.
In this study, we introduce a conceptually different method

for the evaluation of SAR progression during LO. The SAR
matrix (SARM) data structure7,8 originally developed for
elucidation of SAR patterns in analogue series7 has been
adapted as an indicator of SAR information content for
temporal analysis of LO data sets. SARM ensembles are
calculated for evolving data sets and scored to quantify their
SAR information content. In addition, matrices are classified
according to the structural information they capture, which
makes it possible to monitor the expansion of existing
compound series as well as the introduction of structural
novelty during LO in close-in analogue space. SARM
distributions are graphically analyzed, and changes in

distributions over time reveal SAR progression or a lack of
progression. Indicator SARMs can also be annotated with
multiple properties, and changes in property profiles can be
monitored. Since SARMs exhaustively dissect compound sets in
a systematic manner, it is envisioned that the wealth of SAR
information during LO might be revealed through an analysis
of SARM ensembles over a time course.

■ EXPERIMENTAL SECTION
SARM Generation. SARMs are generated after subjecting

compound sets to two-stage matched molecular pair (MMP)
generation.7,8 A MMP is defined as a pair of compounds that differ
only by a structural modification at a single site.9 MMPs are efficiently
generated by systematic fragmentation of exocyclic single bonds in
compounds (permitting single, double, and triple cuts) and collection
of core structures and associated substituents in index tables.10

In the first step, MMPs are generated for all compounds. In the
second step, which is uniquely applied for SARMs, all core structures
resulting from the first round of fragmentation are again subjected to
MMP generation. Compounds forming MMPs from the first step are
organized as matching molecular series (MMSs). A MMS is defined as
a series of compounds that share the same core and have different
substituents at a single site (representing an extension of the MMP
concept).11 It follows that compounds comprising an MMS must form
all possible pairwise MMPs. Each MMS is represented as the shared
core plus the set of distinguishing substituents. Core MMPs from the
second round of fragmentation then identify all structurally analogous
cores (differing only by a change at a single site). Each SARM contains
a unique subset of MMSs with structurally analogous cores. In the
matrix, each row represents an MMS with a unique core (and each
column represents a substituent). As a consequence of systematic
MMP fragmentation, compounds typically participate in multiple
MMSs and occur in multiple SARMs. The ensemble of SARMs
generated from a compound set captures all possible analogue
relationships. As shown in Figure 1A, SARMs are reminiscent of
conventional R-group tables. Each cell represents a unique
combination of a core and substituent resulting from the
fragmentation (including virtual compounds that have not yet been
generated). Cells can be annotated with property information, for
example, they can be color-coded according to compound potency, as
also illustrated in Figure 1A.

Following the protocol outlined above, SARMs were generated with
a Java program utilizing the OEChem toolkit.12

SAR Evaluation. The SAR information contained in a SARM was
quantified by calculating two different values: the median potency of
all compounds comprising the SARM and a matrix-based SAR
discontinuity score (Figure 1B). SAR discontinuity is high when
structurally similar or analogous compounds have significant potency
variations.13 Such compounds typically reveal SAR information. A SAR
discontinuity score quantifying this information was first introduced by
systematically accounting for pairwise potency differences between
compounds meeting a predefined similarity criterion.13 For SAR
monitoring, we defined a SARM-based discontinuity score
(SARM_Disc)
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where i and j are compounds in a SARM that form an MMP, m is the
total number of SARM compounds, N is the total number of MMPs
contained in the SARM, poti is the potency of compound i, and potj is
the potency of compound j. For each SARM, the SARM_Disc value
was calculated.

