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ABSTRACT: The structure−activity relationship (SAR) matrix (SARM) methodology was
originally developed to systematically extract structurally related compound series from data
sets of any composition, visualize SAR patterns, and generate virtual candidate compounds.
The approach is based upon a dual fragmentation variant of the matched molecular pair
formalism. Compound data sets typically yield multiple SARMs that contain unique subsets
of structural analogs and virtual candidates complementing existing series. SARM-specific
activity predictions make it possible to prioritize virtual analogs for synthesis. The SARM
design is intuitive and reminiscent of conventional R-group tables, although the underlying
data structure is more complex. Navigating multiple SARMs in parallel can be challenging,
depending on the data sets under investigation. Therefore, in this work, we further extend
the SARM approach through integration of matrices with newly designed molecular grid
maps and activity landscape representations, which provide complementary views of
compound relationships and SARs. Moreover, a grid map provides a global view of SARM
information including existing compounds, virtual candidates, and associated properties.
Grid maps preserve the origin of compounds such that corresponding SARMs can be concomitantly analyzed. In their current
implementation, second-generation SARMs make it possible to comprehensively organize and explore large data sets, visualize
SARs, and select candidate compounds for practical applications.

1. INTRODUCTION

The analysis of structure−activity relationships (SARs) is of
central importance in medicinal chemistry to guide compound
optimization.1 A variety of computational methods are
available to aid in SAR analysis and compound design.
Classical quantitative SAR (QSAR) methods2 are used to build
linear SAR models for compound series and prioritize analogs.
In addition, machine learning algorithms are applied to model
nonlinear SARs and predict novel active compounds.2,3

Furthermore, numerical SAR analysis methods have been
introduced4,5 to quantitatively describe SAR features in
compound data sets. These functions can be used to globally
characterize SARs or quantitatively describe local SARs for
compound subsets. Numerical multi-objective optimization
techniques were also adapted to utilize SAR information for
compound optimization and design.6,7 Another category of
computational methods applies the scaffold concept to
generate molecular hierarchies for SAR exploration and
compound selection.8,9 Moreover, different statistical and
modeling approaches were introduced to monitor SAR
progression of evolving compound series.10−13 Going beyond
individual analog series, computational methods and data
structures have been used to extract SAR information from
heterogeneous compound data sets.14 Among these, ap-

proaches for graphical SAR analysis and SAR visualization
play a particularly important role.15 SAR visualization methods
range from extensions of conventional R-group tables1,16 and
scaffold-based techniques17−20 to molecular networks20,21 and
different types of activity landscape and activity cliff
representations.22,23

The SAR matrix (SARM) method was designed to bridge
between SAR visualization and compound design. It was
originally introduced for the extraction and organization of
related series of active compounds from data sets, elucidation
of SAR patterns, and generation of virtual candidate
compounds to further expand existing series.24 Among SAR
visualization approaches, the SARM method is unique because
it also contains a compound design component and enables
activity predictions. It was also adapted for studying
structurally related compounds with multitarget activity25

andin combination with SAR analysis functionsfor
monitoring SAR progression of analog series.11 In addition,
SARMs were successfully used for expansion of screening hits
from focused libraries.26 Hence, SARMs provide a versatile
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data structure and computational tool for medicinal chemistry
applications. However, large ensembles of SARMs resulting
from structurally complex data sets require thorough analysis,
which benefits from matrix prioritization and additional
operations.25 Therefore, we have aimed at further expanding
the SARM method and data structure to summarize SARM
information content in a consistent manner, provide
complementary visualization features, and enable fully
interactive use. Herein, the integration of SARM with newly
designed molecular grid maps and activity landscape models is
reported, which further increases the utility for medicinal
chemistry. Second-generation SARMs are applicable to very
large compound data sets.

