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ABSTRACT: Molecular dynamics (MD) and related methods are close to
becoming routine computational tools for drug discovery. Their main advantage is
in explicitly treating structural flexibility and entropic effects. This allows a more
accurate estimate of the thermodynamics and kinetics associated with drug−target
recognition and binding, as better algorithms and hardware architectures increase
their use. Here, we review the theoretical background of MD and enhanced
sampling methods, focusing on free-energy perturbation, metadynamics, steered
MD, and other methods most consistently used to study drug−target binding. We
discuss unbiased MD simulations that nowadays allow the observation of
unsupervised ligand−target binding, assessing how these approaches help
optimizing target affinity and drug residence time toward improved drug efficacy.
Further issues discussed include allosteric modulation and the role of water
molecules in ligand binding and optimization. We conclude by calling for more
prospective studies to attest to these methods’ utility in discovering novel drug candidates.

1. INTRODUCTION

Computational drug discovery can accelerate the challenging
process of designing and optimizing a new drug candidate.1

The impact of computational structure-based drug design
(SBDD) on drug discovery has intensified in the past decade
because of the rapid development of faster architectures and
better algorithms for high-level computations in a time-
affordable manner.2 Classical molecular dynamics (MD)
simulations nowadays allow implementation of SBDD strat-
egies that fully account for structural flexibility of the overall
drug−target model system.3,4 Indeed, it is now widely accepted
that the two major drug-binding paradigms (induced-fit and
conformational selection) have superseded Emil Fischer’s rigid
lock-and-key binding paradigm.5−7 Receptor and ligand
flexibility are crucial for correctly predicting drug binding and
related thermodynamic and kinetic properties.8,9 As a result,
classical MD is no longer considered prohibitive for effective
drug design. Instead, it is pushing the frontiers of computa-
tionally driven drug discovery in both academia and industry.10

Classical MD is a physical method for studying the
interaction and motion of atoms and molecules according to
Newton’s physics. A force field is used to estimate the forces
between interacting atoms and calculate the overall energy of
the system. Then, during MD simulations, the integration of
Newton’s laws of motions generates successive configurations
of the evolving system, providing trajectories that specify
positions and velocities of the particles over time. From these
MD trajectories, a variety of properties can be calculated,
including free energy, kinetics measures, and other macroscopic

quantities, which can be compared with experimental
observables. The method was originally conceived within
theoretical physics in the late 1950s but is now applied in
chemical physics, materials science, modeling of biomolecules,
and more recently, drug discovery.11,12

Pioneering studies by Karplus and McCammon13 and by
Warshel and Levitt14 showed the crucial role of classical MD
simulations in studying biological systems. They used MD
simulations to obtain different conformations of proteins and
nucleic acids, including early attempts to simulate sponta-
neously complex phenomena, such as protein folding.13,14 In
recent decades, researchers have increasingly recognized that
MD can also overcome the major limitations of static structure-
based drug design, such as those limitations that characterize
routinely applied ligand docking calculations, which do not
sample the major protein conformational rearrangements often
observed during ligand binding.15,16

The issue of structural flexibility in SBDD was first addressed
using advance molecular docking protocols, which permitted
partial flexibility of the receptor when screening compound
libraries.17 In the past decade, for example, using multiple pre-
existing conformations of a target has become widely accepted
as a way to partially account for protein flexibility in SBDD.18

One notable example is ensemble docking, where several
independent protein conformations are targeted. The results
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are eventually merged together and averaged, leading to
improved outcomes.19 In addition to using experimental
techniques to structurally characterize the receptor in ensemble
docking,20,21 MD simulations were an obvious way to obtain
multiple conformations of macromolecular targets.22,23 As early
as 1994, Pang and Kozikowski extracted multiple conforma-
tions of the acetylcholinesterase enzyme from a 40 ps
trajectory. They used these to successfully predict, through
rigid docking, the bound pose of huperzine A.24 Since then,
numerous research groups have used snapshots extracted from
MD trajectories to provide a discrete representation of the
target plasticity.25 The relaxed complex method developed by
McCammon et al.26 is a particularly notable example. In the
past decade, MD protocols for ensemble docking have shown
great potential in handling targets governed by significant
structural flexibility. These include protein kinases27 and G-
protein-coupled receptors,28 whose function is characterized by
remarkable conformational plasticity.
Moving beyond protocols that use MD to incorporate target

flexibility into standard docking calculations, it is now possible
to run MD simulations for long enough to explore the free-
energy landscape and kinetic profile associated with the overall
drug-binding process (i.e., from the drug fully solvated in water
to the drug−target bound state).29 Today, a full dynamical
description of the protein−ligand binding event can be
obtained, with various degrees of accuracy. This is due to
increasing computer power, the advent of graphical processor
unit (GPU) architectures, and MD software that can efficiently
run on these innovative hardware infrastructures. In pioneering
studies by Buch et al. and Shan et al.,30,31 for example, a ligand
binding to a target protein was investigated by multiple replicas
of microsecond-long MD simulations. More recently, Decher-
chi et al.32 used a similar protocol in combination with machine
learning algorithms to identify different routes to detect binding
and to generate accurate free-energy profiles associated with
these routes.
Although simulations lasting up to a few milliseconds

(corresponding to 1012 time steps) are now possible,33,34

several different trajectories are recommended to obtain
adequate statistics and exhaustive sample of the conformational
space. Thus, even when studying a single lead compound, the
process is demanding. It is also common to find druglike
molecules with long unbinding kinetics (in the order of several
minutes).35 Conventional MD methods, even if running on
specialized hardware, still cannot describe such slow unbinding
events. In fast-paced drug discovery programs, this is the major
issue limiting the use of MD-based simulations for kinetic
prediction.10 However, the sampling issue has led to the
development of many innovative algorithms that form the basis
of “enhanced sampling methods”. These speed up the
description of slow processes, accelerating the rare events
characterized by high-in-free-energy states.36 Notable enhanced
sampling methods (developed over the past 2 decades and now
widely used) include free-energy perturbation,37,38 umbrella
sampling,39 replica exchange,40 metadynamics,41 steered
MD,42,43 accelerated MD,44 milestoning,45 transition-path
sampling,46 and their many possible combinations. Researchers
have recently demonstrated the power of these methods for
studying protein−ligand binding and estimating the associated
free energy and kinetics.3,4 Recent studies have also shown how
various implementations of MD can effectively engage targets47

that are druggable but that do not appear to be very
ligandable.48 In these challenging cases, MD has aided the

discovery of entirely new (usually allosteric) pockets.49 These
pockets are only transiently formed and are often too short-
lived to be mapped on the protein surface by conventional
experimental techniques.50

Given the ever-increasing role played by MD in the evolution
of computationally driven drug discovery, we will here discuss a
few theoretical concepts that form the basis of classical MD,
focusing on those most related to drug discovery. We review
some of the most recent and effective applications of plain MD
for studying protein−ligand binding and unbinding and for
retrieving major thermodynamic data such as binding free
energy. We move on to examples where enhanced sampling
methods combine with MD to characterize ligand−target
conformational and energetic landscapes. Again, we focus on
those methods most widely applied in drug discovery, such as
free-energy perturbation, metadynamics, and steered MD.
This Perspective will also touch on the emerging and critical

role of MD simulations and related methods in predicting the
binding and unbinding kinetics of drugs, since these
physicochemical observables play an increasingly central role
in drug design and optimization. We close by outlining how
MD simulations can help in understanding and using allosteric
mechanisms for drug design and in examining the thermody-
namic properties of the water molecules that solvate protein-
binding sites, which may help in designing new and more
potent lead compounds.
Overall, we provide an overview of the state of the art of

classical MD in pharmaceutical research, highlighting key
applications to drug design from recent years. We envisage a
not-too-distant future wherein MD and related approaches are
routinely used for the in silico screening of large libraries of
small molecules, accelerating drug candidate identification and
optimization. More generally, we anticipate the wider utilization
of MD-based methods in pharmaceutical endeavors.

2. THEORETICAL BACKGROUND

2.1. Molecular Dynamics with Classical Potentials. The
central idea behind MD simulations is to study the time-
dependent behavior of microscopic systems. This is obtained by
solving the second-order differential equations represented by
Newton’s second law:

= = − ∂
∂

t m t
V t

t
f a

x
x

( ) ( )
( ( ))

( )i i i
i (1)

where fi(t) is the net force acting on the ith atom of the system
at a given point in time t, ai(t) is the corresponding
acceleration, and mi is the mass. In eq 1, the instantaneous
configuration of the system is represented by the vector x(t),
which describes the position of the N interacting atoms in the
Cartesian space (x = {x1, y1, z1, x2, y2, z2, ..., xN, yN, zN}).
Usually, in computational drug discovery, we adopt a classical
mechanics description of the forces. Notably, this approx-
imation holds for massive particles such as nuclei, while the
electron motions must be averaged out. To achieve this, an
empirical potential energy function is introduced (V(x) in eq
1), and the model arising from this simplified representation is
referred to as the force field (FF), or molecular mechanics
(MM):
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In eq 2, the first three terms represent intramolecular
interactions of the atoms. They describe variations in potential
energy as a function of bond stretching, bending, and torsions
between atoms directly involved in bonding relationships. They
are represented by summations over bond lengths (l), angles
(α), and dihedral angles (θ), respectively. Bond stretching and
bending contributions share the same functional form, as they
are both described by harmonic potentials with reference values
l0 and α0 and force constants kl and kα, respectively. However,
because of their intrinsic periodicity, torsional terms are
naturally defined by a cosine series of M terms for each
dihedral angle. Thus, nik is a parameter describing the
multiplicity for the kth term of the series, θ0,ik is the
corresponding phase angle, and Vik is the energy barrier.
Taken as a whole, this group of contributions is usually referred
to as the “bonded” terms of the FF.
The fourth and fifth terms in eq 2 represent van der Waals

and electrostatic interactions between atoms, respectively, and
are denoted as “nonbonded” terms. These contributions act on
every pair of atoms in the system that is not already covered by
the bonded counterpart. The energy is expressed as an inverse
power function of the distance between the considered atoms,
rij. The van der Waals interactions are generally treated with a
12−6 Lennard-Jones potential, where εij is a parameter defining
the depth of the energy well, whereas r0,ij is the minimum
energy distance that equals the sum of the van der Waals radii
of the two interacting atoms. Finally, the electrostatic energy is
described with the Coulomb potential, where qi and qj are the
partial charges of a pair of atoms, ε0 stands for the permittivity
of free space, and εr is the relative permittivity (or dielectric
constant), which takes a value of 1 in vacuum.
The major advantage of FFs is that they speed up

calculations considerably, especially compared to quantum
mechanics (QM). QM would be a more accurate theory for
treating molecular-sized systems,2 but it is intrinsically difficult
to solve the Schrödinger equation for many interacting
particles. This prevents QM from being applied practically to
studying very large systems of several thousand atoms. Lately,
however, accurate QM-based approaches have found increasing
applicability in drug discovery.51−53