Graphical Analysis. SARM distributions were analyzed in
scatterplots of median potency vs SARM_Disc scores. In addition,
trend plots were generated from SARM distributions to separately
monitor the progression of potency and SARM_Disc scores over time.
Trend plots were obtained by fitting potency and SARM_Disc values
averaged at different time intervals to a linear function.
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Public Domain Data Sets. Compounds and activity data were
taken from ChEMBL14 (version 20). To assemble data sets evolving
over time, compounds for proof-of-concept studies active against
human targets at the highest confidence level (ChEMBL confidence
score 9) with reported direct binding interactions (ChEMBL
relationship type D) and IC50 values as potency measurements were
considered. For all preselected compounds, publication dates were
recorded. A qualifying target-based data set was required to contain
compounds reported in increments over a period of at least 5
subsequent years (for each year, a new compound subset had to be
available), with a minimum of 50 compounds available in the first year.
Four data sets meeting these criteria were assembled, as reported in
Table 1.
LO Data Sets. In addition to ChEMBL sets, two LO data sets

originating from two different drug discovery projects at Pfizer were
studied. Each project team pursued two different chemical series. In
each case, one of the series was deemed to be a successful chemical
series because the project team was able to identify and nominate
preclinical candidate(s), and the second was an unsuccessful series
from which no candidate compound was nominated. The first target
protein was an enzyme, which was pursued as a biological target for a
neurodegenerative indication. The end point for potency in this
project was inhibitory activity assessed in a direct enzymatic assay.
Although the project team also evaluated other properties during LO,
for the purposes of this study, the primary potency end point was used
to monitor SAR progression. The second target was also an enzyme,
and downregulation of the activity of this enzyme was targeted for an
inflammation indication. Also in this case, the end point for potency
was inhibitory activity in an enzymatic assay. A series definition used
by the project team was added to each compound. IC50 values for both
projects were converted to logarithmic units. For temporal analysis,
dates when compounds were first registered internally were
determined and used for monitoring SAR progression. Details of the
LO data sets are reported in Table 2.

■ RESULTS AND DISCUSSION

Concept of Indicator SARMs. SARMs were originally
developed for a completely different purpose than for
monitoring SAR progression during LO, i.e., to systematically
organize analogue series, elucidate SAR patterns for structurally
related series, suggest virtual compounds, and predict their
activity.8 In Figure 1A, a small model SARM formed by six

compounds (two MMSs) is shown on the left, and a slightly
larger SARM (seven compounds, two MMSs) is shown on the
right, which also contains a virtual compound (non-colored
cell). We reasoned that several characteristics of SARMs might
render them suitable for monitoring SAR progression:

(1) SARMs systematically extract all analogue relationships
from compound sets. If LO sets contain multiple series,
then SARMs not only organize these series as MMSs but
also detect all structural relationships among them. Each
SARM contains a unique subset of MMSs with related
core structures, regardless of the origin of these structural
relationships.

(2) SARMs can be easily annotated with compound
properties that can then be analyzed based upon the
structural organization provided by SARMs.

(3) Depending on the structural relationships contained in a
compound data set, varying numbers of SARMs are
obtained. This is illustrated in Table 1, which reports
compound and SARM statistics for the public domain
data sets. Since LO sets are typically centered on single
or multiple lead series, they tend to produce large SARM
ensembles, thus enabling statistical analysis of SARMs
and SARM-associated properties. As a rule-of-thumb, the
number of SARMs obtained for structurally homoge-
neous data sets is often roughly comparable to the
number of data set compounds (Table 1).

Given these characteristics, we introduced three modifica-
tions to SARMs specifically for the purpose of SAR progression
analysis:

(1) SARMs were iteratively calculated for evolving com-
pound data sets at different time points. Thereby, SARM
ensembles were obtained that systematically captured all
structural relationships between existing and new
compounds.

(2) For the analysis of these ensembles, SARMs were
classified into three categories including existing,
expanded, and new SARMs. Existing SARMs were not
modified through the addition of new compounds,

Table 1. ChEMBL Compound Data Sets and SAR Matricesa

first year last year

ID target name years no. cpds no. SARMs no. cpds no. SARMs

1908 cytochrome P450 11B1 2006−2013 68 7 464 206
4015 C−C chemokine receptor type 2 2006−2011 124 182 836 1365
344 melanin concentrating hormone receptor 1 2005−2010 259 329 990 1086
3468 caspase-7 2005−2014 61 13 232 125

aFor each data set, the ChEMBL ID and target name are reported as well as the time period (years) over which the growth of the data set was
monitored using SARM ensembles. In addition, the compound composition (no. cpds) and corresponding SARM statistics (no. SARMs) are
provided for the first and last years of each time period.