2. RESULTS AND DISCUSSION
In the first section, the SARM data structure is described.
Subsequent sections report the design of molecular grid maps
and activity landscape models and their integration with
SARM. Key features of the extended approach are discussed.
Additional methodological and computational details are
provided in Materials and Methods. All compound data sets
used in the following were obtained from the current release of
ChEMBL.27

2.1. SARM Concept and Data Structure. SARMs are
generated by systematically extracting compound series with
clearly defined structural relationships from data sets and
organizing them in matrices that are reminiscent of R-group
tables. The identification and organization of structurally
related analog series forming SARMs is based upon an
extension of the matched molecular pair (MMP) concept. An
MMP is defined as a pair of compounds that are only
distinguished by a chemical modification at a single site28

termed a chemical transformation.29 MMPs are generated
through systematic fragmentation of exocyclic single bonds in
compounds.29 Fragments are recorded in an index table as keys
(core structures) and smaller values (substituents). The unique
design principle underlying SARM generation is a dual
fragmentation approach that generates MMPs at the level of
compounds (first fragmentation) and core structures (second
fragmentation).24 In the first step, a series of analogs sharing a
particular core are identified. In the second step, cores
representing series are refragmented to identify all structurally
related cores that only differ by a chemical change at a single
site. Analog series with structurally related cores are then
organized in an individual SARM, as illustrated in Figure 1.
Each row contains an individual analog series and each column
molecules from different series have the same substituent. Each
cell in the matrix represents a unique compound. SAR
information is conveyed by coloring cells according to
compound potency. Empty cells represent virtual analogs
consisting of currently unexplored combinations of cores and
substituents. Thus, virtual compounds complement and further
extend the analog space of related series. The potency of virtual
candidates can be predicted on the basis of neighboring
analogs in a matrix using local Free-Wilson-type QSAR
models,30,31 if actual data set compounds are available as
neighbors.31 Depending on the structural relationships
contained in a given data set, varying numbers of SARMs are
obtained, each of which comprises a unique subset of analog
series with structurally related cores. Hence, the SARM data
structure comprehensively captures structural relationships
between compounds and series available in a given data set,
organizes series into different subsets, and complements each
subset with currently unexplored virtual analogs. Large and

Figure 1. SARM. The design and generation of SARM is illustrated using three small compound series (A−C). Analogs from different series are
consecutively numbered and their pKi values are reported in red. Substitutions distinguishing analogs from individual series are shown on a blue
background and substructures differentiating cores are colored red. The SARM combines these three series because they have structurally related
cores. Each row contains a series and each column compounds from different series with the same substituent. Existing analogs are represented by
cells that are color-coded by potency. In addition, empty cells represent virtual analogs. The figure was adopted from ref 31.
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structurally complex compound sets may yield tens to
hundreds of SARMs that must be individually analyzed and
compared.25 Therefore, we have attempted to further expand
the analytical capacity of the SARM approach and enable
interactive prioritization of virtual candidate compounds.
2.2. Design of Molecular Grid Maps. Two-dimensional

(2D) molecular grid maps have been designed to provide a
complementary view of a given compound data set organized
in SARMs together with all resulting virtual analogs applying
an alternative similarity measure (i.e., fingerprint similarity
instead of MMP relationships). Hence, the grid map can be
rationalized as a meta-level summary of SARM information

content. Virtual compounds originating from SARMs cover
chemical space around related analog series and connect
SARMs to the grid map for the exploration of candidate
compounds. From the grid map, compounds and virtual
analogs of interest can be selected and traced back to their
original SARM environment to consider other closely related
candidates. This is made possible by consistently indexing
compounds from SARMs in the grid map. Moreover, to
provide a close link between compounds in grid maps and their
original SARM environments, selecting a compound in a grid
map also highlights all other compounds from the correspond-
ing SARM in the map. This implementation aids in navigating

Figure 2. From SARMs to molecular grid maps. Panel (a) illustrates the generation of a grid map using compounds from SARMs. Input molecules
are numbered and pKi values are reported in red. In the SARMs (step 1), cells are color-coded according to compound potency and empty cells
represent virtual analogs. Substructures distinguishing related cores are shown in red. After calculating compound fingerprints (step 2), dimension
reduction is carried out using PCA (step 3) followed by t-SNE (step 4) to generate a 2D representation. Alternatively, dimension reduction is
carried out via GTM. The 2D representations provide the basis for grid map generation using the J−V algorithm. In the final grid map, existing
compounds are shown on a color-coded square background (experimental potency values) and virtual analogs on a circular background (predicted
potency). If no SARM compound is assigned to a grid point in the map, the corresponding cell remains empty. Panel (b) shows an exemplary 2D
representation resulting from reduction of fingerprint space and a corresponding regular grid and illustrates iterative J−V assignment of compounds
to grid positions (indicated by black arrows).
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the grid map and in comparing compounds from different
SARMs together with their virtual analogs.
As a basis for grid map generation, real and virtual

compounds are projected into a chemical descriptor (finger-
print) space that is transformed into a 2D representation
through dimension reduction. In the resulting plane,
compound positions are defined and increasing intercom-
pound distance indicates increasing dissimilarity, without the
need for explicit similarity calculations. Data points in the 2D
representation are then mapped onto an appropriately sized
regular grid by applying the Jonker−Volgenant (J−V)
algorithm32 to solve the associated linear assignment problem
(LAP).32

