Binding selectivity

Binding selectivity is defined with respect to the binding of [ligands](https://en.wikipedia.org/wiki/Ligand_(biochemistry)) to a substrate forming a [complex.](https://en.wikipedia.org/wiki/Coordination_complex) Binding selectivity describes how a ligand may bind more preferentially to one receptor than another. A selectivity coefficient is the [equilibrium](https://en.wikipedia.org/wiki/Equilibrium_constant) constant for the reaction of displacement by one ligand of another ligand in a complex with the [substrate. Binding selectivity is](https://en.wikipedia.org/wiki/Separation_process) of major importance in [biochemistry](https://en.wikipedia.org/wiki/Biochemistry) $[1]$ and in chemical separation processes.

Selectivity coefficient

The concept of selectivity is used to quantify the extent to which one chemical substance, A, binds each of two other chemical substances, B and C. The simplest case is where the complexes formed have 1:1 [stoichiometry.](https://en.wikipedia.org/wiki/Stoichiometry) Then, the two interactions may be characterized by <u>[equilibrium constants](https://en.wikipedia.org/wiki/Equilibrium_constant)</u> $K_{\rm AB}$ and $K_{\rm AC}$. [\[note](#page-3-4) 1]

$$
\begin{aligned}\n\mathbf{A} + \mathbf{B} &\Longleftrightarrow \mathbf{A}\mathbf{B}; K_{\mathbf{A}\mathbf{B}} = \frac{[\mathbf{A}\mathbf{B}]}{[\mathbf{A}][\mathbf{B}]} \\
\mathbf{A} + \mathbf{C} &\Longleftrightarrow \mathbf{A}\mathbf{C}; K_{\mathbf{A}\mathbf{C}} = \frac{[\mathbf{A}\mathbf{C}]}{[\mathbf{A}][\mathbf{C}]}\n\end{aligned}
$$

[X] represents the [concentration](https://en.wikipedia.org/wiki/Concentration) of substance X (A, B, C, …). A **selectivity coefficient** is defined as the ratio of the two equilibrium constants.

$$
K_{\rm B,C} = \frac{K_{\rm AC}}{K_{\rm AB}}
$$

This selectivity coefficient is in fact the equilibrium constant for the displacement reaction

$$
AB + C \Longleftrightarrow AC + B; K_{B,C} = \frac{[AC][B]}{[AB][C]} = \frac{K_{AC}[A][B][C]}{K_{AB}[A][B][C]} = \frac{K_{AC}}{K_{AB}}
$$

It is easy to show that the same definition applies to complexes of a different stoichiometry, $A_p B_q$ and $A_p C_q$. The greater the selectivity coefficient, the more the ligand C will displace the ligand B from the complex formed with the substrate A. An alternative interpretation is that the greater the selectivity coefficient, the lower the concentration of C that is needed to displace B from AB. Selectivity coefficients are determined experimentally by measuring the two equilibrium constants, K_{AB} and K_{AC} .

Applications

Biochemistry

In biochemistry the substrate is known as a receptor. A receptor is a [protein](https://en.wikipedia.org/wiki/Protein) molecule, embedded in either the [plasma membrane](https://en.wikipedia.org/wiki/Plasma_membrane) or the [cytoplasm](https://en.wikipedia.org/wiki/Cytoplasm) of a cell, to which one or more specific kinds of signalling molecules may bind. A [ligand](https://en.wikipedia.org/wiki/Ligand_(biochemistry)) may be a [peptide](https://en.wikipedia.org/wiki/Peptide) or another small molecule, such as a [neurotransmitter](https://en.wikipedia.org/wiki/Neurotransmitter), a [hormone,](https://en.wikipedia.org/wiki/Hormone) a pharmaceutical drug, or a toxin. The specificity of a receptor is determined by its spatial geometry and the way it [binds](https://en.wikipedia.org/wiki/Binding_(molecular)) to the ligand through [non-covalent interactions](https://en.wikipedia.org/wiki/Noncovalent_bonding), such as [hydrogen bonding](https://en.wikipedia.org/wiki/Hydrogen_bond) or [Van der Waals forces](https://en.wikipedia.org/wiki/Van_der_Waals_force). [\[2\]](#page-3-5)