In this context, FFs have a long history of success, permitting
extended MD simulations of large biomolecular systems,
despite some intrinsic limitations (see below). FFs widely
used nowadays for biomolecular simulations (condensed-phase
FFs) include AMBER,54 CHARMM,55 and OPLS.56 These
have attained such a high standard of quality that the preference
for one over the other is often dictated by practical
considerations only, related to their implementation with the
MD engine of choice. In addition to amino acids, parameters
for nucleic acids, lipids, carbohydrates, and several ionic species
have been included in the parent FFs in recent years by suitably
extending the original parametrization. However, the structural

variability of small molecules (i.e., ligands) has seriously
challenged the condensed-phase FFs. To get around this, the
user must often supply specific parametrizations. Much effort
has been devoted to simplifying and automating this time-
consuming and error-prone procedure, including the develop-
ment of general force field sets for organic compounds (e.g.,
GAFF57 for AMBER, and CGenFF58 for CHARMM) and
specific parametrization toolkits. Among the latter we mention
the Antechamber program,59 Paramfit,60 and Hopkins and
Roitberg’s proposed procedure for AMBER,61 while the general
methodology GAAMP can be used to improve parametrizations
relying on both GAFF and CGenFF libraries, with the added
value of identifying, scanning, and optimizing all soft dihedral
parameters of small molecules according to QM data.62

Another promising general strategy is the systematic para-
metrization method provided by ForceBalance, which is able to
derive parameters by combining theoretical and experimental
data in a flexible way.63 But QM-derived partial atomic charges
and dihedral angle potentials should still be checked carefully
when dealing with nonstandard small molecules.
Although FFs can reduce the computational burden, eq 1 can

still be analytically solved for only a few atoms. For biological
macromolecule simulations, numerical methods must be used
to split the integration of the equations of motion into discrete
time intervals, called time-steps, δt. In doing so, forces are
assumed to be constants during each integration step. However,
as reported in eq 1, forces depend upon atomic positions that
change over time. Thus, a small δt guarantees reliable forces
over time. In practice, with appropriate workarounds, a time-
step of 1 or 2 fs can be safely considered as a good compromise
between calculation accuracy and efficiency. This is commonly
achieved, for example, with the SHAKE and related
algorithms.64 Here, the equations of motions are solved while
still satisfying the geometric constraint for the fastest degrees of
freedom (i.e., the stretching and bending of bonds involving
hydrogen atoms). Other strategies envision, for example,
repartitioning the mass of heavy atoms onto the neighboring
hydrogen atoms, allowing for a time-step increase of up to 4
fs.65 As an example of an integrator, the velocity-Verlet11,12 is a
simple and widely used algorithm in MD codes. Within such an
integrator, positions at time (t + δt) are calculated by current
positions, velocities (v(t)), and accelerations according to

δ δ δ+ = + +t t t t t t tx x v a( ) ( ) ( )
1
2

( )i i i i
2

(3)

Accelerations are in turn calculated by the forces acting on
each atom, that is, by taking the first derivative of the potential
energy with respect to positions with the opposite sign as
shown in eq 1. Then, velocities are propagated as follows:

δ δ δ+ = + + +t t t t t t tv v a a( ) ( )
1
2

[ ( ) ( )]i i i i (4)

As seen in eq 4, the second term on the right-hand side
corresponds to the arithmetic mean of the accelerations taken
at time t and (t + δt). Moreover, to calculate accelerations at the
next step, positions must be updated before advancing velocities.
As a matter of fact, to be safely used in an MD simulation, any
numerical integrator must satisfy some practical and theoretical
requirements. They must follow the analytical trajectory as
closely as possible and must preserve the physical properties of
the equations of motion, with the total energy that is constant
of motion, given by the sum of the potential and the kinetic
energy (K(p)):
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= +H V Kx p x p( , ) ( ) ( ) (5)

where H(x,p) is the classical Hamiltonian of the system that
depends upon the coordinates and momenta of the particles
and returns the total energy (E) of the system. From these
considerations, it should be clear that as long as the integrator
works properly, MD naturally follows the motion of a
microscopic isolated system, where neither matter nor energy
are exchanged with the surroundings. In other words,
Newtonian dynamics sample a statistical ensemble of micro-
states characterized by a constant number of particles (N),
volume (V), and energy (NVE = const, or microcanonical
ensemble). Nonetheless, it is possible to better mimic actual
macroscopic behavior by also controlling the system’s temper-
ature and pressure during simulation. Constant temperature is
maintained through algorithms, called thermostats,66 that allow
fluctuations in kinetic energy as if the simulated system were
immersed in a thermostatic bath (NVT = const, canonical
ensemble). However, the analogy with a thermostatic bath
should not be taken too literally, since heat flow is not
simulated. Instead, the system temperature is forced to attain,
on average, the desired macroscopic value through proper
alterations of the equations of motion. Stochastic dynamics
(SD) can also be used for this purpose.66 Very similar
considerations apply for the so-called barostat algorithms,11,12

by which the pressure is controlled by opportunely scaling
(isotropically or not) the system volume (NPT = const,
isothermal−isobaric ensemble). In order to better describe bulk
properties with finite size systems, periodic boundary
conditions (PBC) are also commonly employed in MD. With
the use of PBC, the model system is placed in a unit cell that is
replicated in all directions to form an infinite lattice of image
atoms. In this way, coordinates and velocities are stored and
propagated for the unit cell only, although the evaluation of
nonbonded terms must in principle be extended to every pair of
atoms in the unit cell and periodic images.11,12 For this reason,
a spherical cutoff scheme with a radius of at least 10 Å can be
used to contain the computational cost and, as such, it is
employed in the calculation of the short-ranged van der Waals
terms. Conversely, because of the intrinsically long-ranged
nature of electrostatics interactions (decay as r−1), the
evaluation of the Coulomb energy for the entire periodic
lattice is required. The calculation of full electrostatics is
achieved through the Ewald sum methods, which treats
differently the rapidly varying electrostatic interactions at
short-range (in the real space) and the slowly decaying
potential at large distances (in the reciprocal space). With the
use of spherical cutoffs and an appropriate splitting parameter
between short and long-range interactions, one can use the
particle-mesh Ewald (PME) method67 to greatly improve the
efficiency of the computation. In this way, the point charges in
reciprocal space are smeared on a regular grid, and the
calculation is performed by taking advantage of fast Fourier
transform.68 The interested reader is encouraged to delve into
the review articles and books that focus on PME.69 By use of
these algorithms, MD simulations nowadays can simulate the
evolution of a protein in realistic conditions for hundreds of
microseconds and more. This allows researchers to observe
events such as a drug binding to its target and to estimate the
kinetics and free energy associated with binding.
2.2. Major Limitations of MD with Classical Potentials.

Here, we mention some key approximations of FF-based
simulations. First, the atomic charge of each atom is fixed,

disallowing any charge polarizability over time. To overcome
this limitation, polarizable FFs have been developed, which can
mimic, to a certain extent, the electronic redistribution in
response to an external electric field (for recent reviews, see
Masetti et al.70 and Shi et al.71). This effect may play a non-
negligible role in the energetics of certain protein−ligand
complexes.72 Polarizable FFs are very promising; however, they
remain quite computationally demanding, with their use and
parametrization being less user-friendly than that of their fixed-
charge counterparts. Advances in polarizable FFs will certainly
widen their use in the coming decades.
Another major limitation of FF-based simulations is that they

cannot be used to study chemical reactivity, since chemical
bonds cannot be broken or formed during MD. To address this,
researchers can use methods that exploit a dual-resolution
description. For example, QM/MM simulations73 treat a very
limited portion of the system with higher accuracy. This is
typically the binding site of a protein where chemical reactions
occur. The majority of the system (the remainder of the protein
and solvent) is then treated at a less accurate level of theory.
These methods have increasingly impacted drug discovery. One
example is in the study of covalent inhibitors, which block the
target by forming a chemical bond. During drug design, QM/
MM calculations can be used to generate QM-based electro-
static potential maps of the receptor’s binding site, to determine
the protonation states of key residues of the binding pocket,
and to dissect reaction mechanisms of enzymes that are drug
discovery targets.53,74,75 The ReaxFF76 is one emerging
approach to studying chemical reactivity using classical MD.
This FF allows chemical reactions to be studied through a
geometry-dependent parametrization of reactants and products.
Unfortunately, this parametrization is not simple and has only
covered limited classes of chemical species to date.
Because chemical reactivity is not allowed in conventional