Figure 2a provides an outline of the methodology using a
simple example, leading from a SARM organization of a
compound set to a 2D molecular grid map including virtual
analogs. A small model data set comprising nine compounds
(1−9) is shown, which yields two SARMs, each of which
contains two series of analogs with structurally closely related
cores. The first SARM also produces a virtual analog (v1)
representing an unexplored core−substituent combination. For
compounds 1−9 and v1, fingerprints are calculated andas a
complement to MMP-based organizationfingerprint space is
projected through two-step or one-step dimension reduction
onto an x,y-plane serving as a starting point for grid positioning
using the J−V algorithms. Two-step dimension reduction is
carried out using principal component analysis (PCA)
followed by t-distributed stochastic neighbor embedding (t-
SNE) and one-step dimension reduction using generative
topographic mapping (GTM) (see Materials and Methods).
Figure 2b shows a prototypic 2D representation resulting

from dimension reduction and a corresponding regular grid
and illustrates the J−V assignment procedure. Compounds are
iteratively assigned to grid points and alternative grid points
are explored through combinatorial optimization to converge
on a final grid positioning. The algorithmic assignment of
compound positions from the 2D representation of fingerprint
space to points on the regular grid preserves the grouping of
compounds and intercompound distances as much as possible
(further details are provided in Materials and Methods). To
construct the m × m square grid map for compound
positioning, the size of the grid typically exceeds the number
of projected compounds. Therefore, “dummy” molecules are
introduced with zero fingerprint bit settings to complement the
compound data set.
The final grid map yields a complementary view of the

SARM results for entire data set. Cells corresponding to those
used in SARMs are then positioned on grid points to display
compound structures and are color-coded according to
observed or predicted potency values (or other molecular
properties), as illustrated in Figure 2a. Indices are introduced
to record the SARM localization of projected compounds and
thereby enable toggling between grid maps and SARMs.
2.3. Exemplary Grid Maps. Figure 3a shows a

representative grid map for a set of 92 cyclin-dependent
kinase 1/cyclin B1 inhibitors, 156 SARM-based virtual analogs
(for which potency values have been predicted), and eight
dummy molecules (forming an empty region in the global
map). The map was generated on the basis of PCA/t-SNE
dimension reduction. Known inhibitors are displayed in cells
with square backgrounds and virtual analogs in cells with
circular backgrounds. For virtual analogs, potency values were
predicted via SARM-based QSAR31 (other predictive methods

can also be applied). The grid map reveals clustering of
compounds according to different potency levels and suggests
selection of candidate compounds from the predominantly

Figure 3. Small grid maps. Shown are exemplary grid maps for a set of
92 cyclin-dependent kinase 1/cyclin B1 inhibitors (ChEMBL ID:
1907602) and 156 virtual analogs resulting from SARM application.
The representation of the map is according to Figure 2a. For virtual
compounds, predicted potency values are used. The empty regions in
the upper right of the maps results from grid points to which no
SARM compounds are assigned. Grid maps were generated following
dimension reduction using (a) PCA/t-SNE or (b) GTM.
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green regions emerging at the bottom of the map. Potent
compounds and their neighbors in the map can then be viewed
in their original SARM environments to provide additional
SAR information. Hence, the grid map readily identifies
attractive regions combining known compounds and virtual
analogs that can be further explored. Figure 3b shows an
alternative GTM-based grid map. As would be expected
applying different dimension extension methods, relative
compound positions in the PCA/t-SNE- and GTM-based
maps partly differ. However, these maps reveal similar
compound groupings and SAR patterns and are equally
interpretable. In the GTM-based map, selection of candidate
compounds would also focus on the green regions emerging at
the bottom of the map, as discussed above. Thus, the
comparison indicates that alternative dimension reduction
approaches can be employed to yield interpretable grid maps,
depending on methodological preferences and computational
costs required for specific applications.
Figure 4a shows a PCA/t-SNE-based grid map comprising