If a receptor can be isolated a synthetic drug can be developed either to stimulate the receptor, an [agonist](https://en.wikipedia.org/wiki/Agonist) or to block it, an [antagonist.](https://en.wikipedia.org/wiki/Antagonist) The [stomach ulcer](https://en.wikipedia.org/wiki/Stomach_ulcer) drug [cimetidine](https://en.wikipedia.org/wiki/Cimetidine) was developed as an $H₂$ [antagonist](https://en.wikipedia.org/wiki/H2_antagonist) by chemically engineering the molecule for maximum specificity to an isolated tissue containing the receptor. The further use of quantitative [structure-activity relationships](https://en.wikipedia.org/wiki/Quantitative_structure-activity_relationship) (QSAR) led to the development of other agents such as [ranitidine](https://en.wikipedia.org/wiki/Ranitidine).

It is important to note that "selectivity" when referring to a drug is relative and not absolute. For example, in a higher dose, a specific drug molecule may also bind to other receptors than those said to be "selective".

Chelation therapy

Chelation therapy is a form of medical treatment in which a chelating ligand^{[\[note](#page-3-6) 2]} is [used to selectively remove](https://en.wikipedia.org/wiki/Chelate) a metal from the body. When the metal exists as a divalent ion, such as with [lead,](https://en.wikipedia.org/wiki/Lead) Pb^{2+} or [mercury](https://en.wikipedia.org/wiki/Mercury_(element)), Hg^{2+} selectivity against [calcium](https://en.wikipedia.org/wiki/Calcium), Ca^{2+} and [magnesium](https://en.wikipedia.org/wiki/Magnesium), \overline{Mg}^{2+} , is essential in order that the treatment does not remove essential metals.^{[\[3\]](#page-3-7)}

Selectivity is determined by various factors. In the case of [iron overload,](https://en.wikipedia.org/wiki/Iron_overload) which may occur in individuals [with β-](https://en.wikipedia.org/wiki/Blood_transfusion)[thalessemi](https://en.wikipedia.org/wiki/Thalessemia)[a](https://en.wikipedia.org/wiki/Blood_transfusion) who have received blood transfusions, the target metal ion is in the +3 [oxidation state](https://en.wikipedia.org/wiki/Oxidation_state) and so forms stronger complexes than the divalent ions. It also forms stronger complexes with oxygen-donor ligands than with nitrogen-donor ligands. [deferoxamine](https://en.wikipedia.org/wiki/Deferoxamine), a naturally occurring [siderophore](https://en.wikipedia.org/wiki/Siderophore) produced by the actinobacter *Streptomyces pilosus* and was used initially as a [chelation therapy agent. Synthetic](https://en.wikipedia.org/wiki/Streptomyces_pilosus) siderophores such as [deferiprone](https://en.wikipedia.org/wiki/Deferiprone) and [deferasirox](https://en.wikipedia.org/wiki/Deferasirox) have been developed, using the known structure of deferoxamine as a starting point. $[4][5]$ $[4][5]$ Chelation occurs with the two oxygen atoms.

 $NH₂$

Ahrland, Chatt and Davies.^{[\[6\]](#page-3-10)} This means that it forms roughly equally strong complexes with ligands whose

donor atoms are N, O or F as with ligands whose donor atoms are P, S or Cl. [Penicillamine](https://en.wikipedia.org/wiki/Penicillamine), which contains nitrogen and sulphur donor atoms, is used as this type of ligand binds more strongly to copper ions than to calcium and magnesium ions.

Treatment of poisoning by heavy metals such as lead and mercury is more problematical, because the ligands used do not have high specificity relative to calcium. For example, [EDTA](https://en.wikipedia.org/wiki/EDTA) may be administered as a calcium salt to reduce the removal of calcium from bone together with the heavy metal. Factors determining selectivity for lead against zinc, cadmium and calcium have been reviewed.^{[\[7\]](#page-4-0)}