Table 2. Pfizer LO Data Sets and SAR Matricesa

first year last year

LO targets and sets years no. cpds no. SARMs no. cpds no. SARMs

neurodegenerative series 1 2010−2014 10 1 431 672
series 2 2010−2015 46 49 125 128

inflammation series 1 2011Q1−2012Q3 20 5 88 93
series 2 2010Q2−2010Q4 18 9 78 43

aFor each LO set, the time period (years) is reported over which the growth of the corresponding compound series was monitored using SARM
ensembles. Q means quarter. In addition, the compound composition (no. cpds) and corresponding SARM statistics (no. SARMs) are provided for
the first and last intervals of each time period.
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whereas expanded SARMs were obtained when new
compounds form structural relationships with already
available compounds (as is the case when new analogues
are generated for an existing series). Figure 1A illustrates
the process of SARM expansion. A new compound
complements one of the two MMSs contained in the
matrix on the left, leading to the generation of an
expanded SARM on the right. Moreover, if newly added
compounds introduced structural novelty, i.e., if they
formed novel MMSs, then new SARMs were obtained.

(3) For SAR monitoring, SARMs were annotated with two
properties, including compound potency and the newly
introduced SARM-based SAR discontinuity score
(SARM_Disc), as illustrated in Figure 1B. For each
SARM, the median potency and the SARM_Disc score
were calculated. A high SARM_Disc score indicated the
presence of structural analogues with significant potency
variations. This situation corresponded to high SAR
information content of a SARM because it encoded
structural changes that significantly affected potency
(different from SARMs that exclusively consisted of
weakly or highly potent analogues). Taken together,
median potency and SARM_Disc made it possible to
prioritize matrices for SAR monitoring. From a SAR
information perspective, progress during LO is generally
made when SAR-sensitive analogues are obtained
including increasingly potent compounds during the
course of the project. Following our analysis concept, this

is reflected by the generation of SARMs with high
median potency and high SARM_Disc scores (as an
inflection point during the course of the project), as
revealed by time-dependent analysis of matrix distribu-
tions.

SARM distributions were recorded in scatterplots of median
potency vs SARM_Disc, as schematically represented in Figure
1B (bottom). Preferred SARMs with high median potency and
high discontinuity scores mapped to the upper right quadrant
of these plots.
The original SARM approach was focused on exploring

individual matrices and the compound information that they
contained, as discussed above. Because we did not consider the
content of individual SARMs for monitoring SAR progression
but studied SARM distributions with respect to property values
over time, matrix ensembles generated for our current analysis
were termed indicator SARMs.

Graphical SARM Distribution Analysis. Figure 2A
summarizes the principles of time-dependent indicator SARM
analysis. SARM ensembles were calculated for an evolving data
set following each addition of a compound subset and classified
according to the compounds and structural relationships that
they captured. The resulting SARM distributions were
monitored over time in scatterplots reflecting their SAR
information content. Figure 2B shows exemplary progression
trends. At the top, positive SAR progression is illustrated. In
this case, matrix populations grew over time through the
addition of new SARMs and, to a lesser extent, expanded

