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Abstract

The drug discovery process starts with identification of a disease-modifying target. This critical step traditionally begins
with manual investigation of scientific literature and biomedical databases to gather evidence linking molecular target to
disease, and to evaluate the efficacy, safety and commercial potential of the target. The high-throughput and affordability of
current omics technologies, allowing quantitative measurements of many putative targets (e.g. DNA, RNA, protein,
metabolite), has exponentially increased the volume of scientific data available for this arduous task. Therefore,
computational platforms identifying and ranking disease-relevant targets from existing biomedical data sources, including
omics databases, are needed. To date, more than 30 drug target discovery (DTD) platforms exist. They provide
information-rich databases and graphical user interfaces to help scientists identify putative targets and pre-evaluate their
therapeutic efficacy and potential side effects. Here we survey and compare a set of popular DTD platforms that utilize
multiple data sources and omics-driven knowledge bases (either directly or indirectly) for identifying drug targets. We also
provide a description of omics technologies and related data repositories which are important for DTD tasks.
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Background
Target-based drug discovery is the most common strategy for
the development of new drugs. However, when it comes to
clinical trials, most of these new drugs fail due to inadequate
efficacy or safety concerns [1], suggesting that a ‘wrong’ target
has been selected during the target discovery process. Tradi-
tionally, molecular targets for drug discovery are selected on
the basis of the accumulation of a series of experimental evi-
dence supporting the hypothesis that modulating the function
of the molecule will have an effect on disease [2]. This process
strongly relies on the use of databases and bioinformatics tools
enabling the collection and integration of multiple sources of
evidence linking molecular drug targets to diseases [3]. Being an
interdisciplinary branch of the life sciences, bioinformatics aims
to provide methodology and computational methods needed
to organize, explore and analyze large volumes of biological
data, including genomic, proteomic and other ‘omics’ data types.

These computational tools have become essential to research
progress in drug target discovery (DTD), thanks to their ability
to aid in elucidation and understanding of the mechanisms of
(complex) diseases. Current bioinformatics strategies for DTD
use a wide range of data sources obtained from experimental,
mechanistic, pharmacological and, more recently, omics-based
molecular profiles. Omics technologies have brought unprece-
dented abilities to screen biological samples at the gene, tran-
script, protein, metabolite and their interaction network level
in searching of novel targets [4]. In particular, genome-wide
association studies (GWASs), whole genome sequencing and
transcriptome analysis constitute essential tools to discover or
validate new drug targets, since they can provide a systematic
approach to evaluate their therapeutic efficacy and related side
effects. Even though omics studies can provide information on
the efficacy of drug targets, they can be exploited to better under-
stand their mechanisms of action and, most importantly, to
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detect in advance drug-induced side effects. Omics technologies
generate large amount of data from single experiments, and this
information is often useless in their original formats. Therefore,
advanced data mining algorithms are required to identify, eval-
uate and rank putative drug targets from omics data. Besides,
it is very difficult to systematically fuse these big volumes of
data with existing scientific literature and biomedical databases.
To speed up the process of collection, processing and analyzing
data sources for drug discovery, many software platforms and
database systems have been developed. These tools help scien-
tists working on early drug discovery to automatically identify
and extract relevant drug target–disease associations without
requiring the application of sophisticated algorithms. In this
review we describe and evaluate the most popular DTD plat-
forms that directly or indirectly (through the use of external data
sources) employ omics data for the identification of disease-
relevant drug targets. We highlight their main functionalities
and abilities in providing concise information on the therapeutic
efficacy, druggability and safety of selected, putative targets. In
this review, drug targets and their desired properties are dis-
cussed. Then, the application of omics information for target dis-
covery is briefly introduced along with a summary description
of databases and web platforms that can be utilized to prioritize
drug targets. Finally, the selected DTD platforms are compared
on the basis of drug target–disease associations and the use of
omics data.

Drug targets

A drug target can be defined as a molecule in the body, usu-
ally a protein, that is intrinsically associated with a particular
disease process and that could be addressed by a drug to pro-
duce a desired therapeutic [5, 6]. Drug targets should exhibit
the following several, basic features: involvement in a crucial
biological pathway; functionally and structurally characterized;
and druggable (capable of binding to small molecules, implying
the presence of a binding site). Traditionally, structure-based
analysis has been used to search for good drug targets, which
leads to the concept of ‘druggability’. A drug target indeed is
often described as proteins that possess protein folds that favor
interactions with drug-like chemical compounds [7–9]. Many
proteins are druggable according to their structure, but their
binding will not lead to the therapeutic benefit. Over the past
two decades, there have been several efforts to curate drug
targets and to categorize them. Most frequent proteins for DTD
include proteases, kinases, G protein-coupled receptors (GPCRs)
and nuclear hormone receptors [10]. Druggability is not the only
desired property for the definition of ‘good’ drug targets. Indeed,
often scientists are first interested in selected candidates based
on their participation in a biological process critical to diseases
[10, 11]. Imming et al. [12] categorized drug targets based on
‘mechanism of actions’, such as enzymes, substrates, metabo-
lites, proteins, receptors, ion channels, transport proteins, DNA,
RNA, ribosomes and targets of monoclonal antibodies. Although
proteins have been in the past the majority of clinically use-
ful drugs, there are many emerging classes of drug targets,
such as nucleic acid, regulatory DNA element and non-coding
RNA (ncRNAs). Their importance is rapidly growing in the fields
of drug development and precision medicine. Indeed, drugs
which target nucleic acids, especially in the areas of antibacterial
and anticancer therapy, have been already provided [13]. RNA
is now being recognized as an essential component in vari-
ous regulatory processes just like proteins. Indeed, RNA plays
important roles in the transcription regulation, regulation of

the translation, catalysis, protein function, protein transport,
peptide bond formation and RNA splicing [14]. Compared to
DNA, RNA could deliver better therapeutics since RNA displays
a greater structural diversity and lacks repair mechanisms. Like
proteins, RNA has three-dimensional folding that gives rise to
complex structures allowing the highly specific binding of effec-
tor molecules. RNA targets have been successfully employed in
the antibacterial and antiviral areas [15, 16]. Moreover, with new
emerging classes of RNAs and their characterization in regu-
latory mechanisms of mammals, their application has rapidly
expanded. Among these new classes of drug targets, ncRNAs are
gaining increasingly attention. ncRNA refers to a large group of
endogenous RNA molecules that have no protein-coding capac-
ity, while having specialized biological functions. While ncRNAs
lack potential to encode proteins, they can affect the expres-
sion of other genes through a variety of mechanisms. In some
cases, their mechanisms of action are well known, and their
strategies for controlling activity are well established. The ability
of ncRNAs to control gene expression makes them targets for
drug development. However, the uncertainty about how ncRNAs
function (and even whether they have a function) makes the
drug development process even more challenging [17]. Targeting
RNAs offers opportunities to therapeutically modulate numer-
ous cellular processes, including those linked to ‘undruggable’
protein targets [18]. Examples include proteins with multiple key
functions, which are difficult to block by using a single molecule,
or proteins that are so closely related to others that it is difficult
to achieve adequate selectivity.[19, 20].