16 129 compounds resulting from SARM processing of a set of
1772 PIM kinase inhibitors, yielding 14 260 virtual analogs
(for which potency values have been predicted) and 97

dummy molecules (forming an empty region in the global
map). Compound data sets of this size are usually difficult to
analyze graphically. However, gird maps of large size are easily
generated. A bird’s eye view of the map of these kinase
inhibitors and their virtual analogs, which occur in many
different SARMs, reveals regions of predominantly high or low
compound potency as well as regions of SAR discontinuity that
are formed by compounds with varying potency levels. A close-
up view is shown for an “island” of SAR discontinuity that is
identified in the global map and contains four virtual
candidates, one of which is predicted to be highly potent
(green circular background in the center of the small map).
Such views of compound subsets are straightforward to
generate by delineating regions of interest in global maps,
enabling interactive display of maps at different levels of
resolution. Figure 4b shows the corresponding GTM-based
grid map. Comparing these two maps, the global view of the
PCA/t-SNE-based map in Figure 4a reveals a more extensive
clustering of compounds according to different potency levels
than the GTM-based map in Figure 4b, where compounds
with different potency are more evenly distributed. On the
other hand, the close-up view of the local environment of the

Figure 4. Large grid maps. Shown are exemplary grid maps for a set of 1772 kinase PIM inhibitors (ChEMBL ID: 2147) and 14 260 virtual analogs
resulting from SARM application. On the left, a global view of the complete map is shown and, on the right, a close-up view of a selected region.
For virtual compounds, predicted potency values are used. The empty region on the right side of the maps result from grid points to which no
SARM compounds are assigned. Grid maps were generated following dimension reduction using (a) PCA/t-SNE or (b) GTM.
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highly potent candidate compound that is also shown in Figure
4b displays a desirable enrichment with other potent analogs.
However, since the PCA/t-SNE-based map is overall more
structured than the corresponding GTM-based map we would,
in this case, give preference to the former, which would make it
easier to focus on local regions of interest. Of course, there is
no a priori reason to select one map instead of the other since
corresponding maps for different compound data sets can
easily be compared and analyzed in context.
2.4. Property Landscapes. Compound information

provided by 2D grid maps is further complemented by 3D
property landscape models generated on the basis of these
maps. Instead of coloring grid map cells by potency or values
of other molecular properties, these values are added as a third
dimension to the map from which a coherent surface is
interpolated (see Materials and Methods). Figure 5 (left)
shows an activity landscape for a set of 130 × 103 ubiquitin-
protein ligase inhibitors. In addition, a corresponding land-
scape is shown that was built on the basis of the same grid map
but using calculated Clog P values (a measure of hydro-
phobicity) instead of potency values (right). These 3D
landscape views provide both grid and elevation-dependent
(color-coded) property information.
The topology of the activity landscape is rugged, revealing

the formation of a number of activity cliffs. Thus, the 3D
representation provides an alternative view of SAR disconti-
nuity, and compounds involved in the formation of activity
cliffs can be interactively selected. By contrast, the topology of
the Clog P landscape is smooth, reflecting generally high
hydrophobicity of the compound set. Nonetheless, small
islands of low hydrophobicity also emerge in the landscape,
which can be inspected for potential candidates such as the
virtual compound shown in Figure 5. This compound
originates from an SARM and is of particular interest because

it maps to an activity cliff region in the activity landscape, is
predicted to be highly potent, and also occupies a small pocket
of low hydrophobicity in the Clog P landscape. Hence, in an
optimization effort, it would be an attractive candidate for
selection and synthesis.