Figure 1. SARM, expansion, and characterization. (A) In the SARM, each row represents a matching molecular series (MMS), i.e., a series of
compounds that have a common core (shown left from the row) and are distinguished only by a substituent at a single site (top of each column).
Each cell represents an individual compound (unique combination of a core and substituent), either a known data set compound (colored by
potency using a continuous spectrum from (lowest) red to (highest) green) or a virtual compound (an as of yet unexplored combination of a core
and substituent; non-colored cell). All MMSs contained in a given SARM have related cores that are distinguished only by a structural change at a
single site. The matrix on the left was expanded through the addition of a new compound that was detected to match the core of one of the MMSs
contained in this matrix. The resulting expanded matrix is shown on the right (the substituent of the new compound is highlighted in blue). (B)
Exemplary SARMs with varying SAR information content. SARMs were characterized by calculating their median compound potency and the
SARM_Disc score (see text). Accordingly, the SARM_Disc score of a SARM is high if the structurally related compounds comprising the SARM
have large potency variations. Therefore, SARM_Disc scores serve as an indicator of SAR information content. As can be seen (and easily
rationalized), median potency does not per se correlate with SARM_Disc. The three exemplary SARMs are shown in a scatterplot of median potency
vs SARM_Disc. The scatterplot is divided into four quadrants. SARMs with high information, such as matrix 2 in this example, map to the upper
right quadrant.
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SARMs. A gradual shift of SARM distributions toward the
upper right quadrants of the scatterplots was observed,
revealing a steady increase in SAR information and the
generation of increasingly potent compounds. By contrast,
the example at the bottom illustrates (undesired) negative SAR
progression characterized by the occurrence of expanded and
new SARMs with low median potency and low discontinuity
scores and the absence of an upward shift of SARM
distributions over time. Positive and negative SAR progressions
can also be visualized in trend plots (shown on the right of
Figure 2B) that are derived from the SARM distributions by
fitting linear models and separately monitoring potency and

SARM_Disc progression over time. The trend lines were fitted
to data averaged over time intervals. Ideally, in the case of
positive SAR progression, these trend lines should have positive
slopes.

Monitoring SAR Progression. Applying the approach
summarized in Figure 2, SAR progression was monitored for
different types of compound sets.

Public Domain Compound Sets. The four compound data
sets from ChEMBL represented prototypic compound sets
evolving over time and were generated to mimic LO sets by
combining compounds active against different targets taken
from the scientific literature (only high-confidence activity data

Figure 2. Monitoring SAR progression. (A) Schematic representation illustrating the concept of monitoring SAR progression over time using
SARMs. Newly synthesized compounds (shown on a white background) are added in time intervals to evolving lead optimization sets (gray
background), and SARMs are systematically calculated at each time point. Matrix representation is according to Figure 1. SARMs calculated at each
time point are retained and compared to newly derived matrices. For visualization purposes, not all compounds and SARMs are shown. Distributions
of SARMs are monitored in scatterplots of median potency vs SARM_Disc in which each SARM is represented as a color-coded dot. Dots with black
border correspond to SARMs shown above the scatterplots. For temporal analysis, three categories of SARMs are distinguished: existing (colored
gray), expanded (cyan), and new SARMs (magenta). Existing (old) matrices are not modified through the addition of newly synthesized compounds.
Expanded SARMs evolve from existing matrices through the addition of analogues that further extend currently available MMSs. New SARMs
contain new MMSs and capture previously unobserved structural relationships due to the addition of novel structures. (B) Two sets of SARM
scatterplots are shown and color-coded as in panel (A). Comparison of SARM scatterplots makes it possible to follow SAR progression on a time
course and judge the success of lead optimization (LO) efforts. For example, a desirable LO profile (top; positive SAR progression) would display a
shift of matrix distributions over time toward the upper right quadrant of the scatterplot (characterized by the presence of high median potency and
high SARM_Disc), with an enrichment of new SARMs. By contrast, the scatterplots at the bottom display negative progression of SAR over time
because the matrix distribution shifts toward the bottom left quadrant (characterized by the presence of low median potency and low SARM_Disc).
On the right, trend plots are shown obtained from indicator SARM distributions by fitting average potency and SARM_Disc scores of new matrices
(magenta) for each year to linear functions. Trend lines monitor the development of SARM_Disc and potency for an indicator SARM category over
time.
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were taken into consideration for compound selection).
Because selected compounds originated from a variety of
literature sources, these sets were structurally more heteroge-
neous than typical LO sets, thus presenting a challenge for a
proof-of-concept assessment of indicator SARM analysis. These
four data sets are made freely available as an open-access
deposition.15