Key properties of a drug target

A drug target is a key molecule interfering with biological path-
ways that are specific to a disease or a disease state. The dif-
ference between a drug target and other biomolecule involved
in the same pathway is only in their location and role. A puta-
tive drug target should be disease-dependent, which implicates
that its relevance for other disease should be minimal. How-
ever, human diseases are often complex involving many interre-
lated pathways, which can lead to the identification of different
molecular targets. Indeed, studying complex diseases with a
Mendelian perspective, or the ‘one gene–one disease’ theory and
treated with a ‘magic bullet’ therapy, has been demonstrated to
be ineffective [21]. It is frequently observed that the complex
interplay existing between multiple molecular features leads
to disease state, rather than the behavior of a single molecule.
Therefore, it is often important to characterize the association
between multiple drug targets and disease [22]. Drug targets can
be categorized into two classes: known drug targets and novel
drug targets. The former are those for which there is robust
scientific evidence, supported by publications and experimental
data showing how the target functions in normal physiology and
how it is involved in human pathology. Furthermore, there are
drugs targeting this target. Whereas, novel drug targets are those
biomolecules whose functions are not fully understood and with
no established drugs targeting them. These targets merit more
attention since they might lead to completely new therapies.
Very often the goal of a preclinical drug discovery program is to
deliver a ranked list of drug target biomolecules (such as DNA,
RNA, proteins and peptides), including both known and novel
targets. Candidate drug targets should be then characterized
by a well-balanced profile between efficacy and safety (‘drug
adverse reactions’). The efficacy should aim to evaluate how
good a biomolecule is as a drug target. This evaluation should
take into account the target ‘druggability’ [23], and it should be
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Table 1. Key drug target properties

Property Description Key aspects

Efficacy In order for a drug to have an effect, it needs to bind to its target,
and then to affect the function of this target. A target can refer to
a gene, a protein or other biomolecules, and it is responsible for
the therapeutic efficacy of the drug [32]. Therefore, the efficacy of
a target should evaluate its potential in delivering effective
therapeutic treatments.

Target druggability

Target disease validation

Tissue-specific efficacy
evaluations

Safety Safety evaluation aims to identify potential adverse consequences
of target modulation, unavoidable on-target toxicities and
potential clinical adverse to support the steps of drug target
identification and prioritization [33].

Drug toxicity in patients

OFF/ON drug targets

Unsafe biomolecules (essential
genes, carcinogenic, etc.)

Novelty It estimates the scarcity of publications and patents about a
protein target [26].

Text mining of scientific and
patent literature

supported by sufficient evidence showing how efficient a target
is for a given disease (‘target disease efficacy’). Well-balanced
efficacy–safety profile will take into account the intended use
of the drug (e.g. severity of the indication and treatment phase)
and efficacy and safety of existing treatments. A potentially good
drug target will have mild overdose effects, giving drug discovery
a comparatively broad efficacy region. In practice, the acceptable
efficacy–safety balance for a first-in-market drug for rapidly
progressing high mortality disease will be different than for a
drug targeting benign disease with existing treatments. Omics
studies can be used to evaluate the following: the modulation,
a target is disease modifying and/or has a proven function in
the pathophysiology of a disease; the tissue specificity, a target
expression is not uniformly distributed throughout the body;
and the druggability, a target can be modulated by a drug [24].
However, safety-related drug attrition represents a major leap
in the development of therapeutic targets. Indeed, safety issues
are often the main cause of drug development failures. Key
safety liabilities induced by target modulation could be eval-
uated by using omics studies. In particular, safety assessment
could apply genomics, transcriptomics and proteomics, to pre-
evaluate on-target, off-target, toxicity pathways [25] and harmful
or unpleasant clinical events triggered by drug interaction with
the target. Moreover, extensive studies of drug target safety by
the means of omics could lead to the accumulation of enough
data to develop robust in silico methods to predict the safety of
putative drug targets or, even better, to help researchers identify
safe-by-design drug targets. Omics-driven efficacy and safety
evaluations of drug targets can be combined with information
extracted from scientific literature in order to increase the suc-
cess of identifying the right candidates. To this end, different
web-based text mining tools, such as TIN-X [26], PubTator [27]
and Chemotext [28], can be applied. These tools can improve
the accuracy of drug target–disease associations extracted from
scientific publications [29]. Moreover, network analysis aiming
to integrate gene, drug and phenotype information can also be
utilized to better estimate drug target efficacy [30]. Finally, in
addition to efficacy and safety evaluations, drug targets can be
characterized by describing their novelty [31]. Table 1 describes
key drug target properties.

In summary, good drug target needs to be efficacious, drug-
gable, safe and meets clinical and commercial needs. However,
it should be noted that there are challenges in making a clean
unambiguous assignment in many cases, especially regarding
how to define the concept of drug target efficacy.

Multiple target strategies

Traditionally drugs have been designed by following the
paradigm ‘one drug, one target’, which aims to find a single
molecular target, usually a protein (the so-called ‘on-target’),
with high selectivity to avoid any unwanted effects arising
from mis-targeting other biological targets (‘off-targets’). While
target-first strategies might prove useful to approach single gene
disorders, disease is often a multifactorial condition involving
a combination of constitutive and/or environmental factors. In
this case scenario, single-target drugs might be inadequate to
achieve a therapeutic effect [34, 35]. It is now widely accepted
that complex diseases are more likely to be healed or alleviated
through simultaneous modulation of multiple targets. Indeed,
research on multi-target drugs has rapidly increased since
2000, and it is nowadays one of the hottest topics in drug
discovery. However, there are several challenges to be addressed
when designing multi-target drugs, both in terms of target
selection and small molecule discovery [35, 36]. For instance,
algorithms that determine multi-drug dosages are important to
ensure effective treatments [36]. However, the extremely high
number of possible multi-drug combinations combined with
heterogeneity and resistance-related issues makes the dosage
adjustment optimization an extremely challenging task [37].
Even though several online resources exist for multiple target
selection, the Therapeutic Target Database [38] and DrugBank
[39], there are no well-established, data-driven computational
methods to identify the right combination of molecular targets
for a given disease in both multi-target drugs and therapeutic
combinations. The fact is that addressing multiple DTD tasks
require a deeper understanding of disease mechanisms, target
disease associations, pathway-target-drug-disease relationships
and adverse events [40]. Besides, when selecting multiple targets
additive or synergistic effects should be carefully considered [41].

Omics applications for DTD

Recent technical advances in sequencing, microarray and mass
spectometry (MS) technologies allow scientists to generate
genomics, transcriptomics, proteomics, and other -omic data
types at an unprecedented level of resolution. Many stud-
ies have used these technologies to better understand the
molecular mechanisms underlying complex diseases and to
provide information on drug treatments. The resulting rich
information data can be utilized to identify drug targets, to
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Table 2. Omics data types and their use for informed pharmaceutical research and development

Omics Function Databases

Genomics Understanding pathogenesis GWAS Catalog
Genetic association studies GWAS central
Identification of disease genes dbGaP
Discovery of putative drug targets PharmGKB
Patient-centered efficacy and toxicity assessment of drugs/targets
Patient stratification

Transcriptomics Disease mechanisms DrugMatrix
Mode of action of compounds TG-GATE
Moving from disease genes to drug targets LINCS 1000
Identification/evaluation of drug target candidates Expression Atlas
Early prediction of adverse drug target effects GEO repository

ArrayExpress

Proteomics Post-translational process PRIDE Archive
Protein–protein network interaction Peptide Atlas
Drug target efficacy and safety evaluation at protein level ProteomicsDB

Human Proteome Map
Protein toxicology Human Proteome Atlas

Metabolomics Novel DTD Human Metabolome
Drug target efficacy and safety evaluation at metabolomic level Madison Metabolomics
Metabolic toxicity Golm Metabolome

Database
MassBank
MetaboLights
MetabolomeExpress

uncover the mechanism of action of drugs and to assess (or
infer) their side effects. Omics-based studies can also provide
essential information to deliver personalized medicine. For
example, it has been shown that genetic variations can help
clinicians assess efficacy or toxicity of some targeted agents
for specific subsets of molecularly profiled patients [42]. If
systematically integrated, omics-driven molecular profiles of
diseases and drug treatments/exposures could significantly
accelerate drug discovery and development process. Table 2 lists
and briefly describes omics technologies that can be utilized
in drug discovery and development and related omics data
repositories.