FF-based simulations, specific protonation and tautomeric
states must be preassigned to all system residues (amino
acids, nucleic acids, ligands, etc.). This is often referred to as the
system’s topology, which is specified by the user during the
setup phase and maintained throughout the simulation. Usually,
assuming a neutral solution, acidic amino acids such as
aspartate and glutamate can be safely modeled in their
deprotonated state (negatively charged), while basic residues
like lysine and arginine are modeled in their protonated state
(positively charged). However, cysteine and histidine, by virtue
of their pKa (around 8−9 and 6−7, respectively), sample a
population of states at physiological pH rather than being a
single dominant form. For histidine, the issue is further
complicated by the fact that two tautomeric forms (Nε and Nδ

protonated) are at equilibrium in the neutral state. In this
regard, the so-called constant-pH simulations allow dynamical
changes in topology during dynamics, mimicking more realistic
conditions for biological model systems. Interestingly, the
AMBER and CHARMM engines have recently started to
support explicit solvent−constant-pH implementations to be
used in conjunction with their own native FF,77,78 while an in-
house version of GROMACS is available to run this kind of
simulation.79 However, constant-pH simulations are generally
much more expensive than ordinary setups, and a significant
increase in computational power is probably required before
they achieve widespread use.
In summary, the inherent approximations of FFs unavoidably

introduce a systematic error into simulations. This error can
always be reduced using a better (yet more computationally
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demanding) description of the model system. In addition, MD
simulations are always affected by another approximation,
related to the limited sampling allowed (far from being
exhaustive). This creates a random error, which can be
decreased by extending the length of the simulations. In
particular, just as experiments must be replicated to assess the
reliability of results, it is becoming computationally affordable
to adopt this good practice when running MD simulations too.
Indeed, the easiest and most general way to evaluate the
statistical uncertainty is to repeat independent runs with
different (uncorrelated) initial conditions and/or random seeds
(e.g., different velocity distributions). More specific strategies
can also be used in the context of single runs.80 However,
certain types of calculations (especially free-energy estimates,
see below) are often so time-consuming that, until recently,
they excluded repeated simulations. Continued increases in
computational power will lead to better statistics, thus
improving the reliability of MD-derived findings. With these
considerations in mind, we describe here how classical MD
simulations can be used to make informed choices in drug
discovery programs.
2.3. MD-Derived Observables for Drug Discovery.

Many observables can be obtained from MD runs. The
principles of statistical mechanics allow quantitative estimates
of important thermodynamic observables to be computed from
MD trajectories. These include internal energy, pressure, and
heat capacity.11,12 However, the key thermodynamic quantity in
drug discovery is the protein−ligand binding free energy. The
noncovalent association between a protein P and a ligand L in
solution, to form the complex PL,

+ ⇄P L PL (6)

is described with the equilibrium (or association) constant Ka,
which is defined as

=K
[PL]

[P] [L]a
eq

eq eq (7)

where the square brackets indicate a concentration, usually
expressed in molar units. The reciprocal of eq 7 is simply the
equilibrium constant for the opposite reaction, namely, the
dissociation constant (Kd = 1/Ka). Because Kd corresponds to
the ligand concentration for which an equal probability of
bound and unbound protein is achieved, this is used more than
Ka in pharmaceutical research. Moreover, for enzyme inhibitor
assays, Kd is usually replaced by the inhibition constant Ki,
which has the very same chemical interpretation, so long as
competitive inhibition is considered. The link between the
experimentally accessible equilibrium constants and thermody-
namics is provided by the standard free-energy change for
binding at constant temperature and pressure:

Δ ° = − ° =
°

⎜ ⎟⎛
⎝

⎞
⎠G k T K C k T

K
C

ln( ) lnb B a B
d

(8)

where C° is a constant defining the standard concentration,
which is 1 M by convention (1 molecule in the volume of 1663
Å3). Importantly, multiplying the association constant by C°, or
equivalently dividing the dissociation constant by the same
amount, makes the argument of the logarithm in eq 8 a
dimensionless number, as it should be. Since the standard
binding free energy (sometimes also referred to as “absolute”
binding free energy) depends on the equilibrium constant and
the reference value of C° (see eq 8), this conventional

concentration must be properly considered to make meaningful
comparisons between computational free-energy estimates and
absolute experimental data (see below).81,82

As mentioned previously, the calculation of free-energy
differences is not simple. Together with entropy-related
quantities, free energy is the thermodynamic observable
whose estimation suffers the most from sampling limitations.
A rigorous formulation of the problem would require statistical
mechanics arguments that are outside the scope of this
Perspective. Therefore, we limit ourselves here to recalling
that the probability of visiting microstates in the canonical
ensemble is proportional to the Boltzmann factor:

∝ −p x( ) e V k Tx( )/( )B (9)

Because of the exponential relationship, high-in-energy
configurations are much less frequently visited than low-energy
states, and barriers larger than a few kBT units can severely
hamper the efficient exploration of space, which is required to
achieve reliable (or converging) free-energy estimates. For this
reason, transitions between states underlying significant free-
energy barriers can be viewed as rare events relative to the time
scales accessible through MD simulations. From a statistical
mechanics standpoint, eq 8 can be reformulated as83
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°
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(10)

The first term in eq 10 represents the computational free-
energy difference expressed as a probability ratio. Here,
pbound(x) and punbound(x) are the probabilities of observing the
protein in the bound and unbound states, respectively, provided
that a clear distinction between them can be achieved by
defining an appropriate reaction coordinate (or collective
variable, see below). However, the second term in eq 10 is a
correction that must be introduced to retrieve the standard
binding free energy. This term takes into account both the
reference concentration of the standard state (C°) and the
concentration of the interacting partners in the simulation box
(Cbox). This correction is only relevant for absolute
comparisons with experimental data, as it cancels out when
computing relative free-energy differences (ΔΔGb). However,
reliable binding free energies through the direct use of eq 10
require extremely long (and possibly repeated) simulations. In
principle, many binding and unbinding events must be
observed to assess a statistically meaningful probability ratio
between states. To date, this approach has been successful for
weakly interacting solutes (solvent mapping).84,85 If stronger
binding is considered (approximately larger than 3−4 kcal/
mol), unbiased MD is typically unable to recover transition
rates, and methods based on enhanced sampling procedures
can be applied.

2.4. Enhanced Sampling in MD. To overcome limitations
inherent to Boltzmann sampling, several theoretical method-
ologies have been developed. These are generally referred to as
“enhanced sampling methods”, since they attempt to escape
Boltzmann statistics while retaining the correct distribution of
states in the given statistical ensemble.36 A large group of these
methodologies exploit the fact that the free energy is a state
function; thus, differences in free energy do not depend upon
the path from state A to B. This means that we can transform
state A into state B without worrying about the physical
transition (i.e., the binding/unbinding path). From a practical
standpoint, this is achieved by introducing a hybrid (or mixed)
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Hamiltonian, which is a function of the potential energy of
states A and B through the coupling parameter λ:

λ λ λ= − +V V V( ) (1 ) A B (11)

In eq 11, the general case of linear interpolation between the
two potential energy functions is shown. This is not always the
best possible solution, and more sophisticated and effective
mixing can be used (nonlinear interpolation schemes, the use of
soft-core potentials, and the separated coupling of electrostatics
and van der Waals terms). For relative free-energy differences,
this can be thought of as performing a smooth and progressive
transformation of a ligand A into a ligand B, in both the
protein-bound and unbound states (bulk solvent). Then, the
free-energy changes for the two transformations are calculated
with appropriate theoretical estimators and practical precau-
tions (stratification, forward and backward sampling, etc.), and
the relative contributions are finally combined through a
suitable thermodynamic cycle to recover the ΔΔGb (Figure 1).

Because of the unphysical path used for the free-energy
calculation, this class of enhanced sampling methods is
sometimes referred to as “alchemical transformations”, although
in drug design they are mostly known as “free-energy
perturbation” (FEP) methods.38 FEP is commonly used to
calculate the free-energy contribution associated with the
vertical legs of the cycle in Figure 1. But, in principle, other
approaches can be used, such as thermodynamic integration
(TI). In fact, these methods can be grouped into a more
general class of hybrid Hamiltonian techniques.
Standard binding free energy can also be recovered using

complex thermodynamic cycles and more challenging simu-
lations (Figure 2). For example, during MD simulations, the
ligand is reversibly changed into a fictitious noninteracting
particle. In other words, it is decoupled from the environment

(the protein and the solvent). For this reason, this theoretical
framework is called the double decoupling method (DDM).81

The method was first introduced by Jorgensen in 1988 as the
double annihilation method (DAM)86 and later formalized by
Gilson et al.81 and others.87−89 A critical aspect of the
procedure is that to avoid the “ligand wandering” problem
associated with highly decoupled states, suitable restraining
potentials must be introduced to keep the ligand in place in the
binding site during the whole transformation (see Figure 2).
These restraints must be applied in such a way as to allow an
exact recovery for the free-energy penalty due to their
introduction. Moreover, during ligand decoupling, a cavity is
created in the binding site that must be filled by an appropriate
number of water molecules. However, this process can be slow
enough to challenge the effectiveness of the whole procedure.
To address this, Helms and Wade introduced a complex hybrid
Hamiltonian scheme to replace the ligand with a certain

Figure 1. Thermodynamic cycle used to calculate relative binding free
energies (ΔΔGb = ΔG°bA − ΔG°bB) between congeneric ligands. The
horizontal legs correspond to the physical binding process, whereas
vertical legs indicate the unphysical transformation of ligand A (blue)
into ligand B (green) performed in bulk solvent (left) and in the
protein binding site (right). FEP is used to compute the free energy
associated with the vertical legs of the cycle, and the relative binding
free energy is calculated as the difference between the free energy
required to transform the ligands in the binding site (ΔGp) and in
solution (ΔGw).