Figure 3 shows the distribution of indicator SARMs obtained
from the data sets over a period of six subsequent years. The
median potency and SARM_Disc scores of SARMs were
plotted and colored according to their matrix category.
Figure 3A reports the temporal analysis of inhibitors of

cytochrome P450 11B1. This set contained 464 compounds
but yielded only 206 SARMs (Table 1), indicating structural
heterogeneity. Nonetheless, interesting SAR trends were
detected. From 2006 to 2011, added inhibitors often
represented new analogue series (MMSs), resulting in a
gradual increase in the number of new SARMs (magenta)
during this period. In 2011 and especially 2013, a larger number
of expanded SARMs (blue) was observed, indicating follow-up
investigations on existing series. Between 2011 and 2013, a shift
of expanded and new SARMs toward the upper right quadrant

of the plots was observed, revealing overall promising SAR
progression.
The set of C−C chemokine receptor type 2 ligands in Figure

3B was much larger (836 compounds) than the cytochrome
P450 11B1 inhibitor set and ultimately yielded 1365 SARMs
(resulting in high-density scatterplots). Between 2006 and
2008, a shift of the SARM distributions toward the right of the
plots was observed. During subsequent years, the distributions
became increasingly dominated by a large number of new
SARMs with high median potency (in addition, SARM
expansion was also observed). Thus, many novel series
containing highly potent compounds became available,
reflecting successful compound design efforts. A different
picture emerged for ligands of melanin-concentrating hormone
receptor 1 in Figure 3C, the largest data set (990 compounds)
producing 1086 SARMs. In 2005, the distribution was
dominated by new SARMs (resulting from structurally novel
compounds not available during the preceding year). In 2006,
many SARMs were expanded, reflecting follow-up chemistry
efforts, and the distribution shifted toward higher potency and
discontinuity scores, indicating SAR progression. However,
during 2007 and 2008, the number of new and expanded

Figure 3. Indicator SARM distributions over a time course. Scatterplots are shown for four public domain data sets that were incrementally
assembled over different years on the basis of compound publication dates. The SARM representation is according to Figure 2. In addition, dotted
lines at potency values of six and eight log units differentiate SARMs with high, intermediate, or low median potency. (A) Cytochrome P450 11B1
inhibitors, (B) C−C chemokine receptor type 2 ligands, (C) melanin-concentrating hormone receptor 1 ligands, and (D) caspase-7 inhibitors.
Compound and SARM statistics for the monitored time periods are provided in Table 1. We note that active compounds were available in each case
prior to the first year monitored in a scatterplot. For compounds available in the preceding year, SARMs were calculated and used as a reference
ensemble to generate classified SARMs for the first year of the monitored period.
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SARMs declined, indicating reduced chemistry efforts. Another
boost in novel active compounds was detected in 2009, which
further increased median potency. However, there was
essentially no matrix expansion in 2010, and the number of
new SARMs also declined again. Hence, in this case, different
intervals of strong and weak SAR progression were detected.
Figure 3D monitors the smallest of the four data sets, consisting
of 232 inhibitors of caspase-7, that yielded a total of only 125
SARMs. Although the number of SARMs was small in this case,
their temporal distributions revealed an obvious trend. During
2005 and 2006, a limited number of inhibitors and SARMs
became available, and expanded SARMs were first detected in
2007. However, between 2009 and 2014, an increasing number
of SARMs was found to map to the upper left quadrant of the
plots, characterized by the presence of low median potency and
high discontinuity, resulting from the addition of more and
more weakly potent compounds to a small number of highly
potent ones. Thus, in this case, negative SAR progression was
observed.
Figure 4 reports trend plots for new and expanded SARMs

generated from the distributions in Figure 3. Especially for very
large SARM ensembles, trend lines that separately monitor
potency and discontinuity help to better understand character-
istics of SAR progression, although they are only approximate.
Figure 4A confirms the conclusions drawn from SARM
distribution analysis for the cytochrome P450 11B1 inhibitor
set. The median potency and discontinuity score of new
SARMs were increasing, and potency of expanded SARMs also