2.5. Concluding Remarks. SAR analysis and visualization
methods play an important role in computational medicinal
chemistry. A major task is translating the results of SAR
analysis into compound design. During lead optimization, the
key question is which compound(s) to make next to further
advance a series. Going beyond classical QSAR, only few
computational concepts have been introduced to aid in
decision making during chemical optimization. The SARM
approach was originally developed to bridge between structural
analysis, SAR visualization, and compound design. This
combination sets it apart from other SAR analysis and
visualization methods. SARM identifies series of structurally
related compounds, systematically organizes them, and
generates virtual analogs. It can also be applied to given series
to produce virtual candidates for optimization efforts. We have
been interested in extending the SARM approach to further
increase its analytic capacity, enable interactive application to
large data sets, and aid in compound selection from matrices.
Our study was inspired by the challenge to analyze increasingly
large and heterogeneous data sets to complement lead
optimization with SAR insights from external sources. In
medicinal chemistry, this still represents largely uncharted
scientific territory for which new computational concepts must
be developed. SARM application makes it possible to combine
compound series from different sources and generate virtual
candidates from multiple series. However, to these ends,
versatile analysis capabilities are required. Therefore, the
SARM method has been integrated with newly designed 2D
molecular grid maps and 3D property landscape models that

Figure 5. Property landscapes. Shown are two 3D property landscape models for a set of 130 E3 ubiquitin-protein ligase MDM2 inhibitors
(ChEMBL ID: 1907611) and 551 virtual analogs from SARMs. In both landscapes, the same grid map forms the x,y-plane. On the left, an activity
landscape is shown in which the third dimension (z-axis) is a potency surface. On the right, a corresponding model was generated with a Clog P
surface instead. For a selected point on the landscape, the corresponding compound structure is displayed.
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are based on these maps. The SARM data structure, which is
reminiscent of R-group tables, and molecular grid maps
provide complementary reference frames for graphical analysis
of compound data sets and SAR visualization. Molecular grid
maps organize real and virtual compounds resulting from
SARM application for entire data sets, regardless of their
composition, and yield a global view of SARM information
content. Furthermore, 2D grid maps and 3D property
landscapes provide complementary SARM-associated graphical
representations for the analysis of SARs and other structure−
property relationships. Effective navigation and combination of
SARMs, grid maps, and landscape models is facilitated through
a new web-based interface, which also renders the approach
applicable to very large compound data sets, as shown herein.
Combining local and global SAR views provided by individual
matrices and grid maps, respectively, adds another dimension
to large-scale SAR exploration and helps to focus on promising
candidate compounds. With its additional components, the
second-generation SARM approach should be of considerable
interest for practical applications.
For the practice of medicinal chemistry, the following

conclusions can be drawn from our study:

(i) Analog series are organized in SARMs, which visualize
SARs and generate virtual close-in analogs as candidates
for synthesis.

(ii) Depending on the structural relationships between
compound series, varying numbers of SARMs are
obtained. The 2D grid map is designed to provide a
global view of real and virtual compounds from SARMs
and visualize them in context. For practical applications,
the grid map is often easier to inspect than multiple
SARMs to obtain an initial overview of available
compounds and virtual candidates. From the map,
compounds of interest can be immediately traced back
to their original SARMs.

(iii) The grid map is closely connected to original SARMs
and all compounds originating from a given SARM are
also highlighted in the map when selecting a compound.
In addition, 3D activity landscape representations can be
viewed together with the grid map and corresponding
SARMs to visualize global and local SAR characteristics
in an intuitive manner.

(iv) Furthermore, the grid map summarizes all SAR features
of given compound sets consisting of multiple series.
Local SARs can be further inspected using the R-group
table format of SARMs by selecting compounds of
interest in the grid map. Given their R-group table like
layout, SARMs provide an intuitive access to chemical
modifications and local SAR features.

(v) On the other hand, compounds of interest identified in
individual SARMs can also be traced in the grid map and
inspected together with compounds from the same or
other SARMs.

(vi) Thus, going back and forth between SARMs and their
grid map highlights compounds in complementary SAR
environments and enables the selection of virtual
candidates for synthesis. Taken together, the second-
generation SARM approach focuses on interactive
analysis of analog series, associated SARs, and virtual
candidates.