Figure 2. Typical thermodynamic cycle used to compute absolute
binding free energy differences (double decoupling method, DDM). In
the simplest implementation, the cycle involves the introduction of
rototranslational restraints to the bound ligand in order to avoid the
“wandering ligand” problem. The restraints are depicted as a ring
fastening the ligand to the protein, and their associated free-energy
penalty is ΔGp

rstr. Eventually, conformational restraints might also be
envisioned (not shown in the picture for simplicity). Then the ligand is
reversibly decoupled from the protein (or the solvent), usually, in two
steps: first, electrostatics is turned off (ΔGp

ele or ΔGw
ele), then the van

der Waals contributions are switched off (ΔGp
vdW or ΔGw

vdW). The
“uncharged” state is represented by the ligand colored in white,
whereas the transparent ligand depicts the fully decoupled state. The
free-energy penalties associated with confining the decoupled ligand in
the binding-site volume are calculated analytically (horizontal leg at
the bottom of the cycle), and the standard state correction (ΔG°rstr) is
usually added to this contribution.
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amount of water molecules.90 With a more general purpose,
Woods et al.91 proposed the water-swap reaction coordinate,
where an equivalent volume of bulk water molecules replaces
the ligand in the binding pocket. This method is better suited
to describing both buried and superficial binding cavities.
Enhanced sampling methods based on unphysical pathways

can be effectively used to compute free-energy differences,
providing valuable insight into the binding thermodynamics.
However, these approaches do not reveal kinetic aspects of the
drug-binding process that are often of interest. Accounting for
the binding kinetics requires methods that use physical
pathways for free-energy calculations, through which free-
energy barriers and possible intermediates along the (un)-
binding path can be determined.
Enhanced sampling methods, which rely on physical

pathways, can reconstruct the free energy of the investigated
event as a function of a few reaction coordinates, usually called
collective variables (CVs), able to account for relevant degrees
of freedom of protein−ligand binding and unbinding. The
projection of the free energy along the relevant degrees of
freedom is called the potential of mean force (PMF). In
principle, it can be used to extract both thermodynamic and
kinetic information (see Figure 3).92 In fact, we can distinguish

between those methods that explicitly use CVs during sampling
and those that do not. The first method class allows the
exploration of rare events by biasing the MD simulations along
the chosen CVs. This can be achieved in several ways, such as
acting on the forces or introducing external potentials that may
or may not change over time (leading to equilibrium or
nonequilibrium approaches, respectively). Thus, CV-based
methods require an a priori definition of the reaction
coordinate to sample. In most cases, it is not simple to define
a proper CV (or an ensemble thereof). Much chemical intuition
and/or trial simulation is required to achieve a satisfying

description.36 Umbrella sampling (US)39 is one notable
equilibrium-CV-based enhanced sampling method, while
steered MD42,43 and metadynamics41 are certainly the most
popular nonequilibrium ones. The second method class, which
does not explicitly use CV, acts by heating all the degrees of
freedom of the system (or a fraction of them) at once. Here, we
further underline that temperature must be understood
figuratively, since the same enhancement in sampling can be
obtained by actually heating the system or by opportunely
scaling the Hamiltonian. This is analogous to what takes place
for the enhanced sampling methods based on unphysical
pathways. Temperature replica exchange MD (T-REMD, also
known as “parallel tempering”)40 and Hamiltonian replica
exchange MD (H-REMD, also known as “solute tempering”)93

are examples of these methodologies. The recently proposed
scaled MD94 can also be grouped in this class of techniques.
These methods are devoid of any preconceived notion of the
rare event and CVs. For this reason, however, they are also less
specific and often less efficient than CV-based methods.
Interestingly, because of their complementarity, CV-based
and replica exchange methods are sometimes coupled to fully
exploit the potential of both approaches (e.g., US or
metadynamics combined with T/H-REMD).36 Moreover,
replica exchange methods can also be coupled to enhanced
sampling techniques based on unphysical pathways, such as
FEP.93,95,96

3. COMBINING MOLECULAR DYNAMICS WITH
LIGAND DOCKING AND VIRTUAL SCREENING

Ligand docking has been successfully used for drug discovery in
recent years.19 It attempts to predict the three-dimensional
structure and binding free energy of the complex formed by a
receptor, usually a protein, and a small ligand. When applied
iteratively to a library of small molecules, each member of the
library is docked into the receptor, assigned a predicted binding
energy, and ranked accordingly. This computational approach is
called “structure-based virtual screening”.97 The topmost
ranking compounds are then prioritized for further in silico
studies or experimental testing.
Despite its widespread and successful use,98 docking suffers

from one main drawback: the ability to handle proteins’
intrinsic flexibility in docking is either absent or limited.15,99

This downside has greatly limited this technique’s prospective
applicability. To address this, researchers have implemented
several strategies, including soft docking,100 rotamer libraries,101

and local optimization of side chains.102 However, these
relatively simple heuristics do not allow extended rearrange-
ments of the protein structure, including significant conforma-
tional changes at the backbone level.103

3.1. MD for Generating Ensembles of Receptor
Conformations. One practical alternative to on-the-fly
modeling of receptor plasticity is the use of pre-existing
multiple receptor conformations (MRC) of the binding pocket.
This is facilitated by the steadily increasing number of X-ray
and NMR protein structures.17,104 Different experimental
structures of the same receptor, if available, are used to
populate the conformational ensemble used in MRC
docking.105 However, the number of targets whose three-
dimensional structure has been experimentally solved is limited,
considering the estimated extent of the druggable genome.106

Moreover, the amount of conformational space explored by
experimental structures is usually quite limited and biased
toward a few known ligand−receptor complexes. While several

Figure 3. Simplified free-energy profile for the (un)binding process.
The drug−receptor complex is shown as a deep free-energy minimum
on the left (bound state), and the dissociated complex is represented
as a higher-in-energy minimum on the right (unbound state). The
thermodynamics of binding is quantified (in first approximation) by
the free-energy difference between these minima (ΔGb), and the
kinetics of (un)binding is determined by the dissociation and
association rate constants, koff and kon. These quantities are related
to the free-energy differences between minima and the transition state,
ΔG⧧

off and ΔG⧧
on, respectively.
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computational techniques, including homology modeling107

and normal modes analysis,108 can complement experimental
structures for the MRC ensemble, MD is an obvious way to
generate receptor conformations.23,29

Figure 4 reports a general framework for combining
molecular dynamics and MRC virtual ligand screening. While
others have applied a similar workflow,28,109 the relaxed
complex method developed by McCammon’s group is one of
the most well-known examples of this strategy for drug
design.110 First, MD simulations of the selected target are used
to generate a diverse set of receptor conformations, which also
characterize the structural flexibility of most relevant regions of
the receptor for ligand binding. Enhanced sampling methods
can be used, allowing a most efficient exploration of the
conformational space.111 For example, in their studies on
PARP-1, Antolin et al. used temperature replica exchange
MD.112 Then, at regular intervals, multiple snapshots are
extracted from the trajectories (Figure 4B). Each snapshot
represents a conformational variant of the binding pocket. In
principle, every snapshot could be used for MRC virtual
screening.
Notably, a selection of the MD-generated snapshots is

normally needed to avoid redundant structures. This procedure
has demonstrated that some conformers perform better than
others in enriching active compounds.113 Nevertheless, if no a
priori knowledge indicates the single best performing
conformation, some general guidelines exist for building a
representative ensemble of targeted structures.114 From a
survey of the literature, the most important concept is probably

that a combination of two or three conformational variants of
the target usually performs better than random single-
conformation rigid docking. A limited conformational ensemble
can improve both the final enrichment and the chemical
diversity of the resulting hits. In fact, if the set of target
conformations for MRC is too large and diverse, this often
generates an overwhelming noise that deteriorates the virtual
screening performance.115 For these reasons, a limited (yet
hopefully significant) number of conformations is advisible for
efficient MRC virtual screening. This can be selected by means
of cluster analysis, as one example.116 Ideally, the selected
snapshots should capture the entire structural diversity of the
target, sampled along the trajectory, with the minimum number
of significant conformers (Figure 4C). For instance, a
nonredundant set of conformations could be obtained using
rmsd-based hierarchical-agglomerative cluster analysis protocols
and clusterization methods based on QR-factorization.117 In a
comparative study, Nichols et al.116 demonstrated how MD-
generated receptor variants can match and possibly outperform
crystal structures in retrospective virtual screening experiments.
Each variant is used in an independent run to generate an
individual set of results (Figure 4D). These separate rankings
are eventually joined together (Figure 4E).118,119 Importantly,
the relaxed complex method was successfully used to
prospectively identify several modulators of relevant pharma-
ceutical targets, as reviewed in detail by Ivetac and
McCammon.25

3.2. MD for Postprocessing of Docked Protein−
Ligand Complexes. Because sampling and scoring algorithms

Figure 4. Fundamental steps in a virtual screening workflow combining docking and MD simulations. (A) An MD trajectory is used to explore the
receptor conformational space. (B) From the trajectory, several snapshots are extracted and redundancy is eliminated by means of cluster analysis.
(C) From each cluster, a representative structure (e.g., medoid) is selected. (D) Virtual ligand screening is independently carried out at each
representative conformation. (E) Activity predictions returned by independent runs are combined together in a global ranking.
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for docking suffer from several limitations,99 MD can be used as
a postprocessing tool to validate and/or refine docking
solutions. Here, the underlying assumption is that a bad
docking pose will generate an unstable MD trajectory, during
which the ligand could even leave the binding site. Conversely,
a meaningful docking pose will display stable and specific
interactions with the target, showing a low rmsd over time, with
respect to the starting conformation. Furthermore, MD could
provide evidence of so-called “induced-fit effects”, in which the
binding site adapts to the starting pose of the ligand,
strengthening the interactions already captured by docking
and establishing additional interactions during the MD runs.
Finally, MD in explicit solvent can suggest the role of structural
water molecules within the binding site, which is important for
correctly predicting ligand binding.120