Chromatography

In column chromatography a mixture of substances is dissolved in a mobile phase and passed over a stationary phase in a column. A selectivity factor is defined as the ratio of [distribution coefficients,](https://en.wikipedia.org/wiki/Distribution_coefficient) which describe the equilibrium distribution of an [analyte](https://en.wikipedia.org/wiki/Analyte) between the stationary phase and the mobile phase. The selectivity factor is equal to the selectivity coefficient with the added assumption that the [activity](https://en.wikipedia.org/wiki/Activity_(chemistry)) of the stationary phase, the substrate in this case, is equal to 1, the standard assumption for a pure phase.^{[\[8\]](#page-4-1)} The resolution of a chromatographic column, R_S is related to the selectivity factor by:

$$
R_S = \frac{\sqrt{N}}{4} \left(\frac{\alpha - 1}{\alpha} \right) \left(\frac{k_B}{1 + k_B} \right)
$$

where α is selectivity factor, *N* is the number of [theoretical plates](https://en.wikipedia.org/wiki/Theoretical_plate) k_A and k_B are the [retention factors](https://en.wikipedia.org/wiki/Retention_factor) of the two analytes. Retention factors are proportional to distribution coefficients. In practice substances with a selectivity factor very close to 1 can be separated. This is particularly true in [gas-liquid chromatography](https://en.wikipedia.org/wiki/Gas-liquid_chromatography) where column lengths up to 60 m are possible, providing a very large number of theoretical plates.

In ion-exchange chromatography the selectivity coefficient is defined in a slightly different way $^{[9]}$ $^{[9]}$ $^{[9]}$

Solvent extraction

Solvent extraction $\frac{[10]}{]}$ $\frac{[10]}{]}$ $\frac{[10]}{]}$ is used to extract individual [lanthanoid](https://en.wikipedia.org/wiki/Lanthanoid) elements from the mixtures found in nature in ores such as [monazite.](https://en.wikipedia.org/wiki/Monazite) In one process, the metal ions in aqueous solution are made to form complexes with [tributylphosphate](https://en.wikipedia.org/wiki/Tributylphosphate) (TBP), which are extracted into an organic solvent such as [kerosene](https://en.wikipedia.org/wiki/Kerosene). Complete separation is effected by using a [countercurrent](https://en.wikipedia.org/wiki/Countercurrent_exchange) exchange method. A number of cells are arranged as a [cascade.](https://en.wikipedia.org/wiki/Cascade_(chemical_engineering)) After equilibration, the aqueous component of each cell is transferred to the previous cell and the organic component is transferred to the next cell, which initially contains only water. In this way the metal ion with the most stable complex passes down the cascade in the organic phase and the metal with the least stable complex passes up the cascade in the aqueous phase. $[11]$

If solubility in the organic phase is not an issue, a [selectivity coefficient](https://en.wikipedia.org/wiki/Stability_constants_of_complexes) is equal to the ratio of the stability constants of the TBP complexes of two metal ions. For lanthanoid elements which are adjacent in the periodic [table this ratio is not much greater than 1, so many cells are needed in the cascade.](https://en.wikipedia.org/wiki/Periodic_table)

Chemical sensors

A potentiometric selectivity coefficient defines the ability of an [ion-selective](https://en.wikipedia.org/wiki/Ion-selective_electrode) electrode to distinguish one particular ion from others. The selectivity coefficient, $K_{B,C}$ is evaluated by means of the emf response of the ion-selective electrode in mixed solutions of the primary ion, B, and interfering ion, C (fixed interference method) or less desirably, in separate solutions of B and C (separate solution method). [\[12\]](#page-4-5) For example, a [potassium](https://en.wikipedia.org/wiki/Potassium) ion-selective [membrane](https://en.wikipedia.org/wiki/Ion-selective_electrode) electrode utilizes the naturally occurring macrocyclic [antibiotic](https://en.wikipedia.org/wiki/Antibiotic) [valinomycin.](https://en.wikipedia.org/wiki/Valinomycin) In this case the cavity in the macrocyclic ring is just the right size to encapsulate the potassium ion, but too large to bind the sodium ion, the most likely interference, strongly.

[Chemical](https://en.wikipedia.org/wiki/Host%E2%80%93guest_chemistry#Sensing) sensors, $\frac{[13][14]}{]}$ $\frac{[13][14]}{]}$ $\frac{[13][14]}{]}$ $\frac{[13][14]}{]}$ are being developed for specific target molecules and ions in which the target (guest) form a complex with a sensor (host). The sensor is designed to be an excellent match in terms of the size and shape of the target in order to provide for the maximum binding selectivity. An indicator is associated with the sensor which undergoes a change when the target forms a complex with the sensor . The indicator change is usually a colour change (gray to yellow in the illustration) seen in [absorbance](https://en.wikipedia.org/wiki/Absorbance) or, with greater sensitivity, [luminescence](https://en.wikipedia.org/wiki/Luminescence). The indicator may be attached to the sensor via a spacer, in the ISR arrangement, or it may be displaced from the sensor, IDA arrangement.