Genomics

Genomics have provided the earliest applications for DTD.
In particular, the application of DNA microarray and next-
generation sequencing (NGS) technologies has enabled high-
throughput analysis of genotype–phenotype relationships on
human populations, opening a new era of genetics-informed
drug discovery. DNA microarrays have been extensively used
to conduct GWASs, which have helped scientists identify
loci that harbor genetic variants (typically single nucleotide
polymorphisms; SNPs) that are associated with risk for diseases
and traits [43]. Studying the target at GWAS risk loci, such as
genes or ncRNAs that mediate the associations observed in
GWAS [44], can lead to a better understanding of the molecular
mechanisms that influence disease risk and, most importantly,
to new potential targets for drug development. However, the
associated genes remain largely unknown for most GWAS loci.
Even though the first GWASs aimed to identify as few as tens of
genes contributing to genetic traits, today GWASs have helped
to identify thousands of genes contributing to complex genetic
traits. To date, almost 10 000 strong associations have been

reported between genetic variants and one or more complex
traits. Among these findings, there are several examples of
disease-associated genes that have been identified as being
effective drug targets [45]. GWAS data have also been employed
for the development of in silico methods for disease genes and
drug target identification [46, 47]. GWAS can also enable the
discovery of biological pathways that confer susceptibility to
diseases. However, these studies alone cannot elucidate how
the variants affect downstream pathways and lead to a disease.
Indeed, one of the most relevant post-GWAS challenges is to
combine GWAS findings with additional omics data layers in
order to shed the light on the biological systems underlying
complex diseases and provide more effective drug targets.
Indeed, GWAS-driven analyses have been often merged with
transcriptomics data, which can help identify disease-related
genes by comparing gene expression profiles between disease
and control groups [48]. GWASs have also rapidly changed the
landscape of pharmacogenomic research. Pharmacogenomics
is the study of the impact of genetic variations of individuals
on their drug response or drug metabolism. It helps understand
how patients with specific genomic characteristics respond to
certain treatments and drugs [49]. In more practical terms, it
can affect the drug development process in two primary ways:
indicating how well the drug works (efficacy) and providing
drug-related toxicity information [50]. Table 3 reports GWAS
data repositories and pharmacogenomics databases that are
currently used for discovering putative drug targets, drug
repositioning, drug efficacy and safety assessments.

Transcriptomics

Genome-wide transcriptional profiling provides a global view
of cellular state and how this state changes under different
treatments (e.g. drugs) or conditions (e.g. healthy and diseased).

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/21/6/1937/5626327 by guest on 06 M

arch 2021



Drug target discovery platforms 1941

Table 3. Genomics databases for DTD

Database Description Application

GWAS Catalog [51] Collects published human GWASs that are manually curated
by expert scientists. GWAS Catalog provides accurate and
structured metadata for publication, study design, sample and
trait information and the most significant published results.
https://www.ebi.ac.uk/gwas/

Mining disease genes
Narrow-down/prioritize
candidate loci
Disease risk prediction
Disease mechanisms

GWAS Central [52] A database of summary level findings from genetic
association studies, both large and small. GWAS central
collects datasets from public domain projects and encourages
direct data submissions from the community.
http://www.gwascentral.org/index

Mining SNP-drug response
associations

NCBI dbGaP [53] The NCBI Database of Genotypes and Phenotypes archives
results of studies that have investigated the interaction of
genotype and phenotype and distributes these results to
investigators for secondary study. It includes phenotype data,
GWAS data, summary level analysis data, Short Read Archive
(SRA) data, reference alignment (BAM) data, Variant Call
Format (VCF) data, etc.
http://www.ncbi.nlm.nih.gov/gap

Genotype studies for the
identification of disease genes

PharmGKB [50] A publicly available online knowledgebase aggregating,
curating, integrating and disseminating knowledge regarding
the impact of human genetic variation on drug response.
http://www.pharmgkb.org

Mining drug–gene, drug–SNP,
gene–disease, disease–SNP,
drug–pathway, disease–
pathway, drug–drug

In particular, drug-induced gene expression profiles in human
cell lines and in vivo models can be used to elucidate the bio-
logical effects of putative targets and evaluate in advance ther-
apeutic efficacy [25, 54]. Transcriptomics signals are important
for clinical candidate selection as they provide an evaluation
of potential adverse effects of drug targets at an early stage
in drug development [25]. Indeed, in recent years, transcrip-
tomics data have been intensively used in the toxicogenomics
field. This has led to the development of large-scale public
databases, such as DrugMatrix [55] and Open TG-GATE [56],
which collect compound-induced gene expression data with in
vivo histopathological data, and Connectivity Map [57] and the
Library of Integrated Network-based Cellular Signatures L1000
dataset [58], which collect transcriptional drug perturbations for
thousands of compounds tested on more than 70 cell lines. Other
gene expression data following drug treatments can be retrieved
from the Gene Expression Omnibus (GEO) repository [59] and the
ArrayExpress Archive of Functional Genomics Data [60] which
are continuously updated. The data provided by these databases
can be used in combination with genomic and network features
to prioritize drugs with less likelihood of causing side effects
[61]. Similar computational strategies are currently proposed to
support alternative methods for chemical risk assessment [25].
Moreover, gene expression and transcriptome profiling can help
researchers improve the design of clinical trials in phase I and
phase II studies [42]. Genome expression profiling can also be
combined with the genotype of trait-associated variants using
in vivo data, thus identifying target genes and the directionality
of the effect of trait-variants. Expression quantitative trait loci
(eQTL) analyses are useful in this regard as they can provide
genome-wide lists of genetic variants that associate with gene
expression in a particular tissue [63]. eQTL analysis can be
used to identify causal and also to discover genetic networks
that might play significant roles in drug resistance responses
[64]. Currently, many eQTL databases exists, and they can be
queried to determine if a trait-associated variant (or variants

in linkage disequilibrium) associates with the expression of a
specific gene. One of the most used databases is the Genotype-
Tissue Expression [65]. Over the past decade, the transcriptomics
field has developed rapidly, thanks to the advent of NGS tech-
nologies. In particular, whole-transcriptome analysis with total
RNA sequencing (RNA-Seq) has become an indispensable tool
for gene expression profiling. Total RNA-Seq profiles provide an
exceptional opportunity to study ncRNAs, including microRNAs
and long non-coding RNAs [66]. Similar to the protein-coding
genes, ncRNAs can play critical roles in tumor progression [67]
and cancer therapy [68]. Currently available large-scale cancer
genome and pharmacogenomics projects, such as The Cancer
Genome Atlas (TCGA), Cancer Cell Lines Encyclopedia (CCLE)
[69] and Genomics of Drug Sensitivity in Cancer (GDSC) [70,
71], can be used to systematically determine the regulatory
roles of ncRNA in cancer drug response by combining RNA-
seq data in conjunction with clinical and drug response data
from thousands of tumor samples and cancer cell lines [66].
These databases provide information on different omics data
types, including mutation and copy number variation. Table 4
introduces the main data sources of transcriptomic data for DTD
applications.