increased. The only exception to overall positive SAR
progression was the observed decrease in discontinuity of
expanded SARMs, which likely resulted from the increasing
number of analogues of existing series having comparable
potency. Furthermore, Figure 4B also reveals a clear example of
positive SAR progression, consistent with SARM distribution
analysis, for the large set of C−C chemokine receptor type 2
ligands. In this case, median potency and discontinuity
increased for all SARMs or remained essentially constant at a
high level (i.e., discontinuity of expanded SARMs). Figure 4C
reflects overall limited SAR progression for the set of melanin-
concentrating hormone receptor 1 ligands, as discussed, and
Figure 4D displays negative trends for caspase-7 inhibitors.
Here, a strong decline of median potency was detected for new
SARMs, which was accompanied by an increase in disconti-
nuity. Although this observation might be puzzling at a first
glance, it can be easily rationalized as resulting from the
presence of analogues with decreasing potency in SARMs also
containing highly potent compounds. Furthermore, for a small
number of expanded SARMs, potency increased only slightly
and discontinuity remained at a low level.
Taken together, temporal distribution analysis of indicator

SARMs from exemplary target-based compound sets evolving
over time detected clear differences in SAR progression, hence
providing support for the underlying methodological concept.
Next, actual LO data sets originating from drug discovery were
investigated. Such data sets are currently not available in the
public domain.

Figure 4. Trend plots of expanded and new indicator SARMs according to Figure 2B derived from the data distributions in Figure 3. (A)
Cytochrome P450 11B1 inhibitors, (B) C−C chemokine receptor type 2 ligands, (C) melanin-concentrating hormone receptor 1 ligands, and (D)
caspase-7 inhibitors. Trend lines separately monitor the development of median potency and SARM_Disc scores over time for a given category of
indicator SARMs.
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LO Data Sets. Two LO sets from different Pfizer drug
discovery projects were investigated. Each project team pursued
two different chemical series per target. In each case, one of the
series was considered to be successful because the project team
was able to nominate preclinical candidate(s) from this series,
and the other series was unsuccessful, yielding no candidate
compounds. Table 2 provides a description of these LO sets.
Figure 5 shows the distribution of indicator SARMs obtained

over a period of 4 to 5 years for the neurodegenerative target
and 3 to 7 quarters for the inflammation target. Figure 5A
monitors the SAR progression of series 1 of the neuro-
degenerative project. This set ultimately yielded 672 SARMs for
431 compounds (Table 2), indicating structural homogeneity.
In 2010, LO efforts on this series started with 10 analogues
active in the micromolar range contained in a single SARM.
Figure 5A reveals that there was consistent positive SAR
progression for series 1. Starting in 2012, new and expanded
SARMs were detected, and there were clear breakthroughs in
2013 and 2014, yielding highly potent compounds in
increasingly informative SAR environments. On the basis of
SAR monitoring, LO on series 1 was a highly promising project,
consistent with its ultimate success. Similar trends were not
observed for series 2 in Figure 5B, although there was much
more compound and SAR information available initially than

that for series 1. LO efforts on series 2 started with 46
compounds, and a total of 125 inhibitors were evaluated over a
period of 6 years. However, the project team was unable to
break a potency barrier with this chemical series. Although
matrix expansion occurred during the first 3 years, no notable
SAR progression was detected, and in 2014, it was evident that
the LO project faced a roadblock.
The comparably small series of inflammation inhibitors in

Figure 5C,D with, ultimately, 88 and 78 compounds,
respectively, also exhibited rather different SAR progression.
Series 1 in Figure 5C displayed very positive SAR trends with
significantly increasing SAR information content and com-
pound potency already detectable during the first two time
intervals. By contrast, very little SAR progression was observed
for series 2 in Figure 5D from the second to the third quarter of
2010, but no further progression was observed during the
fourth quarter. Thus, SAR monitoring contrasts these two
series of inflammation inhibitors, and it is easy to reconcile why
series 1 was ultimately successful and series 2 was not.
The trend plots for these LO sets in Figure 6 strongly

support conclusions drawn from indicator SARM distribution
analysis. The successful series 1 of neurodegeneration inhibitors
in Figure 6A and inflammation inhibitors in Figure 6C
displayed an increase in all trend lines for new and expanded