Our work in 2004 is one example of how docking and MD
simulations can be fruitfully coupled. Docking and cluster
analysis allowed us to identify several binding modes of
propidium at the peripheral anionic site of the human
acetylcholinesterase enzyme.121 We investigated these initial
poses using MD and eventually identified two alternative
binding modes. Both binding modes were compatible with the
electron density map, with one resembling the crystallographic
pose and the other being flipped by 180°. This study showed
that even a few nanoseconds of MD simulations could
discriminate good docking poses from bad, when surface
solvent-exposed binding sites were considered. In another
study, Kacker et al.122 used a combination of QM calculations,
docking, and MD to define the protonation state of BACE-1’s
catalytic machinery in complex with different ligands. MD was
crucial in discriminating stable hydrogen bonds established
between ligands and the catalytic dyad from more transient
ones and in assessing the role of bridging water molecules.
Complementing docking and MD, Rastelli et al.123 devised an
automatic pipeline, in which they rescored docking-generated
conformations using MM-PB/GBSA free-energy calculations.
With an acceptable increase in calculation time, they improved
hit enrichment in retrospective virtual-screening experiments.
Focusing on GPCR, particularly the human A2A adenosine
receptor, Sabbadin et al.124 proposed a sequential approach to
studying stability in an explicit lipid−water environment of
GPCR−ligand complexes generated by docking. Trajectories
were analyzed in terms of individual electrostatic and
hydrophobic contributions to the binding energy of each
residue contacting the ligand. The bioactive conformation was
expected to display a persistent interaction network along the
trajectory. On the other hand, it is worth mentioning the recent
study of Lauro et al.,125 which represents a counterexample
where MD, employed to perform linear interaction energy
calculations, while efficient, could not significantly improve
ligand-ranking accuracy with respect to results generated by
high quality docking scoring functions. For several other
applications of MD as a ligand-docking postprocessing tool, the
reader may refer to the review article by Alonso and
colleagues.22

4. UNBIASED MD FOR INVESTIGATING DRUG
BINDING

During unbiased MD simulations, the model system evolves
freely over time, without any (biasing) force acting on it. Thus,
this seems the simplest way to simulate and observe the
spontaneous evolution of a drug binding from the bulk of the
solvent into the biological target. That is, one can run

simulations for long enough to let the drug diffuse into the
solvation waters until it finds its way into the target binding
pocket, leading to the final bimolecular complex. However, for
slow binding events (i.e., weak binders), very long simulations
may be required, which can easily exceed today’s affordable
simulation time (up to hundreds of microseconds and
milliseconds).
Until recently, the simulation of drug-binding events was far

beyond the reach of atomistic MD simulations. Great progress
has been made since the very first simulations of 9 ps in vacuo
of the small bovine pancreatic trypsin inhibitor protein,
reported in 1977’s landmark study by McCammon, Gelin,
and Karplus.13 Specialized supercomputers designed for MD
simulations, such as the Anton machine created by the DE
Shaw lab, can run millisecond-long continuous single-trajectory
MD simulations of small globular proteins.29,33 Even longer
aggregated sampling times have been reported using Folding@
Home from the Pande lab.126 While these highly efficient
computers and MD systems are available to just a few
researchers, the growing distribution of graphics processor
units (GPUs) is increasing the MD community’s ability to run
long simulations at an affordable cost. Nowadays, researchers
can quite routinely generate tens of microseconds of simulated
time for medium-size models (50−100K atoms).4 Only 10
years ago, it was hard to envisage such a rapid increase in MD
time scales. Remarkably, this has mostly been achieved because
of technological progress rather than the development of novel
theories.
For drug discovery, typical model systems only include the

solvated target and ligand(s), which do not usually exceed a few
hundred thousand atoms in size. In the past few years, unbiased
MD simulations of these models have been used quite
extensively to describe the process by which drugs bind to
targets in several systems. Hundreds of ∼100 ns runs of
unbiased MD were used to identify possible pathways for the
spontaneous binding of benzamidine to the trypsin.30 Tens of
microsecond-long simulations were run to detect the
spontaneous binding of G-protein-coupled receptor (GPCR)
agonists and antagonists, as well as protein kinase inhib-
itors.31,127−129 More recently, Decherchi et al. ran extensive
unbiased MD simulations (about 1 μs each) to investigate the
tight binding event of a transition state analog (DADMe-
immucilin H) into the pharmaceutical target, purine nucleoside
phosphorylase.32 Despite observing spontaneous binding
through different routes, the authors used the pathways
obtained by MD simulations to determine the free-energy
profiles associated with the diverse binding mechanisms. By
combining MD with machine learning and enhanced sampling
methods (see below), they could observe the binding and
estimate the associated kinetics and thermodynamics. Overall,
these unbiased MD simulations have validated the computa-
tional methodology, reproducing the known crystallographic
pose of the drug quite well (with an rmsd that was usually
within 2 Å). In addition, the free-energy difference between the
bound and unbound states can be calculated in many formally
equivalent ways and compared to the experimental Ki, when
available. Kinetic quantities, such as kon and koff, are further
important observables that can be retrieved from these long
MD simulations. They must also reproduce the experimental
data to further validate the simulated drug-binding process (see
below for further details on binding kinetics). In this way, the
accuracy of the computational approach to simulating the drug-
binding process is endorsed and, to some extent, benchmarked.
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Only then can MD trajectories be trusted, analyzed, and
interpreted in a meaningful way. Doing so reveals a wealth of
potentially useful insights into how the drug can reach the final
bound conformation, highlighting key transient interactions
that drive drug binding. For example, these simulations can
reveal mesostates and high-energy intermediates formed along
the path to the final binding into the cavity. It is easy to raise
concerns about the real existence of these metastable
conformational states. However, these concerns can be
addressed by providing rational hypotheses and corroborating
data retrieved from the MD simulations. This can explain, for
example, the experimental drug−target affinity, which the MD
simulations must reproduce well.32

Indeed, these first successful applications of unbiased MD to
reconstructing spontaneous drug-binding processes, and the
related thermodynamics constants, are a great achievement.
Their success demonstrates the potential of unbiased MD to
predict (and not just reproduce) plausible binding poses of new
compounds in the not-too-distant future. Simulations can reveal
key drug−target interactions that must be formed and/or
disrupted to achieve tight drug binding. This can suggest hot
spots (on both the ligand and target) that could in principle be
modified to modulate their activity. It can also help prioritize
compounds in medicinal chemistry campaigns.130,131 As
mentioned above, these unbiased trajectories can also provide
quite realistic initial configurations and guess paths for
subsequent simulations.132 These can be used to improve
sampling along that initial path and to estimate the kinetics and
thermodynamics of drug−target binding.

5. MD COUPLED TO ENHANCED SAMPLING
METHODS FOR INVESTIGATING LIGAND BINDING

While unbiased MD is a straightforward but costly way of
simulating drug-binding processes, enhanced sampling methods
are often coupled to MD to accelerate this process and to
retrieve useful thermodynamic and kinetic data.92 Indeed,
enhanced sampling methods (mostly steered MD and
metadynamics) were used for the first simulations of drug-
binding events, with the ligand moving into and/or out of the
binding pocket.43,133,134 Researchers can now rank compounds
according to the relative free energy of binding, calculated using
the enhanced sampling scheme. Of the enhanced sampling
techniques developed in recent years, we focus here on
FEP,37,38 umbrella sampling,39 steered MD,42,43 and metady-
namics.41 These methods have appealed most broadly to the
drug discovery community, with demonstrated potential for

impacting structure-based drug design. Other existing methods
will be discussed in the final paragraph.

5.1. Free-Energy Perturbation (FEP). FEP theory and
calculations relate the free energy of an initial reference state to
the final target state of a system, using Monte Carlo (MC) or
atomistic MD as a sampling technique.37,38 In FEP calculations
for drug design, perturbations of the initial lead compound are
made using a coupling parameter during the simulations,
driving a smooth mutation of the starting molecule to another
close one. This cycle is then repeated a number of times,
evaluating the relative binding free energies of several possible
changes of the initial lead compound, which can be transformed
into several close analogs. The relative free energies of binding
of each compound are calculated according to the thermody-
namic cycle in Figure 1. If needed, the standard binding free
energy can be retrieved by appropriately modifying the cycle
(Figure 2).37,81,135 The final free-energy estimate suffers from
the usual issues of FF-based calculations. These include the
quality of the FF, missing polarization effects, and limited
sampling. Notably, thermodynamic integration (TI) calcula-
tions could be used to compute free-energy changes in a way
that is as formally rigorous as using FEP. Nevertheless, FEP-
based calculations appeal more broadly to the drug discovery
community.136 Jorgensen et al. recently provided a thorough
overview of the history, main contributors, and methodological
development of FEP theory since its inception.38

In 1985, Jorgensen et al.37 became the first to use FEP
calculations to convert one molecule of ethane into methanol,
in water. Just 1 year later, McCammon et al.137 used FEP for
protein−ligand binding calculations. More recently, however,
increased computational power has allowed researchers to
robustly validate FEP calculations for the rational design of
small molecules. This rigorous approach is now endorsed for
screening small libraries of close analogs for enzyme
inhibition.136 In the past, FEP calculations of protein−ligand
systems were primarily used to reproduce known experimental
data for a few small molecule inhibitors. Remarkably,
prospective FEP calculations, within an MD framework
(FEP/MD) for drug design, were already reported in 1989
by Merz and Kollman, who correctly predicted the binding free
energy of a previously unreported inhibitor of the thermolysin
endopeptidase.138 Similarly, few years later, FEP/MD was again
successfully employed to predict the affinity of a novel HIV-1
peptide inhibitor.139 Interestingly, the design of HIV-1
inhibitors became an excellent testing ground for the whole
FEP methodology. Several groups utilized such model system
to rationalize structure−activity relationships and to suggest
viable modifications of known compounds, using simulations of