3. MATERIALS AND METHODS
SARMs, molecular grid maps, and 3D activity landscape
models were implemented in Python with aid of RDKit,33

scikit-learn,34 lapjv,35 and Plotly.js.36

3.1. Molecular Grid Map. 3.1.1. Dimension Reduction.
For the generation of grid maps, all compounds (real and
virtual) were represented as MACCS structural keys37 (167
bits) calculated with RDKit. The resulting fingerprint space
was subjected to two-step dimension reduction. Initially, PCA
was carried out to generate 10 or 50 (orthogonal) principal
components (PCs). Following this preprocessing step, t-SNE38

was performed on PC space for 3000 iterations with an initial
random seed and t-SNE parameter settings n_components = 2
and perplexity = 10, resulting in a 2D projection of fingerprint
space.
As an alternative dimension reduction approach, GTM39

was applied. GTM is a nonlinear dimension reduction method
and represents an extension of the self-organizing map (SOM)
neural network concept.40 In SOMs, molecules are often
mapped to the same cell. Since discrete 2D compound
coordinates are required for grid positioning, SOM projections
are not suitable for grid map generation. However, GTM yields
discrete coordinates. Thus, for comparison with two-step
dimension reduction, GTM calculations were carried out with
ugtm.41 To generate mean GTM 2D projections, eGTM
implemented in ugtm was carried out with the following
parameter settings: m = 2 (m is the square root of the number
of RBF centers), and k = 30 (k is the square root of the
number of GTM nodes), and mode = “mean”.

3.1.2. J−V Algorithm. Each data point in the t-SNE or
GTM map was then assigned to a regular grid using the J−V
algorithm in its lapjv implementation. The J−V algorithm was
originally developed for solving an LAP through combinatorial
optimization. For generating molecular grid maps, the LAP
task consisted of optimally assigning n points in the t-SNE or
GTM map to an evenly spaced grid.
LAP is generally defined as

c xargmin
i

n

j

n

ij ij
1 1

∑ ∑
= = (1)

subject to

x j n1, ( 1, ..., )
i

n

ij
1

∑ = =
= (1a)

x i n1, ( 1, ..., )
j

n

ij
1

∑ = =
= (1b)

x i j n0, 1 , 1, ...,ij = { } = (1c)

where cij is the cost of assigning point i in the t-SNE map
(pi

tSNE) to point j in the regular grid (pj
grid) and xij is the

matching indicator. A setting of xij = 1 means that point i in the
t-SNE map is assigned to j in the regular grid and xij = 0
indicates no assignment. The cost associated with minimiza-
tion is given by

c p p aij i
t

j
SNE grid 2

= − ×
(2)

where a is the scaling factor (a = 100 000/max{cij}).
Optimal assignment of X = {xij} reveals the projection of

pi
tSNE to pj

grid. The resulting molecular grid map displays the
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chemical graphs of assigned compounds with observed or
predicted biological activities. To construct the m × m square
grid map for compound positioning, dummy molecules are
introduced with zero fingerprint bit settings to complement the
compound data set.
3.2. Property Landscapes. On the basis of molecular grid

maps, 3D property (activity) landscape models42 were
generated by adding compound property values as a third
dimension (z-axis), followed by algorithmic interpolation of a
coherent property (potency) surface.42 From distributed data
points, a coherent surface is interpolated using the kriging
function42,43 or related approaches. Landscape calculations
were carried out using Plotly.js.
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Leoń, A.; Dimova, D.; Bajorath, J. Monitoring the Progression of
Structure−Activity Relationship Information during Lead Optimiza-
tion. J. Med. Chem. 2016, 59, 4235−4244.
(12) Maynard, A. T.; Roberts, C. D. Quantifying, Visualizing, and
Monitoring Lead Optimization. J. Med. Chem. 2015, 59, 4189−4201.
(13) Vogt, M.; Yonchev, D.; Bajorath, J. Computational Method to
Evaluate Progress in Lead Optimization. J. Med. Chem. 2018, 61,
10895−10900.
(14) Wawer, M.; Lounkine, E.; Wassermann, A. M.; Bajorath, J. Data
Structures and Computational Tools for the Extraction of SAR
information from Large Compound Sets. Drug Discov. Today 2010,
15, 630−639.
(15) Stumpfe, D.; Bajorath, J. Methods for SAR Visualization. RSC
Adv. 2012, 2, 369−378.
(16) Agrafiotis, D. K.; Shemanarev, M.; Connolly, P. J.; Farnum, M.;
Lobanov, V. S. SAR Maps: A new SAR Visualization Technique for
Medicinal Chemists. J. Med. Chem. 2007, 50, 5926−5937.
(17) Renner, S.; van Otterlo, W. A. L.; Dominguez Seoane, M.;
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