Figure 5. Indicator SARM distributions over a time course for LO sets. Scatterplots are shown for two LO data sets that were assembled from Pfizer
project team data on the basis of project progression information. (A) Neurodegenerative target, series 1, (B) neurodegenerative target, series 2, (C)
inflammation target, series 1, and (D) inflammation target, series 2. Compound and SARM statistics for the monitored time periods are provided in
Table 2. Series 1 in (A) and (C) represented successful project progressions from which compounds were nominated as candidates for preclinical
studies. By contrast, series 2 in (B) and (D) represented unsuccessful project progressions from which no compounds were nominated.
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matrices. By contrast, the unsuccessful series 2 of neuro-
degeneration inhibitors in Figure 6B was characterized by
decreasing trend lines for expanded matrices, reflecting negative
SAR progression of close-in analoging attempts and diverging
trend lines for new matrices, with an increase in SAR
information content resulting from the addition of new but
only weakly potent compounds that could not be further
optimized. Moreover, the series 2 of inflammation inhibitors in
Figure 6D displayed essentially flat SAR characteristics
throughout.
On the basis of the comparisons reported in Figures 5 and 6,

successful LO series of neurodegeneration and inflammation
inhibitors were clearly distinguished from unsuccessful series.
Analysis of indicator SARM distributions would have made it
possible to predict the lack of SAR progression for the latter
series during the course of LO.

■ CONCLUSIONS

Lead optimization is a largely hypothesis-driven process that
depends mainly on medicinal chemistry experience and
intuition. Only few efforts have thus far been made to
rationalize this process and assess LO progress. Efforts in this
direction are highly desirable to support decision making
because it is very difficult to predict the ultimate outcome of

LO campaigns and control the number of compounds to be
evaluated before meaningful conclusions can be reached. In this
study, we have introduced a computational framework to
monitor the progression of SAR information content during
LO over a time course. The SAR matrix data structure, which
was originally developed for a completely different purpose, i.e.,
the elucidation of SAR patterns in related analogue series and
compound prediction, was adapted as a diagnostic tool to
evaluate SAR progression. This was accomplished by
generation of SARM ensembles for compound sets evolving
over time, classification of SARMs based on the compounds
they contain, and characterization of their SAR information
content. SAR information contained in individual SARMs was
quantified on the basis of a newly introduced matrix
discontinuity score combined with median potency calcu-
lations. Characteristic shifts of SARM ensembles in scatter plots
were found to indicate positive, neutral, or negative SAR
progression and revealed significant differences between target-
based compound sets. Analysis of SARM distributions was
complemented by trend plots designed to summarize SAR
progression over time. Our proof-of-concept investigations
show that SARM ensembles are capable of detecting differences
in SAR progression in compound sets of distinct composition.
As a diagnostic tool, they can be used to distinguish SAR
progression from redundancy, i.e., when increasing numbers of

Figure 6. Trend plots for LO sets showing expanded and new indicator SARMs derived from the data distributions in Figure 5. (A)
Neurodegenerative target, series 1, (B) neurodegenerative target, series 2, (C) inflammation target, series 1, and (D) inflammation target, series 2.
Trend lines separately monitor the development of median potency and SARM_Disc scores over time for a given category of indicator SARMs.
Series 1 in (A) and (C) represented successful chemical series and displayed positive SAR progression with an increase in both median potency and
SARM_Disc scores. Series 2 in (B) and (D) represented unsuccessful chemical series, which displayed negative SAR progression for expanded
SARMs with a decrease in median potency and SARM_Disc scores and essentially flat SARs for new SARMs.
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compounds are made that do not add novel SAR information
or further improve potency. Application of the approach to
actual LO sets from drug discovery projects revealed very clear
SAR trends over time for series that were ultimately successful
or unsuccessful. Such insights are valuable in project decision
making. Taken together, the results reported herein suggest
that indicator SARMs should merit further investigation in LO
assessment. Since the SARM data structure can be easily
annotated with different molecular properties, multiple
parameters can be monitored.