Figure 5. From the crystal structure of compound R221239 (compound 3), the modest anti-HIV activity of the initial docking hit (compound 1), 5
μM potency toward WT HIV-1 reverse transcriptase, was efficiently evolved into highly potent catechol diethers such as compound 42, a 55 pM
non-nucleoside inhibitor of HIV-1 reverse transcriptase (NNRTIs) discovered with the aid of the computational analyses guided by FEP results.143
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increasing complexity. Among these, we mention free energy
calculations between two classes of HIV-1 protease inhibitors
(amide and ester analogs) by Rao et al.140 and the calculations
of the free energy difference caused by the deletion of an entire
valine residue from a peptidomimetic compound,141 which
represented a significant alchemical transformation relative to
the computational resources available at the time.
Today, FEP calculations have demonstrated astonishing

potential for driving lead optimization campaigns.142 Those first
early studies are now recognized as crucial in advancing this
effective methodology for rational lead optimization. Coinci-
dentally, in their initial prospective applications of FEP to drug
design, Jorgensen’s group mostly coupled FEP to MC (FEP/
MC).136 If the pose of a lead compound within the binding
pocket is known with confidence (possibly based on the X-ray
structure of the ligand−target complex), rigorous FEP/MC
calculations have indeed proven to be highly accurate and
informative in predicting what type of (small) modifications
could generate a boost in ligand-binding affinity for the target.
One exceptionally successful application of FEP/MC-guided

lead optimization is the rational design of what are currently the
most potent non-nucleoside inhibitors of HIV-1 reverse
transcriptase (NNRTIs). The FEP/MC-guided modifications
of a few promising scaffolds have led to several potent NNRTIs
inhibitors, as reported by Jorgensen et al.143,144 These
modifications include the optimization of a 5 μM docking hit
into a 55 pM catechol diether NNRTIs inhibitor,143 which was
further optimized to improve druglikeness and resistance to
mutations (Figure 5).145 Other successful examples include
inhibitors of the tautomerase activity of human macrophage
migration inhibitory factor (MIF)146−148 and others.149 Taken
together, these paradigmatic examples attest the impact of FEP
calculations on lead optimization for drug discovery, with a
clear demonstration that this approach, nowadays, offers great
advantages and progress.
These numerous examples have also provided a way to test

and standardize protocols for running FEP calculations
efficaciously, via MC- or MD-based simulations.150 It is only
recently, however, that researchers designed tight-binding
ligands using massive FEP/MD calculations.142 Wang et al.142

used over 200 ligands and 10 targets to validate, with
retrospective studies, the high accuracy of FEP calculations
(with an average error of ∼1 kcal/mol). They demonstrated the
efficiency of these FEP/MD calculations, obtained using an
improved force field (OPLS2.1 and 3), an improved enhanced
sampling technique (i.e., FEP coupled to replica exchange with
solute tempering or REST; see more on this in the below
sections), and importantly, an automated user-friendly work-
flow running on graphics-processing units (GPUs).142

In accounting for the widespread applicability of the FEP
approach in drug design, key factors include the improved
accuracy of FEP results and the accelerated input setup and
output generation. FEP/MD is now proposed for screening
medium-to-large libraries of potential new compounds, where
modifications of the initial compound can be quite substantial.
FEP/MD can now generate the type of information that can
pragmatically drive a drug design project, as Wang et al.’s
encouraging study142 suggests. In the coming years, we expect
new prospective studies to further demonstrate FEP/MD’s
impact on the hit-to-lead and lead optimization phases of drug
discovery. FEP/MD could gradually become a routinely applied
method for guiding key medicinal chemistry decisions and

ultimately accelerating the generation of promising lead and
drug candidates.

5.2. Umbrella Sampling (US). Umbrella sampling (US)
can be considered the forerunner of all the CV-based enhanced
sampling methods. US was conceived by Torrie and Valleau in
1977 in the context of MC sampling.39 Soon after, it was
adapted to the framework of MD simulations. The idea is to
enforce sampling along the chosen CV by performing staged
simulations subject to an energetic bias, which traditionally
takes the form of a harmonic potential (umbrella). In this way,
high-energy regions along the reaction coordinate can be
sampled exhaustively, and the unbiased distribution of states
required to compute the potential of mean force (PMF) is
recovered through suitable postprocessing methods. The
weighted histogram analysis method (WHAM) is the most
popular postprocessing method,151 but other strategies, such as
the umbrella integration, can also be used.152 The key
parameters for US simulations are (i) the force constants
chosen for the umbrellas, which must be high enough to ensure
uniform sampling along the entire CV space, and (ii) the
separation in the CV space between different simulations
(usually called “windows”), which must be small enough to
provide sufficient overlap between neighboring windows. A
more detailed introduction to the theory of US can be found
elsewhere.152

Although US is one of the most accurate techniques for free-
energy calculations, its practical application in drug design is
mostly limited by its elevated computational cost. For example,
many overlapping windows are needed to examine the free
energy of a ligand unbinding event from the protein, where
each window must be prepared, sufficiently equilibrated, and
finally sampled. Moreover, simulations of ligand unbinding
often require a few CVs, leading to a PMF reconstruction that
is exponentially slower as the number of CV increases. Other
enhanced sampling methods, such as metadynamics and
adaptive biasing force (ABF),153 are more efficient in exploring
the free-energy space using multiple CVs, returning a
multidimensional PMF. For this reason, they are more
appealing for practical drug design (see below).
In 2006, Woo and Roux reported a practical US-based

methodology for successfully computing the binding affinity of
a peptide to the SH2 domain of human Lck kinase.154 This
approach describes the ligand (un)docking, using a one-
dimensional PMF. This PMF is calculated from US simulations,
using a well-defined axis as the CV to connect the protein and
the ligand. Importantly, restraining potentials are used to
appropriately control the transverse degrees of freedom that
might change upon ligand (un)binding. These include ligand
conformation, orientation, and radial translations along the CV.
The absolute binding free energy is recovered by the
equilibrium-binding constant, which is in turn obtained by
integrating the PMF. This methodology was later successfully
applied to other pharmaceutically relevant problems.155

Interestingly, this approach has been thoughtfully discussed
and compared with the double decoupling method
(DDM),81,89 with which it shares some resemblances.156

More recently, similar US-based strategies have been devised
by Lee and Olson157 and, later, by Doudou et al.,158 who used
these free-energy simulations to estimate ligand binding. The
overall procedure, however, remains so elaborate that US-based
methods for drug discovery are not yet routinely or widely
used. We expect this to change once the procedure and related
corrections for US-based simulations to relate the PMF to the
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binding affinity become less cumbersome. In particular,
automated procedures, such as self-learning approaches and
adaptive sampling, may be a viable solution for reducing
computational costs and improving the method’s general
applicability.159

5.3. Steered MD. With this method, a time-dependent
external potential is applied to the ligand to facilitate its
unbinding from the target protein. Ligand undocking is
therefore accelerated by acting on a descriptor (or CV),
which is usually the protein−ligand distance or a vector
describing the ligand exit pathway. To achieve this, the ligand is
attached to a spring with a given force constant, and the center
of the harmonic restraint is moved to a finite velocity along the
descriptor so as to drive a smooth exit of the ligand from the
pocket.42,43 Steered MD is actually a nonequilibrium method,
in which the pulling velocity and spring constant are key
parameters for these simulations. Conceptually, steered MD is
similar to performing atomic force microscope (AFM)
experiments, although pulling in steered MD is typically
performed at much higher velocities.
Importantly, researchers can use steered MD to calculate the

exerted force and the external work performed on the system
for the unbinding of each ligand considered. Grubmüller et al.43

first demonstrated this in their pioneering investigation of the
streptavidin−biotin complex. If the force constant is high
enough (stiff-spring regime), the rupture force scales linearly
with the amount of irreversible work (i.e., with the applied
velocity). This provides important qualitative and semi-
quantitative insights into the unbinding process. However, in
1997, Jarzynski160 defined a fundamental relationship between
irreversible and reversible work (i.e., the free-energy difference).
The so-called “Jarzynski equality” (also known as “non-
equilibrium work relation”) was a milestone that allowed the
PMF for the investigated process to be obtained through a
series of pulling simulations, regardless of the speed applied.
The equality is exact only in the limit of an infinite number of
realizations. Therefore, Park et al.161 devised an approximate
formula, which holds in the limit of the stiff-spring regime. This
provides better statistical results than the naive application of
the Jarzynski equality. A theoretical description of steered MD
can be found elsewhere.162

In the context of MD-based rational drug design, one
prospective study investigated the binding of five structurally
related flavonoids to the protein FabZ. This enzyme from the
malaria-causing parasite Plasmodium falciparum is a potential
target for antimalarial drugs.134 Steered MD simulations were
used in a similar way to single-molecule pulling experiments,
where the force required to pull out each of the studied ligands
from the target protein was computed and used to individuate
the tighter binders (Figure 6). Strongly bound inhibitors gave
profiles with higher peak forces than weakly bound ligands,
which gave a flatter force profile. A new flavonoid was designed
and predicted via steered MD, with experimental validation of
the approach’s reliability for computational drug discovery. This
paradigmatic study clearly demonstrated that steered MD could
distinguish active from inactive inhibitors, although the
computed observables (forces required to extract each inhibitor
from the targeted enzyme) remained only qualitative. This is
mostly due to the poor efficiency in computing fully converged
free-energy profiles during steered MD simulations. Later, this
approach was used to examine different series of CDK5
inhibitors, confirming steered MD’s ability to correctly
discriminate binders from nonbinders, although the method

failed to correctly rank series of inhibitors with similar
inhibiting potencies.163 Researchers may use the unbinding
force profile to improve docking scoring function or
alternatively as a postprocessing tool in structure-based virtual
screening campaigns.
On the basis of these examples, steered MD seems

particularly suited to discriminating active and inactive binders,
which interact with the target through H-bonds that must be
disrupted during the unbinding process. This was true for
steered MD simulations used to characterize the unbinding of
the clinical candidate F14512, which bears a spermine chain
forming a complex H-bond network with the targeted
topoisomerase enzyme.164 The polyamine chain in F14512
generates high peak forces during the steered MD for drug
unbinding, when compared to close analogs with no ability to
form such a strong H-bond network. Conversely, hydrophobic
interactions do not provide clear rupture forces, marginally
affecting the resulting work profile and hampering a proper
ranking of ligands with different potencies.164 Notably, this is a
further example where MD simulations have been used in a
prospective manner to design analogs of F14512, which have
been synthesized and tested to validate the MD-based results.
Patel et al. reported a different approach, devising a steered-