Proteomics

Proteomics refers to the analysis of the entire protein content
of a cell, tissue or organism under a specific condition. Several
techniques have been developed to study the proteome of an
organism, and among them MS has become the tool of choice.
The three primary applications of MS to proteomics are cat-
aloging protein expression, defining protein interactions and
identifying sites of protein modification. These sources of infor-
mation have been extensively used as a DTD tool [73]. However,
while transcriptome data cover the whole range of expressed
genes, a typical untargeted MS proteomics experiment can usu-
ally detect and quantify up to 5000 proteins, which is less than
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Table 4. Transcriptomic databases for DTD

Database Description Application

DrugMatrix [55] DM is provided by the U.S. National Toxicology Program and it
gives access to large-scale gene expression data derived from
standardized toxicological experiments in which rats or primary
rat hepatocytes were systematically treated with therapeutic,
industrial and environmental chemicals at both non-toxic and
toxic doses.
https://outage.niehs.nih.gov/drugmatrix/index.html

DTD
Understanding drug/target
toxicity

TG-GATEs [56] TG-GATEs provides gene expression profiles and traditional
toxicological data derived from in vivo (rat) and in vitro (primary rat
hepatocytes, primary human hepatocytes) exposure to 170
compounds at multiple dosages and time points.
http://toxico.nibio.go.jp/english/index.html

DTD
Understanding drug/target
toxicity

LINCS 1000 [58] L1000 generates gene expression signatures from treatment of a
variety of cell types with perturbagens that span a range of
small-molecule compounds, gene overexpression and gene
knockdown reagents. The gene expression profiles are generated
from a method, namely L1000, which defines a reduced
representation of the transcriptome.
http://www.lincsproject.org

DTD
Drug repositioning

Expression Atlas [72] EA collects baseline gene expression data in different species and
contexts, such as tissue, developmental stage or cell type. It also
contains differential studies, reporting changes in expression
between two different conditions, such as healthy and diseased
tissue.
https://www.ebi.ac.uk/gxa/baseline/experiments

DTD and validation
Disease genes

GEO repository [59] GEO is a database repository of high-throughput gene expression
data and hybridization arrays, chips, microarrays.
https://www.ncbi.nlm.nih.gov/geo/

Retrieve drug, gene and
disease perturbations

ArrayExpress [60] AE serves as an international repository for microarray data and
high-throughput sequencing-based functional genomics
experiments associated with scientific publications.
http://www.ebi.ac.uk/arrayexpress

Retrieve drug, gene and
disease perturbations

TCGA TCGA collects and functional genomics data repository for >30
cancers across >10 K samples. Primary data types include
mutation, copy number, mRNA and protein expression.
https://tcga-data.nci.nih.gov/tcga

Discover novel molecular
targets

GTEx [65] GTEx provides transcriptomic profiles of normal tissues, including
>7 K samples across >45 tissue types.
http://www.gtexportal.org

Tissue-specific drug targets

CCLE [69] CCLE provides genetic and pharmacologic characterization of
>1000 cancer cell lines.
http://www.broadinstitute.org/ccle

Identify novel drug targets
and drug response
biomarkers

GDSC [70] GDSC is the largest public resource for information on drug
sensitivity in cancer cells and molecular markers of drug response.
https://www.cancerrxgene.org/

Identify novel drug targets
and drug response
biomarkers

half of the expressed human proteome. In the past few years new
proteomics technologies have been proposed with the ability to
identify >8000 proteins in a 5 h analysis [74]. Overall quantitative
proteomic methodologies are becoming more robust and reli-
able with technological developments and can produce robust,
reproducible and standardized data sets [75]. The differential
and quantitative profiling of the dynamic protein changes in
health and disease will inevitably further our understanding of
the mechanistic basis of disease. Proteomics experiments can
be used for different aspects of clinical and health sciences
such as biomarker discovery and drug target identification. A
biomarker usually refers to disease-related molecule that can be
used to diagnose or monitor risk or prognosis of disease, and
can also indicate opportunities for therapeutic interventions.
For example, proteomic strategies have been extensively used

for discovering novel cancer biomarkers [76, 77]. Proteomics can
also be used to address several steps of the drug development
process, including identification and validation of drug targets,
informing assay development for screening of leads and in gen-
erating in vitro and in vivo biomarkers as surrogate endpoints for
efficacy, toxicology and disease stratification. Most of the MS-
based proteomics research studies in drug discovery have been
performed to characterize protein expression profiling, func-
tional proteomics and phosphoproteomics. These experiments
aim to measure the protein expression levels, protein–protein
complexes and signal transduction relative to a control treat-
ment. However, in drug discovery it is very important to discover
protein targets from phenotypic assays and to understand on-
and off-target engagement of potential therapeutic compounds.
This task can be addressed by using chemoproteomics [78, 79].
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Table 5. Proteomic databases for DTD

Database Description Application

PRIDE Archive [84] The PRIDE is a public data repository for proteomics,
including protein and peptide identifications,
post-translational modifications and supporting spectral
evidence. https://www.ebi.ac.uk/pride/archive/

Drug target identification

ProteomicsDB [85] PDB is a large collection of quantitative MS-based
proteomics data across various tissue types as well as
protein–protein interaction information, functional
annotation, target deconvolution, cell sensitivity and
reference MS data. https://www.proteomicsdb.org/

Drug target identification
Drug target efficacy/potency

Human Proteome Map [88] Hosts high-resolution MS proteomic data representing 17
adult tissues, 6 primary hematopoietic cells and 7 fetal
tissues resulting in >84% human proteome coverage.
http://www.humanproteomemap.org/

Drug target identification
Biomarkers

Human proteome atlas [89] Collects expression and localization of majority of human
protein-coding genes based on both RNA and protein
data. The HPA also employs antibody-based proteomics
and transcriptomics profiling methods to locate and
identify proteins in tissues and cell types. http://www.
proteinatlas.org/

Druggable proteome
Drug target efficacy and
specificity

Chemoproteomics refers to a new technology that facilitates
large-scale study of proteins by combining chemical methods
with MS proteomics. In particular, it provides direct binding of
small molecules with protein targets, helping one to quantify
the amount of drug required to bind a target and subsequently
produce a therapeutic effect) and drug selectivity determination
(through the assessment of off-target interactions) [78]. Pro-
teomics is also used in drug target identification by applying
protein–protein interaction networks (PPINs). PPINs are typically
modeled via graphs, whose nodes represent proteins and whose
edges connect pairs of interacting proteins. These connections
are specific, occur between defined binding regions in the pro-
teins and have a particular biological meaning (i.e. serve a spe-
cific function). The totality of PPIs that happen in a cell and in a
given biological context is called interactome. As a result of the
development of large-scale PPI screening techniques, especially
high-throughput affinity purification combined with MS and
the yeast two-hybrid assay, today we can access big amounts
of PPI data and build very complex interactomes [80]. All this
information can serve new ways for DTD. In a recent study,
breast, pancreatic and ovarian cancer PPINs were employed to
identify the respective sets of driver proteins [81]. In this study,
the PPI was implemented as linear time-invariant dynamical
systems (LTISs). Then, an efficient (low polynomial time) algo-
rithm was provided for computing the minimal number of input
nodes needed to structurally control the given LTIS representing
a given cancer PPI. The identified driver proteins, called cancer
survivability-essential proteins, were proved to be a key for in
vivo cancerous cell’s proliferation and survival. PPI can also be
exploited to characterize topological properties of efficient drug
targets and to use this information for target prediction [82].
The applications of MS in identification and quantification of
proteins encoding disease genes are rapidly evolving [83]. This
has led to an exponential growth of targeted quantitative pro-
teomic analyses that aim to systematically measure the abun-
dance of proteins in large sets of samples, generating big volume
of multidimensional data. In order to disseminate these large
data sets to the scientific community, researchers have recently
developed central repositories to store and share MS proteomics
data such as PRIDE [84] and ProteomicsDB [85]. The PRoteomics

IDEntifications, an archive database for MS proteomics data,
provides protein and peptide identifications, post-translational
modifications and supporting mass spectra evidence. Whereas,
ProteomicsDB contains quantitative data from 78 projects, for
a total of 19 k LC–MS/MS experiments. A standardized analy-
sis pipeline enables comparisons between multiple datasets to
facilitate the exploration of protein expression across hundreds
of tissues, body fluids and cell lines. Table 5 reports the main
proteomics databases for DTD. In addition, protein databases
such as UniProt [86] and Protein Data Bank (PDB) [87] can be
used to further examine individual proteins on functional and
structural level.