See also

- **[Binding](https://en.wikipedia.org/wiki/Binding_(molecular))**
- **[Affinity](https://en.wikipedia.org/wiki/Affinity_(pharmacology))**
- **[Functional](https://en.wikipedia.org/wiki/Functional_selectivity) selectivity**

Notes

- 1. The constant used here are *association* constants. *Dissociation* constants are used in some contexts. A dissociation constant is the reciprocal of an association constant.
- 2. The term "ligand" here refers to binding to a metal. In the definition of selectivity coefficient this "ligand" is in fact the substrate and ligand in that definition is the metal ion.

References

- 1. Klotz, I.M. (1997). *[Ligand-Receptor](https://en.wikipedia.org/wiki/Special:BookSources/978-0-471-17626-8) Energetics: A Guide for the Perplexed*. Wiley. [ISBN](https://en.wikipedia.org/wiki/ISBN_(identifier)) 978-0- 471-17626-8.
- 2. Foreman, J.C.; Johansen, T., eds. (2003). *Textbook of receptor pharmacology* (2nd. ed.). Boca Raton, Fla.: CRC Press. [ISBN](https://en.wikipedia.org/wiki/ISBN_(identifier)) [978-0-8493-1029-4.](https://en.wikipedia.org/wiki/Special:BookSources/978-0-8493-1029-4)
- 3. Walker, M.; Shah, H.H. (1997). *Everything you should know about chelation therapy* (https://arc [hive.org/details/everythingyousho0000walk\)](https://archive.org/details/everythingyousho0000walk) (4th ed.). New Canaan, Conn.: Keats Pub. [ISBN](https://en.wikipedia.org/wiki/ISBN_(identifier)) [978-0-87983-730-3.](https://en.wikipedia.org/wiki/Special:BookSources/978-0-87983-730-3)
- 4. Iron-Selective Chelators With Therapeutic Potential in Hider, Robert C.; Kong, Xiaole (2013). "Chapter 8. Iron: Effect of Overload and Deficiency". In Astrid Sigel, Helmut Sigel and Roland K. O. Sigel (ed.). *Interrelations between Essential Metal Ions and Human Diseases*. Metal Ions in Life Sciences. **13**. Dordrecht: Springer. pp. 229–294. [doi:](https://en.wikipedia.org/wiki/Doi_(identifier))10.1007/978-94-007-7500-8_8 (http [s://doi.org/10.1007%2F978-94-007-7500-8_8\).](https://doi.org/10.1007%2F978-94-007-7500-8_8) [ISBN](https://en.wikipedia.org/wiki/ISBN_(identifier)) [9789400774995.](https://en.wikipedia.org/wiki/Special:BookSources/9789400774995) [PMID](https://en.wikipedia.org/wiki/PMID_(identifier)) 24470094 (https:// pubmed.ncbi.nlm.nih.gov/24470094).
- 5. Miller, Marvin J. (1989). "Syntheses and therapeutic potential of hydroxamic acid-based siderophores and analogs". *Chemical Reviews*. **89** (7): 1563–1579. [doi](https://en.wikipedia.org/wiki/Doi_(identifier)):10.1021/cr00097a011 [\(https://doi.org/10.1021%2Fcr00097a011\).](https://doi.org/10.1021%2Fcr00097a011)
- 6. Ahrland, S.; Chatt, J.; Davies, N.R. (1958). "The relative affinities of ligand atoms for acceptor molecules and ions". *Quart. Rev*. **12** (3): 265–276. [doi:](https://en.wikipedia.org/wiki/Doi_(identifier))10.1039/QR9581200265 (https://doi.org/ [10.1039%2FQR9581200265\).](https://doi.org/10.1039%2FQR9581200265)
- 7. Farkas, Etelka; Buglyó, Péter (2017). "Chapter 8. Lead(II) Complexes of Amino Acids, Peptides, and Other Related Ligands of Biological Interest". In Astrid, S.; Helmut, S.; Sigel, R. K. O. (eds.). *Lead: Its Effects on Environment and Health*. Metal Ions in Life Sciences. **17**. Berlin, Boston: de Gruyter. pp. 201–240. [d](https://doi.org/10.1515%2F9783110434330-008)[oi](https://en.wikipedia.org/wiki/Doi_(identifier))[:10.1515/9783110434330-008](https://doi.org/10.1515%2F9783110434330-008) (https://doi.org/10.15 [15%2F9783110434330-008\).](https://pubmed.ncbi.nlm.nih.gov/28731301) [ISBN](https://en.wikipedia.org/wiki/ISBN_(identifier)) [9783110434330.](https://en.wikipedia.org/wiki/Special:BookSources/9783110434330) [PMID](https://en.wikipedia.org/wiki/PMID_(identifier)) 28731301 (https://pubmed.ncbi.nl m.nih.gov/28731301).
- 8. Skoog, D.A; West, D.M.; Holler, J.F.; Crouch, S.R. (2004). *Fundamentals of Analytical Chemistry* (8th ed.). Thomson Brooks/Cole. [ISBN](https://en.wikipedia.org/wiki/ISBN_(identifier)) [978-0-03-035523-3.](https://en.wikipedia.org/wiki/Special:BookSources/978-0-03-035523-3) Section 30E
- 9. [IUPAC,](https://en.wikipedia.org/wiki/International_Union_of_Pure_and_Applied_Chemistry) *[Compendium](https://en.wikipedia.org/wiki/IUPAC_books#Gold_Book) of Chemical Terminology*, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "selectivity coefficient, *kA/B in ion exchange chromatography* (http [s://goldbook.iupac.org/S05566.html.html\)".](https://goldbook.iupac.org/S05566.html.html) [doi](https://en.wikipedia.org/wiki/Doi_(identifier)):10.1351/goldbook.S05566.html (https://doi.org/1 0.1351%2Fgoldbook.S05566.html)
- 10. Rice, N.M.; Irving, H. M. N. H.; Leonard, M.A (1993). "Nomenclature for liquid-liquid distribution (solvent extraction)". *Pure Appl. Chem*. IUPAC. **65** (11): 2373–2396.