MD-based protocol to capture relevant biological information
from local work profiles obtained by protein−ligand pulling
simulations in an unsupervised way. Interestingly, this protocol

Figure 6. Comparison of the undocking force profiles of different
flavonoid ligands. (A) Chemical structures of ligands under
investigation. (B) Force profiles derived from pulling the ligands
along the unbinding reaction coordinate. For each ligand, the plots
show the resulting mean values from averaging the force profiles from
five different SMD runs.134
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could in principle be exploited to tune affinity and kinetic
observables.165 However, steered MD is somewhat limited to
qualitatively estimating the tightness of drug binding rather
than accurately calculating the free energy of binding (as with
FEP calculations). This suggests steered MD as suitable for
postprocessing ligand screening during hit identification rather
than for lead optimization. Steered-MD-based screening of
large and diverse data sets of compounds would increase our
understanding of this methodology’s true potential and
practical location within the drug discovery pipeline.
5.4. Metadynamics-Based Methods. These include a

broad family of enhanced sampling techniques, which allow fast
exploration of the underlying free-energy landscape of rare
events. They use a set of order parameters, usually referred to
as collective variables (CVs), that approximate the true reaction
coordinate of the process. These CVs have a broad range,
including coordination numbers, the number of hydrogen
bonds, relative molecule orientation/rotation, and bond
lengths, angles, or torsions. Once the most suitable CVs have
been identified, the central idea in metadynamics is to bias the
dynamics of the system along those CVs, using a history-
dependent repulsive potential. To achieve this, at regular time
intervals, a relatively small Gaussian-shaped potential is added
to the bias at the current position of the CVs. This discourages
the system from revisiting already explored regions of
space.41,166 The history-dependent potential thus builds up
until it counterbalances the projection of the free energy along
the chosen CVs. This allows the system to escape via a saddle
point to a nearby local minimum, where the procedure is
repeated. When all minima are “filled” with Gaussians, the
system moves in a barrier-free manner among the different
states. The bias potential can then be used as an unbiased
estimator of the PMF by simply changing sign (see Figure 7).
Since the bias potential changes over time during the
simulations, metadynamics is considered to be a nonequili-
brium enhanced sampling method.41,167

In metadynamics, the reconstruction of the free-energy
surface can easily exceed two dimensions. This key feature
distinguishes it from other CV-based algorithms. In addition,
unlike umbrella sampling, metadynamics requires no additional
postprocessing analysis step such as WHAM. The crucial
parameters for reliably reconstructing the free energy in
metadynamics are (i) the Gaussians height, (ii) the Gaussians
width, and (iii) the deposition time. Briefly, the error
approximately scales with the square root of the ratio between
the Gaussians height and the deposition time. This implies that
to achieve a reasonably accurate free-energy profile, the height
of the Gaussians must be sufficiently small compared to the
main free-energy barrier. They should also not be added too
frequently in time. Conversely, the choice of the Gaussians
width is much less straightforward. It should be small enough to
provide a good resolution of the PMF.168 A number of recent
review articles provide a more thorough description of this
method.166,169,170

Metadynamics has significantly evolved since its introduction,
with several modifications aimed at improving its convergence
behavior or efficiency. Researchers have also focused on better
describing the investigated event and have occasionally
extended the conventional metadynamics formulation to
achieve this. The multiple walkers metadynamics is one notable
variation, wherein multiple simulations share the same bias
potential, which improves the parallel performances of
sampling. However, the most important improvement is the

so-called “well-tempered metadynamics” (WTmetaD). In
WTmetaD, the underlying bias and a given energy threshold
govern the height of the added Gaussians, generating a more
efficient and unbiased estimate of the free energy of the
system.171 In contrast to conventional metadynamics, the bias
in WTmetaD does not fully compensate the underlying PMF,
but it converges to a well-defined value. In a recent variation of
metadynamics, researchers explored the possibility of using
adaptive Gaussians with on-the-fly modified width and
orientation with respect to the CV space. This variation
showed better accuracy and convergence properties than
previous formulations.172 Eventually, combining WTmetaD
and adaptive hills may relieve the user of the delicate choice of
parameters, controlling the shape of the Gaussians.
Branduardi et al.173 developed the path collective variables

(PCVs) method to improve the definition of CVs. The PCVs
method allows a nonlocal exploration of complex multidimen-
sional processes, using a predefined pathway on a low-
dimensional (2D) space. Notably, several metrics can be used
to define the path, including the rmsd or the contact map
distance (CMAP).174 So far, PCVs have been successfully used
to address several biological problems ranging from large
protein conformational transitions to ion permeation. Their use
is not strictly limited to metadynamics sampling.175,176 More
recently, to improve the unsupervised definition of CVs,
significant effort has been devoted to developing “smarter”
variables based on dimensional reduction techniques, such as
nonlinear multidimensional scaling.177 From a different
perspective, when a suboptimal choice of CVs adversely affects
the reconstructed free energy, this can be mitigated by coupling
metadynamics to replica-exchange-like methods. This can
effectively improve the sampling along transverse degrees of
freedom.178 In this context, another metadynamics formulation

Figure 7. Pictorial representation of a metadynamics simulation. The
underlying free energy, which is unknown beforehand, consists of
three minima, A, B, and C, separated by two transition states. It is
depicted as a black thick curve. The bias introduced by metadynamics
is represented by filled curves with a dark-gray to red color gradient
indicating the progression of the simulation. Starting the calculation in
minimum A, the Gaussian bias released in time by metadynamics
gently pushes the system toward the first transition state (TS1) and
leads to the identification of the global minimum B. Then, by
continuation of the simulation, TS2 and the metastable state C are also
visited. Finally, when the underlying free energy is completely filled by
the Gaussian potentials, the system evolves with diffusive motion along
the collective variable, and the simulation can be stopped. At that time,
with conventional metadynamics, the free energy can be recovered
from the bias by simply changing the sign.
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used the potential energy as a CV, thus enhancing the energy
fluctuations required for an efficient replica exchange setup
(well-tempered ensemble).179 Bias-exchange metadynamics
(BEmetaD)180 is a popular extension of the conventional
metadynamics method, which still relies on a replica-exchange-
like scheme. In this case, a series of metadynamics simulations,
biasing different CVs, are run in parallel and exchanged at fixed
times according to a Metropolis-like criterion. This reduces the
problem of choosing a priori a small number of CVs for the
investigated event. Along the same lines, reconnaissance
metadynamics is a sophisticated scheme for automatically
detecting a set of CVs through machine-learning techniques. It
has been introduced and successfully applied to biologically
related problems.181

In the past few years, metadynamics, in its various
implementations, has been applied to a number of ligand−
target complexes, demonstrating its ability to characterize
binding and unbinding paths, to treat conformation flexibility,
and to compute free-energy profiles. Since Gervasio et al.133

first applied metadynamics to ligand−target complexes, several
other informative studies have been reported. Two representa-
tive examples are the recent investigation of the (un)binding of
a nonsteroidal anti-inflammatory ligand 4-[5-(4-bromophenyl)-
3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide (SC-
558) to COX-1 and COX-2 isoforms,182 and the recognition of
cortisone from the 11β-hydroxysteroid dehydrogenase enzyme
obtained by combining steered MD and metadynamics.183 Both
studies used PCVs to describe the (un)binding process, with
the former using the CMAP metric and the latter using the
rmsd metric. In a paper investigating the recognition
mechanisms of naloxone to the δ opioid receptor, Provasi et
al.184 provided a notably elegant way of recovering the standard
binding free energy from (un)binding metadynamics simu-
lations. This was analogous to the methods discussed above in
the context of US. Another reported strategy more closely
resembled Woo and Roux’s method,154 using a reverse funnel-
shaped potential that limits the space available to the ligand
once it has undocked (“funnel metadynamics”).185 Other
studies have described drug binding to protein kinases, or the
association mechanism of molecules binding to DNA and RNA,
such as the interaction of ligands with DNA G-quadruplexes
and the unbinding of the anticancer drug distamycin from the
DNA minor groove.170,186 “Coarse metadynamics” uses a
combination of docking, cluster analysis, and metadynamics
confined within the internal binding cavity. When applied to
drug design and compound screening, it has shown the best
performance in conventional structure-based endeavors.187

Nevertheless, if one is interested in the relative free energy of
a set of congeneric compounds with a similar binding pose,
enhanced sampling methods based on unphysical pathways
(i.e., methods such as FEP and TI, which compute the
difference of free energy between the bound and the unbound
state) are often more efficient and rigorous than methods that
compute the free energy along a hypothetical association
pathway. For this reason, metadynamics has so far mostly been
used in retrospective studies of ligand binding. These
informative applications of metadynamics-based simulations
suggest that the time has now come to use metadynamics in
prospective drug design efforts, with a particular focus on lead
optimization. If these studies were successful, then metady-
namics simulations would offer an intrinsic added value over
FEP and TI. This is because the entire physical path of
protein−ligand binding and/or unbinding could be accurately

computed and revealed, together with the associated
thermodynamic and kinetic profiles.