■ AUTHOR INFORMATION
Corresponding Author
*Tel: +49-228-2699-306. Fax: +49-228-2699-341. E-mail:
bajorath@bit.uni-bonn.de.
Author Contributions
∥S.K. and A.d.l.V.d.L. contributed equally to this work.
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
The coauthors of the University of Bonn would like to thank
OpenEye for providing an academic license. For the two Pfizer
LO sets, a waiver on ACS data deposition requirements has
been granted.

■ ABBREVIATIONS USED
LO, lead optimization; MMP, matched molecular pair; MMS,
matching molecular series; SAR, structure−activity relationship;
SARM, SAR matrix

■ REFERENCES
(1) The Practice of Medicinal Chemistry, 3rd ed.; Wermuth, C. G., Ed.;
Academic Press: Boston, MA, 2008.
(2) Nicolaou, C. A.; Brown, N.; Pattichis, C. S. Molecular
Optimization Using Computational Multi-Objective Methods. Curr.
Opin. Drug. Discovery Develop. 2007, 10, 316−324.
(3) Segall, M. Advances in Multi-Parameter Optimization Methods
for De Novo Drug Design. Expert Opin. Drug Discovery 2014, 9, 803−
817.
(4) Iyer, P.; Hu, Y.; Bajorath, J. SAR Monitoring of Evolving
Compound Data Sets Using Activity Landscapes. J. Chem. Inf. Model.
2011, 51, 532−540.
(5) Maynard, A. T.; Roberts, C. D. Quantifying, Visualizing, and
Monitoring Lead Optimization. J. Med. Chem. 2015, DOI: 10.1021/
acs.jmedchem.5b00948.
(6) Munson, M.; Lieberman, H.; Tserlin, E.; Rocnik, J.; Ge, J.;
Fitzgerald, M.; Patel, V.; Garcia-Echeverria, C. Lead Optimization
Attrition Analysis (LOAA): A Novel and General Methodology for
Medicinal Chemistry. Drug Discovery Today 2015, 20, 978−987.
(7) Wassermann, A. M.; Haebel, P.; Weskamp, N.; Bajorath, J. SAR
Matrices: Automated Extraction of Information-Rich SAR Tables from
Large Compound Data Sets. J. Chem. Inf. Model. 2012, 52, 1769−1776.
(8) Gupta-Ostermann, D.; Bajorath, J. The ‘SAR Matrix’ Method and
its Extensions for Applications in Medicinal Chemistry and Chemo-
genomics. F1000Research 2014, 3, 113.
(9) Kenny, P. W.; Sadowski, J. Structure Modification in Chemical
Databases. In Chemoinformatics in Drug Discovery; Oprea, T. I., Ed.;
Wiley-VCH: Weinheim, Germany, 2005; pp 271−285.
(10) Hussain, J.; Rea, C. Computationally Efficient Algorithm to
Identify Matched Molecular Pairs (MMPs) in Large Data Sets. J.
Chem. Inf. Model. 2010, 50, 339−348.
(11) Wawer, M.; Bajorath, J. Local Structural Changes, Global Data
Views: Graphical Substructure−Activity Relationship Trailing. J. Med.
Chem. 2011, 54, 2944−2951.

(12) OEChem TK; OpenEye Scientific Software, Inc.: Santa Fe, NM,
2012.
(13) Peltason, L.; Bajorath, J. SAR Index: Quantifying the Nature of
Structure−Activity Relationships. J. Med. Chem. 2007, 50, 5571−5578.
(14) Gaulton, A.; Bellis, L. J.; Bento, A. P.; Chambers, J.; Davies, M.;
Hersey, A.; Light, Y.; McGlinchey, S.; Michalovich, D.; Al-Lazikani, B.;
Overington, J. P. ChEMBL: A Large-Scale Bioactivity Database for
Drug Discovery. Nucleic Acids Res. 2012, 40, D1100−D1107.
(15) Shanmugasundaram, V.; Zhang, L.; Kayastha, S.; de la Vega de
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