Metabolomics

Metabolomics is the study of the metabolome, i.e. all the metabo-
lites present in a cell, tissue or organism at a given time. It
provides an overview of the metabolic status and global bio-
chemical events associated with a cellular or biological system.
Unlike genes and proteins, whose functions are influenced by
intriguing regulatory mechanisms such as epigenetic regula-
tion and protein post-translational modifications, metabolites
provide direct signatures of biochemical activity and are there-
fore easier to correlate with phenotype [90]. Metabolomic-based
clinical applications and tests are now emerging [91] and can
help to understand disease mechanisms from a new perspective.
Metabolomics have contributed to identifying metabolic causes
and biomarkers for chronic diseases such as diabetes, Alzheimer
disease, atherosclerosis and cancer. Metabolites play an impor-
tant role in tumor cell proliferation. In particular, by analyzing
transcriptional-metabolomic data from experiments of knock-
down genes responsible for the enzyme supporting cell growth
in glucose-free media, Vincent et al. [92] identified metabolic
pathways that support glucose-independent tumor cell prolif-
eration. Metabolomics can be used to implement effective pre-
cision medicine approaches such as personalized phenotyping
and individualized drug-response monitoring. For instance, the
analysis of pre-dose metabolite biofluid profiles allows clini-
cians to predict the effectiveness of a selected drug treatment for
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Table 6. Metabolomic databases for DTD

Database Description Applications

The Human Metabolome
Database [84]

HMDB is a freely available electronic database containing detailed
information about small molecule metabolites found (and
experimentally verified) in the human body. It contains
experimental MS/MS data for over 5700 compounds.
http://hmdb.ca

DTD

The Madison Metabolomics
Consortium Database [97]

MMCD collects small molecules of biological interest gathered
from electronic databases and the scientific literature. It contains
approximately 10 000 metabolite entries and experimental
spectral data on about 500 compounds. http://mmcd.nmrfam.
wisc.edu

DTD

Golm Metabolome Database [98] GMD represents a general MS-based repository of reference
metabolite profiles for essential plant tissues and typical
variations of growth conditions. http://gmd.mpimp-golm.mpg.de/

DTD

MassBank [99] The first public repository of Electron Impact-MS data covering
more than 200 000 spectra for a wide range of organic compounds.
https://github.com/MassBank/

DTD

MetaboLights [96] ML is an open-access database repository for cross-platform and
cross-species metabolomics research at the European
Bioinformatics Institute. It provides Metabolomics Standard
Initiative-compliant metadata and raw experimental data
associated with metabolomics experiments.
https://www.ebi.ac.uk/metabolights/

Drug safety
Drug efficacy

MetabolomeExpress [100] MB is designated to perform three main functions: (i) store GC-MS
metabolomics data, allowing for analysis without the user having
to download the data, (ii) provide a GC-MS analysis pipeline and
(iii) store metabolite response statistics.
https://www.metabolome-express.org/

DTD
Drug safety

a given individual [93]. Toxicity assessment of drug targets can be
addressed by using metabolomics data. In particular, the infor-
mation from metabolomic analysis can be used to determine the
off-targets of a drug candidate and thus provide a mechanistic
understanding of drug toxicity [94]. Moreover, metabolic profile
analysis can also allow clinicians to quantify drug efficacy and
safety and use this information to tailor personalized treat-
ments. Metabolomics also has the potential for generating a
new generation of biomarkers. For instance, a panel of metabolic
biomarkers to monitor responses to therapeutic interventions
was developed recently [95]. Metabolomics is reducing the cost of
toxicological screening, enabling improved clinical trial design,
allowing better patient selection and monitoring and shortening
the time needed for drugs to move through the development
pipeline. Considerable advances have been made in the assess-
ment of mechanisms of action of toxicity of drugs and other sub-
stances. Comprehensive metabolomics databases include The
Human Metabolome Database (HMDB) and MetaboLights [96].
Table 6 lists and briefly describes metabolic data sources that
can be used for drug target efficacy and safety assessments.

Platforms for multi-omics data discovery

As discussed in the previous section, numerous repositories
are available to share and disseminate omics datasets for
DTD. However, these repositories do not provide tools to
systematically link omics studies having similar experimental
set-ups. The need to facilitate the retrieval and the integration
of publicly available big omics data has recently led to web-
based platforms for indexing, discovering and integrating
datasets from different omics technologies and databases

into common framework and web interface. Examples include
Biomedical and Healthcare Data Discovery Index Ecosystem
(bioCADDIE), funded by the National Institute of Health (NIH)
Big Data to Knowledge (BD2K) initiative that aims to provide a
platform to retrieve relevant metadata of entire datasets [101].
Another example of an omics-based search engine is the Omics
Discovery Index (OmicsDI; http://www.omicsdi.org), which
helps scientists integrate proteomics, genomics, metabolomics
and transcriptomics datasets [102]. OmicsDI has developed a
common metadata structure framework and exchange format
across 11 repositories, including proteomics databases (PRIDE,
MassIVE and GPMDB), metabolomics databases (MetaboLights,
GNPS, MetabolomeExpress and Metabolomics Workbench) and
transcriptomics databases (ArrayExpress and Expression Atlas).

Multi-omics approaches for DTD

Each type of omics data provides important information high-
lighting differences between normal and disease conditions.
These data can be utilized to discover diagnostic and prognostic
markers and to give insight as to which biological processes are
different between the disease and control samples. However,
single-level omics data analysis is limited, reflecting reactive
processes rather than causative ones [103]. Indeed, integrating
multiple omics data types could reveal important molecular
mechanisms that regulate for complex diseases and help sci-
entists understand the dynamics that lead to disease man-
ifestations. Moreover, a more detailed understanding of dis-
ease mechanisms would be beneficial when searching for novel,
more effective biomarkers. Current DTD platforms do not pro-
vide tools for multi-omics data analysis mainly because of the
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Table 7. Pathway-based databases useful for DTD

Database Description Drug-related information

KEGG [113] The Kyoto Encyclopedia of Genes and Genomes is a widely used
database containing metabolic pathways (372 reference pathways) from
a wide variety of species (>700). These pathways are hyperlinked to
metabolite and protein-complex/enzyme information.
https://www.genome.jp/kegg/

Drug metabolism
Drug development
Disease/drug information

BioCyc [114] The BioCyc database is a set of 3000 Pathway/Genome Databases
(PGDBs) for many sequenced genomes. PGDBs describe the entire
genome of an organism, as well as its biochemical pathways and
(when curated) its regulatory network.
https://biocyc.org/

Pathway-based target
selection and validation
Antimicrobial drug targets

Reactome [115] Reactome builds and maintains a peer reviewed knowledge base of
biological pathways (primary species of interest is Homo sapiens),
including metabolic pathways as well as protein complex trafficking
and signaling pathways. Reactome includes several types of reactions in
its pathway diagram collection including experimentally confirmed,
manually inferred and electronically inferred reactions.
https://reactome.org/

Simulate impact of drugs
on pathway activities
Drug target interaction in
pathway diagrams

WikiPathways [116] WikiPathways is an open, collaborative platform dedicated to the
curation of biological pathways. It is based on the MediaWiki open
source software used by Wikipedia, coupled to a custom graphical
pathway editing tool and integrated databases covering major gene,
protein complex and small-molecule systems.
https://wikipathways.org/

Drug target search
strategies

Pathway Commons [117] PC provides a collection of publicly available pathways from multiple
organisms that provide researchers with convenient access to a
comprehensive collection of pathways from multiple sources
represented
in a common language.
https://www.pathwaycommons.org/

Robust pathway analyses

Biocarta Biocarta is an open source database of pathways highlighting molecular
relationships from areas of active research as well as classical pathway
maps. It also catalogs and summarizes important resources providing
information for over 120 000 genes from multiple species.
www.biocarta.com

Enhancing genomic
information for DTD

PharmGKB [118] PGKB is a publicly available online knowledgebase responsible for the
aggregation, curation, integration and dissemination of knowledge
regarding the impact of human genetic variation on drug response. It
also contains manually curated pharmacokinetic and
pharmacodynamics pathways.
https://www.pharmgkb.org/

Drug target–side effects

absence of standardized analytical protocols. However, recent
studies have proposed interesting approaches applied to the
cancer drug discovery [104]. It is acknowledged that multi-omics
cancer data have the potential in improvement of targeted ther-
apy and the effectiveness of traditional therapies, in clarification
of molecular mechanisms of cancer therapeutic resistance and
in the discovery of novel biomarkers and targeted drugs. For
example, genomic and transcriptomic data and long-term clini-
cal outcomes were recently analyzed to detect changes of gene
expression based on somatic gene copy number aberrations.
This analysis revealed important targeted therapeutic response-
related events [105]. An integrative analysis of genomic and pro-
teomic data demonstrated that aberrations of the PI3K pathway
are particularly common in hormone receptor-positive breast
cancer, which might be important in clinical selection of targeted
therapies [106]. Another multi-omics data analysis, conducted
in sorafenib-treated failure HCCs aimed, combined quantitative
proteomics and phosphoproteomics data to better understand
the molecules targeted by this drug. This study revealed that
sorafenib can indeed effectively inhibit its target kinase in Raf-

Erk-Rsk pathway, but the downstream targets of Rsk-2 (eIF4B,
filamin-A and so on) were not affected, which suggests that
another alternative pathways might have been active and con-
tribute to the treatment failure [107].