[doi:](https://en.wikipedia.org/wiki/Doi_(identifier))10.1351/pac199365112373 [\(https://doi.org/10.1351%2Fpac199365112373\).](https://doi.org/10.1351%2Fpac199365112373)

- 11. Rydberg, J.; Musikas, C; Choppin, G.R., eds. (2004). *Solvent Extraction Principles and Practice (* (2nd. ed.). Boca Raton, Fla.: CRC Press. [ISBN](https://en.wikipedia.org/wiki/ISBN_(identifier)) [978-0-8247-5063-3.](https://en.wikipedia.org/wiki/Special:BookSources/978-0-8247-5063-3)
- 12. Buck, R. P.; Linder, E. (1994). "Recommendations for nomenclature of ion-selective electrodes". *Pure Appl. Chem*. IUPAC. **66** (12): 2527–2536. [doi:](https://en.wikipedia.org/wiki/Doi_(identifier))10.1351/Pac199466122527 (ht [tps://doi.org/10.1351%2FPac199466122527\).](https://doi.org/10.1351%2FPac199466122527)
- 13. Florinel-Gabriel Bănică, Chemical Sensors and Biosensors: Fundamentals and Applications, John Wiley and Sons, Chichester, 2012, Print [ISBN](https://en.wikipedia.org/wiki/ISBN_(identifier)) [978-0-470-71066-1](https://en.wikipedia.org/wiki/Special:BookSources/978-0-470-71066-1)
- 14. Cattrall, R.W. (1997). *Chemical sensors*. Oxford University Press. [ISBN](https://en.wikipedia.org/wiki/ISBN_(identifier)) [978-0-19-850090-2](https://en.wikipedia.org/wiki/Special:BookSources/978-0-19-850090-2).

Retrieved from "https://en.wikipedia.org/w/index.php?title=Binding_selectivity&oldid=1013024782"

This page was last edited on 19 March 2021, at 16:28 (UTC).

Text is available under the Creative Commons [Attribution-ShareAlike](https://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License) License; additional terms may apply. By using this site, you agree to the [Terms](https://foundation.wikimedia.org/wiki/Terms_of_Use) of Use and [Privacy](https://foundation.wikimedia.org/wiki/Privacy_policy) Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit [organization.](https://www.wikimediafoundation.org/)