Pathway databases for DTD

Recent emphasis on multi-omics data analysis has helped to
pave the way for more systems biology-driven approaches to
DTD [108, 109]. These approaches strongly rely on the integration
of omics-driven information with pathway annotations in order
to more accurately identify effective drug targets. Currently,
there are a large number of pathways resources that are used for
system biology analysis [110, 111]. These resources have a vari-
ety of goals, ranging from identifying gene functions in model
organisms to providing tools for drug discovery. Pathway-based
strategies are also useful for the identification of alternative
druggable targets. Sometimes targets identified with GWAS and
other omics technologies may not be druggable [112]. However,
these undruggable genes may occur on a pathway with a partner
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Table 8. Platforms and databases for DTD and evaluation

DTD Link Description Main goals License

DrugBank [39, 119] drugbank.ca A bioinformatics and chemoinformatics
resource that combines drug and drug
target information

Drug and target
information

CC BY-NC 4.0

ChEMBL [120] ebi.ac.uk/chembl An open large-scale bioactivity database
combining molecule, target and drug
data

Drug and target
information

CC BY-SA 3.0

DGIdb [121] dgidb.org A collection of drug–gene interactions
and gene druggability information

Drug–gene interactions MIT

TTD [38] db.idrblab.org/ttd/ A database to provide information about
known and explored therapeutic protein
and nucleic acid targets and related
targeted disease

Drug and target
information

Free access

DisGeNET [68] disgenet.org A collection of genes and variants
associated with human diseases

Gene disease
associations

CC BY-NC-SA 4.0

DTC [2] drugtargetcommons.
fimm.fi

A crowd-sourcing platform to improve
the consensus and use of drug target
interactions

Drug target interactions CC BY-NC-SA 3.0

Open Targets [3] opentargets.org Platform for target identification and
prioritization target–disease associations

Target–disease
associations

APACHE LICENSE,
VERSION 2.0

PHAROS [122] pharos.nih.gov Knowledge base for the Druggable
Genome

Target–disease
associations

CC BY-SA 4.0

CTD [123, 124] http://ctdbase.org/ A literature-based, manually curated
associations between chemicals, gene
products, phenotypes, diseases and
environmental exposures

Drug-gene interactions
Drug disease
associations

TM

ADReCS-Target [125] bioinf.xmu.edu.cn A collection of ADRs caused by drug
interaction with protein, gene and
genetic variation

Drug target–adverse
effect associations

Non-commercial
use

that is from a known druggable family. Moreover, pathway-level
information can help researchers identify drug target side effect
[113]. Table 7 reports a brief description of pathway databases
that can be used to implement systems biology approaches to
drug discovery and validation.

DTD platforms

Over the past decade many databases and computational plat-
forms for target discovery have been created to help scientists
find robust evidence linking targets to diseases. These tools aim
to assess the therapeutic efficacy of targets and, more recently,
also their safety aspects. Initially, DTD platforms were not built
specifically for omics-driven target discovery. However, they pro-
vide access to multiple biomedical data showing relevant target
diseases associations. Large-scale data, such as omics, are sys-
tematically processed into concise information about drug target
and target disease associations and drug- and target-related side
effects. Table 8 lists brief descriptions of the reviewed DTDs.

DrugBank

DrugBank [120] collects comprehensive molecular information
about drugs, their mechanisms, interactions and targets. It is
primarily focused on providing data mining tools needed to facil-
itate target discovery and drug development. Latest versions of
the DrugBank also provide information on the effect of hundreds
of drugs on metabolite levels (pharmacometabolomics data),
gene expression (pharmacotranscriptomics data) and protein
expression (pharmacoprotoemics data). New data have also been
added on the status of hundreds of new drug clinical trials and

existing drug repurposing trials. Data in DrugBank are provided
in an XML format. This makes data downloads and development
of data extraction routines simpler and faster for programmers
and database developers.

ChEMBL

ChEMBL [121] is a well-established resource in the fields of
drug discovery and medicinal chemistry research. It curates
and stores standardized bioactivity, molecule, target and drug
data extracted from multiple sources, including the primary
medicinal chemistry literature. Moreover, the ChEMBL database
includes data typically generated in the preclinical and clinical
phases of drug discovery, specifically drug metabolism and
disposition data. These data help researchers better understand
the key aspects of successful drug discoveries. ChEMBL data
can be downloaded in a number of standard formats that can
be automatically imported to external applications for further
analyses. Alternatively, ChEMBL provides a REST API based
service, allowing the remote retrieval of ChEMBL data and its
integration into other applications.

DGidb

The DGidb database [122] collects drug–gene relationships and
gene druggability information from 30 distinct repositories,
including papers, databases and web resources. It has been
the first DTD platform providing tools to capture and prioritize
genes that are known to be targeted by existing drugs, especially
targeted drugs rather than broad chemotherapeutics. Drug–
gene interactions have been mined from existing databases
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and literature to populate DGIdb. Similarly, genes have been
categorized as potentially druggable according to membership
in selected pathways, molecular functions and gene families.
In the latest version, druggable genes from GWASs are also
included. All data from DGIdb are available as tab-delimited
data downloads and also through a web services API.

Therapeutic Target Database

The TTD [38] provides information about the known therapeu-
tic protein and nucleic acid targets described in the literature,
the targeted disease conditions, the pathway information and
the corresponding drugs/ligands directed at each of these tar-
gets. The database currently contains 2025 targets, 17 816 drugs
and 3681 multi-target agents. TTD also provides information
about drug resistance mutations, gene expression profiles in the
disease-relevant drug-targeted tissue of the patients and healthy
individuals and target combinations of multi-target drugs and
drug combinations. The database is organized through five main
panels which authorize to browse it by advanced search, patient
data, targets or drugs groups or by model data. It also permits to
download various datasets.

DisGeNET

The DisGeNET platform [127] aims to overcome the frag-
mentation and heterogeneity of available genomic data for
mining gene disease associations. It integrates data from
manually curated databases, GWAS catalogs, animal models
and the scientific literature. DisGeNET features a score based on
the supporting evidence to prioritize gene disease associations.
These scores rely on data retrieved from databases of curating
genetic association studies (the GWAS Catalog and the Genetic
Association Database) and genomic information extracted from
animal models. DisGeNET can be used for different research
purposes including the analysis of properties of disease genes,
the generation of hypothesis on drug therapeutic action and
drug adverse effects, the validation of computationally predicted
disease genes and the evaluation of text mining methods
performance. DisGeNET data are available for downloading in
several formats: as SQLite database, as tab-separated files and
as dump files, serialized in RDF/Turtle.

Drug Target Commons

DTC [2] is a crowdsourcing web platform that aims to stan-
dardize the collection, management, curation and annotation
of the notoriously heterogeneous compound–target bioactivity
data to facilitate drug discovery, target identification and drug
repurposing. It integrates different, publicly available bioactivity
data, which are generated using various assays, on compound–
target interactions. Multiple data sources are systematically
used for discovery of new indications for drugs (i.e. the selection
of compound affecting specific proteins or biological pathways).
DTC also provides access to QSAR models that can be used
to extend target spaces for drugs. Besides, the drug-related
bioactivity data are combined with chemical proteomic data
in order to characterize biological pathways that are affected
by certain drugs, to identify makers for drug monitoring and
to determine drug-cocktails [128]. These data can be used to
characterize potential safety issues associated with certain
drugs (e.g. in vivo absorption, distribution, metabolism, excretion
and toxicity properties) [129].

Open Targets Platform

Open Target [3] is a platform for therapeutic target identification
and validation, providing either a target-centric workflow to
identify diseases that may be associated with a specific target,
or a disease-centric workflow to identify targets that may be
associated with a specific disease. Coverage includes genetic
associations, somatic mutations, know drugs, gene expression,
affected pathways, literature mining and animal models. The
latest version of Open Target provides information regarding
the tractability of a target, which measures the ‘ligandability’
of putative drug targets [130], and safety risk information asso-
ciated with selected targets. The Open Targets Platform allows
programmatic retrieval of data via a set of REST services or,
alternatively, the access to dump files.

Pharos

Pharos [123] provides a web interface for data collected by the
Illuminating the Druggable Genome initiative. It incorporates
text-mined bibliometric associations and statistics from the
biomedical and patent literature, mRNA and protein expression
data, disease and phenotype associations, bioactivity data, drug
target interactions, and omics-driven data imported from the
Harmonizome. It also integrates with the functionality of the
Drug Central and DTO resources. The Drug Target Ontology is a
database providing tools to classify and integrate drug discovery
data based on formalized and standardized classifications and
annotations of druggable protein targets. DTO integrates phylo-
genecity, function, target development level, disease association,
tissue expression, chemical ligand and substrate characteristics
and target-family specific characteristics. Protein classes are
linked to tissue and disease via different levels of confidence.
DTO also contains drug target development classifications, a
large collection of cell lines from the LINCS project and relevant
cell–disease and cell–tissue relations. DTO is modeled in OWL2-
DL to enable further classification by inference reasoning and
SPARQL queries. DTO is implemented following a modulariza-
tion approach. DTO will serve as the organizational framework
for drug targets in the IDG PHAROS User Interface Portal.

Comparative Toxicogenomics Database

CTD [124] is a public resource that provides information about
interactions between chemicals and gene products, and their
relationships to diseases. Professional biocurators manually
curate the scientific literature, transforming text, tables, figures
and supplemental files into annotated data that are seamlessly
integrated and available through CTD’s public web application
(PWA). Different data sources for toxicogenomics, phenotypes,
diseases, environmental exposures and pharmaceuticals are
considered in order to build drug gene and drug diseases inter-
actions. Overall, CTD includes over 38 million toxicogenomic
relationships for analysis and hypothesis development. This
information is organized through community-accepted con-
trolled vocabularies and ontologies with accession identifiers,
in order to ensure that CTD’s content is cohesive, manageable
and computable, as well as adhering to the FAIR principle.
CTD’s vocabularies and content are described and made freely
available for users to download in a variety of formats.

ADReCS-Target

ADReCS-Target [126] provides target profiles for aiding drug
safety research and application by collecting data about adverse
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Table 9. Comparison on drug target–disease associations

DTD Main association Drug target Target–disease Efficacy Safety Novelty

DrugBank Drug target (RNA,
DNA and other
molecules)

Drug binding data
Drug pharmacokinetics
Drug bioavailability
Drug ADMET characteristics Clinical
trials
(TTD, STITCH, BindingDB, ChEMBL)

External links to
ChemSpider, HMDB,
MMCD, SMPDB and
OMIM

Yes
(DrT)

Yes Yes

ChEMBL Molecule-target
(genes/proteins)

Efficacy assays data
ADME assays data
Drug metabolism data
Toxicity assay data

External link to
ClinicalTrials.gov

Yes
(DrT)

Yes Yes

DGIdb Drug target
(genes)

Drug bioactivity data
Physically binding data
Modulation and indirect interaction
RNA drug binding data (DrugBank, TTD,
ChEMBL, TALC)

Missing Yes
(DrT)

No No

TTD Drug target
Target disease

Drug target interaction (PubChem,
DrugBank, SuperDrug and ChEBI)

Gene expression profiles Yes
(DsT)

No No

DisGeNET Gene diseases
Variant diseases

External links to
Drug activity data
Drug gene interaction
Drug adverse reaction (ChEMBL, CTD,
Sider)

Genomic data (GWAS)
Scientific literature
Animal models

Yes
(DsT)

No No

DTC Drug target
interactions
(proteins)

Drug activity data; clinical development
information of drugs (25 databases,
including ChEMBL, PubChem,
DrugBank, PharmGKB and
ClinicalTrials.gov)

External links to
DisGeNET, Cancer
Genome Interpreter)

Yes
(DrT)

No No

Open
Targets

Target disease
(genes/proteins)

External link to ChEMBL Genetic associations;
somatic mutations;
drugs pathways &
systems biology; RNA
expression; text mining;
animal models

Yes
(DrT)

Yes No

PHAROS Drug target Scientific literature mRNA and protein
expression data
Disease and phenotype associations
Bioactivity data
Drug target interactions
Adverse drug reactions

External links to
DisGeNET, Expression
Atlas GTEx, GWAS
Catalog, JensenLab data

Yes
(DrT)

No Yes

CTD Drug target
Drug disease
Target disease
(genes/proteins)

Curated chemical–gene interactions
(bioactivity, binding, expression,
mutagenesis and metabolic processing)

Curated chemical–
diseases interactions
Inferred gene disease
associations

Yes
(DsT)

Yes No

ADReCS-
Target

Drug target/side
effects
(genes/proteins)

A collection of ADRs caused by drug
interaction with protein, gene and
genetic variation

External links to CTD,
DrugBank, dbSNP

No Yes No

Efficacy estimates can refer to drug target interaction (DrT) or disease target associations (DsT).

drug reactions (ADRs) caused by drug interactions with protein,
gene and genetic variation. ADReCS-Target contains more than
66 000 association pairs with over 2200 standard ADR terms man-
ually curated from text mining of the public scientific literatures.
All the terms are standardized by using ADReCS ontology and
represented as a connected network or systematic fashion. The
user can download selected records via the embedded download
function in six formats such as JSON, XML, CSV, TXT, SQL and
MS-Excel. ADReCS-Target also allows batch data retrieval.

Comparative analysis of DTD platforms

In this section we compare the selected DTDs based on what
type of associations are pursued, the information provided to

inform about efficacy and safety of putative targets and the
omics data employed for the discovery process.

Comparing the information presented in Table 9, we can
observe that many existing DTDs help identify and prioritize
drug targets solely on the basis of molecule–target interactions,
without specifying whether the target is disease-modifying
and/or has a proven function in the pathophysiology of a
disease. On the other hand, web platforms such as Open
Targets and DisGeNET provide information on drug target–
disease associations. These tools provide also efficacy scores
of target disease associations calculated from multiple sources
of evidence, including omics and scientific literature. Both
scoring systems can be utilized to summarize and rank disease-
relevant targets. This is especially the case of the Open Targets

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/21/6/1937/5626327 by guest on 06 M

arch 2021



Drug target discovery platforms 1949

Table 10. Comparison based on the use of omics data layers and prioritization tool

DTD Omics Omics data types External DB Ranking

DrugBank Genomic
Transcriptomic
Metabolomic
Proteomic

SNP-drug data (∗)
Up/down regulation of genes due to drug
metabolism
Manually compile metabolomic
information (∗)
Drug-action pathways on protein
targets (∗)

dbSNP, Literature,
SMPDB, HMDB, T3DB,
SMPDB, Uniprot, CTD

Not available

ChEMBL Transcriptomic
Genomic

Gene expression profiles induced by
chemical or drug exposure (∗)
Drug sensitivity (∗)

TG-GATE, DrugMatrix,
Gene Expression Atlas,
GDSC

Confidence score to rank
molecule-target interactions

DGIdb Genomic Druggable genome/genes (∗) MyCancerGenome Number of distinct sources
of evidence and PMIDs
supporting each interaction.

TTD Transcriptomic
Genomic

Tissue-specific gene expression profiles
in healthy and diseased individuals (∗)
Drug resistance mutation (∗)

Gene Expression
Omnibus and
ArrayExpress Literature

Not available

DisGeNET Transcriptomic
Genomic

Gene expression alteration (∗)
Relationships between human
variants/genes and phenotypes/
diseases (∗)
Genome association studies (∗)

Gene Expression Atlas
CTD, CLINVAR Orphanet,
GWAS Catalog, The
Genetic Association
Database (GAD)

GDA score to rank the gene
disease according to their
level of evidence. This score
compiles efficacy scores on
the basis of genomic
information and scientific
literature.

DTC Genomic Gene disease associations (∗)
Somatic mutation information (∗)

DisGeNET Not available

Open
Targets

Transcriptomic
Genomic/Genetic

Expression profile of diseases (∗)
Genome association studies, somatic
mutation (∗)

Gene Expression Atlas
GWAS/PheWAS Catalog,
Gene2Phenotype

Multi-evidence ranking of
target disease associations

PHAROS Transcriptomic/Proteomic
Genomic/Genetic

Tissue-specific RNA expression (∗)
Genome association studies (∗)

GTEx, Expression Atlas,
Harmonizome, CPR
(Jensen Lab), EMBL-EBI
datasets

Not available

CTD Transcriptomic
Genomic
Metabolomic

Gene expression alteration (∗)
Genetic alteration of a gene product (∗)
Metabolic processing (∗)

DrugBank Not available

ADReCS-
Target

Genomic/Genetic Gene disease associations (∗)
Drug relevant genetic variations (∗)

CTD, GWAS Catalog,
DrugBank

Not available

The (∗) indicates that omics-driven information is obtained from an external data source, database or literature.

platform, which allows the collection and fusion of many
pieces of evidence to support target disease associations. The
Open Targets platform employs data mining algorithms in
order to estimate a numerical score for each type of evidence.
These scores are finally merged through the harmonic sum,
which gives an overall efficacy estimate indicting strength
of an association between a molecular target and a disease.
More recently, Open Targets platform has provided a new
source of information namely ‘target tractability’ which can
be used to collect drug target details, such as whether there is a
binding site in the protein that can be used for small molecule
binding, or an accessible epitope for antibody based therapy.
This can assist in target prioritization, drug target inclusion
in discovery pipelines and selection of therapeutic modalities
that are most likely to succeed. An important aspect of drug
target prioritization is target safety assessment, which should
aim to identify potential unintended adverse consequences of
target modulation [33]. However, to the best of our knowledge,
none of the presented DTD platforms provide safety evaluation
scores to be combined with efficacy estimates of target disease
association. Open Target and DisGeNET do not directly provide
information on drug target interactions. CTD is the only platform

aiming to bridge the information gap between drug target
interaction and target disease association tasks. It integrates
multiple sources of information for drug target interaction and
it includes clinical development information for the compounds
and target gene disease associations, as well as cancer-type
indications for mutant protein targets, which are critical for
precision oncology developments. However, CTD often considers
the disease as an adverse outcome given by the interaction
between a chemical and a gene. Another important observation
is that many DTDs do not directly indicate information on
potential side effects that could be caused by a drug interacting
with the selected molecular target (e.g. gene or protein), if
the selected targets are classified as ‘essential’ or play a role
in oncogenic pathways. The term essential gene can refer
to genes encoding proteins that are necessary to maintain a
central metabolism, replicate DNA, translate genes into proteins,
maintain a basic cellular structure, etc. CTD and ADReCS-
Target provide information on putative side effects associated
with drug target. In particular, CTD integrates chemical and
biological information to elucidate toxicology relationships,
while ADReCS-Target provides information on drug toxicity–
target relationships. TTD and DrugBank provide information on
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multi-target drugs or therapeutic combinations. TTD provides
information on synergistic, additive, antagonistic, potentiative
and reductive drug combinations. Whereas, the DrugBank
database includes a set of 12 128 drug–drug interactions
along with a brief textual description of the interaction and
information about therapeutic effects [131]. Overall, the existing
DTDs focus more on efficacy evaluations of drug target–disease
associations and less on safety aspects of drug targets, and none
of them provide ranking systems to prioritize drug targets on
efficacy and safety evaluations simultaneously. Table 10 lists the
omics data types that DTDs use for mining drug target or target
disease associations. In particular, we can observe that genomic
(genetic) and transcriptomic data are commonly used and that
they are often obtained from pre-compiled omics data analysis.
Moreover, this information is not always utilized to compile
efficacy estimates of drug–gene or gene disease associations.
Platforms such as ChEMBL, DGIdb, DisGeNET and Open Targets
provide scoring methods to rank drug target or target disease
interactions. However, these methods often do not fully exploit
the data collected by DTDs, for instance, DGIdb simply reports
the number of distinct sources and distinct PubMed IDs (PMIDs)
supporting each interaction. Moreover, benchmark studies
supporting the validity of these scoring methods are missing.
As DTD is one of the first phases of drug development process,
it seems feasible that DTD platforms would be incorporated into
the early stages of the process. The platforms can be utilized to
discover completely new targets, rank existing targets lists to
identify the most likely candidates based on different criteria or
to provide additional evidence and starting points for deep dives
into specific targets. To be able to efficiently incorporate DTD
platforms to an existing drug development process and pipeline,
the following features are desirable: (i) possibility to batch
process a set of targets, (ii) programmatic access to the platform
through API and possibility to download the data, (iii) possibility
to incorporate private data, (iv) standardized data formats and
gene/gene product identifiers, (v) references to where and how
the evidence for a specific target was gathered, (vi) rankable
evidence scores and (vii) license that enables intended use. We
believe these features make a platform easier to integrate with
other DTD platforms and existing drug development pipelines.

Conclusion
Current DTD platforms provide alternative ways of utilizing
omics data sources for improved drug target prioritization and
selection. However, there could be some improvements on the
data mining algorithms which are used to quantify the effi-
cacy estimates of drug target–disease associations. In particular,
genomic, transcriptomics and proteomics data could be more
efficiently used to provide new ways to link targets to diseases
and validate these targets. Perhaps, it would be important in
the near future to develop computational tools that could assist
with the integration of these complex multi-omics data sets in
order to more robustly identify drug targets. Moreover, there
has been a little effort to apply omics data for early identi-
fication of safety-related issues of putative drug targets. The
research using clinical data by computational biologists and
biostatisticians, in academia and industry, continuously work
toward the development of cost-effective and sensitive diag-
nostic biomarkers. Overall, we identified three major technical
gaps that could be bridged by the next generation of drug dis-
covery platforms: (i) the lack of in silico tools for target safety
assessment, (ii) comparative analysis of different efficacy and
safety estimates for drug target prioritization and (iii) systematic

identification of multiple drug targets and selection of optimal
therapeutic strategies.

Key Points
• Target-based drug discovery is still largely manual work

that bottlenecks the whole drug discovery process.
• Many computational platforms exist to rapidly identify

and prioritize genes or proteins that encode promising
drug targets from hundreds of data sources, ranging
from scientific publications to omics databases.

• There are a few platforms providing omics-driven effi-
cacy estimates of target disease associations.

• No single tool, platform or database supports drug tar-
get prioritization based on efficacy and safety assess-
ment scores.
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