5.5. Other Approaches and Method Combinations.
Several other MD-based enhanced sampling techniques exist
and have recently been used to estimate the free energy of drug
binding and to rationalize the experimental drug−target affinity.
These include the adaptive biasing force (ABF)153 and
accelerated MD.44 While these approaches can correctly
reproduce experimental data and rationalize target affinity for
different drugs/ligands, their predictive applicability for
practical drug design is in its infancy. Their high computational
cost is the most likely hindrance. Nonstandardized protocols
and parameters, which can affect the final results, may also be a
factor at times.
Of these many methods, the replica exchange class of

methods is gaining popularity for drug design. This is mostly
due to their flexibility and the embarrassingly parallel nature of
computations, which makes them ideal for coupling to several
enhanced sampling techniques. In addition, they almost linearly
scale on multicore supercomputers, making them the methods
of choice for CPU-intensive or GPU-intensive simulations.
Replica exchange methods use several copies of the system
evolving, in parallel, under different simulating conditions, such
as the temperature (T-REMD).40 Then, at regular intervals,
swapping between a pair of replicas is attempted according to a
Metropolis MC acceptance criterion. Thus, a random walk
along the temperature space provides the required enhance-
ment in sampling, while the coldest (or physical) replica
ensures the correct distribution of states in the reference
statistical ensemble. However, a large number of replicas are
required for the method to be effective. This is because the
probability of accepting MC moves depends exponentially on
the difference in potential energy between replicas. Moreover,
because the potential energy grows with the number of degrees
of freedom, this issue is more pronounced in large systems. A
valid alternative is the H-REMD variant (or REST),93,95 in
which, rather than increasing temperature, the potential energy
function is gradually scaled down along the progression of the
replicas. By doing so, it is possible to affect only selected
(relevant) degrees of freedom (i.e., the binding site and the
ligand), greatly improving the acceptance probability and, in
turn, the efficiency compared to the conventional temperature
version. Interestingly, H-REMD has been used to accelerate the
sampling to obtain the correct protein−ligand binding modes
for implicit or explicit solvent simulations.188,189 This mimics
the search algorithms of docking programs within an MD
framework.
Actually, the combination of MD sampling with MC has a

long tradition in theoretical physics, which goes back to the 80s
when the hybrid Monte Carlo (HMC) method consisted of
evolving the equations of motions, accepting or rejecting the
advancement in positions according to the Metropolis
criterion.190 Later, this method was further developed, like in
the case of adaptive temperature HMC by Fischer at al.,191

where transitions to higher temperatures were used to
overcome relevant energy barriers. Then, an appropriate
reweighting scheme was employed to assess the correct
populations of states at the target temperature. Interestingly,
the same method was utilized as sampling engine for one of the
earliest applications of Markov state model (MSM) to
biomolecular relevant problems (see below), such as the
conformational dynamics of n-pentane and a triribonucleotide
fragment.192 Concerning more drug-design-oriented methods,
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we also mention the mixed MC/SD scheme proposed by
Guarnieri and Still.193 Here, different from HMC implementa-
tions, SD sampling is periodically interrupted by ordinary MC
moves performed in the dihedral space of molecules. As such,
the MC/SD approach samples effectively the conformational
space of relatively small druglike molecules in implicit solvent.
Recently, replica exchange methods have been efficaciously

coupled to conventional FEP methods to improve the

sampling. Jiang et al.194 reported one way of coupling replica
exchange to FEP, by including swaps along the staged
alchemical transformation (FEP/REMD scheme, see Figure
8A). This improved the convergence properties of the free-
energy calculations. In this context, the Roux group took full
advantage of the H-REMD potentiality only later, when a
second ladder of replicas controlling the torsional energy of
selected rotamers on the binding site was added, thus leading to

Figure 8. Comparison of three strategies to couple FEP with replica exchange. In panel A, the FEP/REMD method implements replica exchanges
between the staged alchemical transformation in the context of the double decoupling method (DDM). Here, the unphysical transformation is
performed in three steps: charges, dispersive, and repulsive van der Waals interactions are turned off separately and in sequence. For simplicity, the
inclusion of rototranslational and conformational restraints, as envisioned in the original paper, is not considered. The axis controlling the alchemical
transformation (λ-axis) is retained in the FEP/H-REMD method (B), but it is coupled to a boosting axis where the potential energy of selected
dihedrals is scaled down, mimicking the effect of high temperature. In the context of relative binding free-energy calculations, a fictitious high
temperature is also used in the FEP/REST method (C). In this case, the alchemical transformation is performed together with the potential energy
rescaling. Thus, the “hottest” replicas are located in the middle of the ladder, and physical states are only found at the end points.
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a two-dimensional space of exchanges (FEP/H-REMD scheme,
Figure 8B).195 However, the large number of replicas required
by the FEP/H-REMD scheme probably counterbalances its
effective benefits. Recently, researchers proposed a very
efficient implementation of FEP augmented with replica
exchange, named FEP/REST.96 As shown in Figure 8C,
FEP/REST uses a one-dimensional ladder of replicas, where
both the alchemical transformation on the ligand and the
potential energy scaling of the binding site (amino acids as well
as ligand torsions) occur. Thus, intermediate points along the
progression represent unphysical states of the ligand bound to
“hot” conformations of the protein−ligand complex, while the
end points correspond to physical states of ligand analogs, each
bound to the corresponding “cold” protein conformation.
While FEP has been coupled to enhanced sampling

techniques other than replica exchange,196 the coupling of
replica-exchange-like methods is not limited to alchemical
transformations only. Indeed, it is possible to use a replica
exchange framework to alleviate convergence issues related to
CV-based enhanced sampling methods, such as US or
metadynamics. For example, the Roux group adopted the
previously reported FEP/H-REMD methodology for exchanges
along US windows on a two-dimensional CV space (US/H-
REMD).197 Furthermore, in the context of metadynamics,
Sutto and Gervasio198 studied the conformational free energy
of EGFR kinase, using WTmetaD coupled to T-REMD. In this
case, the replica exchange strategy helps in relaxing all the
transverse degrees of freedom that are not explicitly accounted
for in the definition of CVs. Moreover, the energy overlap
among replicas, required for an optimal usage of resources, was
greatly improved using the bias obtained in preliminary
metadynamics simulations where the potential energy was
used as an additional CV (well-tempered ensemble sampling).
Finally, we mention two other methods that inherit the idea

of alchemical transformations augmented with a replica
exchange framework, even though they are rather different in
formulation from all the techniques discussed above. The first is
Gallicchio et al.’s BEDAM (binding energy distribution analysis
method) approach,199 which uses the AGBNP2 solvation
model to perform replica exchanges along the staged alchemical
transformation. By virtue of the implicit solvent model used,
the alchemical transformation in BEDAM involves the effective
ligand−environment interactions. Thus, the end points of the
progression of replicas consist of physical states representing
the ligand interacting with the solvent and the protein
(uncoupled and coupled states, respectively). The absolute
binding free energy is then recovered from the sampled energy
distributions by exploiting statistical mechanics arguments.
From this standpoint, BEDAM shares some resemblance with
the MM-PB/GBSA method and with DDM. Procacci et al.
have recently proposed another interesting approach (called
EDU-HREM200) to compute the standard binding free energy.
This approach can be thought of as an explicit-solvent variant of
BEDAM. During EDU-HREM, an unphysical transformation is
achieved with an H-REMD strategy whereby protein−ligand
interactions as well as torsional and intramolecular nonbonded
potentials are progressively decreased along replicas, while, at
the same time, the protein−solvent and ligand−solvent
interactions are gradually increased. This scheme undocks the
ligand from the binding site without the need to specify any CV
in advance, so the binding free energy can be recovered
accordingly. Taken together, it is clear that the field of MD
coupled to enhanced sampling schemes has evolved remarkably

over the past 10−15 years. This is particularly true with
reference to protein−ligand binding, opening up novel avenues
and scenarios for computational medicinal chemists.

6. MD-DERIVED KINETICS OF DRUG BINDING AND
UNBINDING

Kinetics represents the physicochemical description of
association and dissociation rates of a drug binding to and
unbinding from its target. While high affinity for a target is the
basic requirement for any potential drug candidate, thermody-
namics alone is not enough to comprehensively characterize
drug−target binding. Association and dissociation rates depend
on transient interactions between the ligand and the
surroundings (i.e., protein and solvent), which cannot be
captured by a state function such as the binding free energy. In
addition, high-affinity ligands can sometimes show unexpect-
edly poor pharmacological efficacy in vivo, where the
equilibrium conditions underlying binding potency are not
necessarily met.201 In this context, researchers recently found
MD-based methods to be potentially useful in evaluating
ligand-binding association (kon) and dissociation (koff) rates.

202

These constants (particularly the koff) return a direct measure
of how long a ligand is likely to remain bound to its receptor,
thus generating the desired pharmacological effects. Ligands
that remain bound to their receptor for a longer time are
pharmacologically more appealing than those characterized by a
short-lived complex. The use of MD to estimate kon and koff is
at the forefront of computational drug discovery. Several
different MD-based approaches have been developed to
calculate these key observables.202

Considering the reaction scheme for the noncovalent
association shown in eq 6, we see that the rate of forward
reaction is of second order in reactant concentrations, whereas
the reverse process (i.e., the dissociation of the protein−ligand
complex) is of first order. When these rates are combined, we
obtain the phenomenological rate equation for the protein−
ligand complex:

= −
t

k k
d[PL]

d
[P][L] [PL]on off (12)

Equation 12 represents the law of mass action; at the
equilibrium (i.e., when d[PL]/dt = 0), the binding constant
can be expressed as the ratio of koff over kon. Thus, the following
expression connects the thermodynamic observable Kd with the
kinetics observables koff and kon at equilibrium conditions:

=K
k
kd

off

on (13)

From a microscopic point of view, the (un)binding process
can be described as a double-welled one-dimensional PMF (see
Figure 3). The barrier separating the two minima is assumed to
be high enough that the transitions from one basin (i.e., the
bound state) to the other (i.e., the unbound state) can be
considered as rare events compared to the intrabasin dynamics.
According to transition state theory, the rate constant for these
processes is expressed as203

= −Δ ⧧
k k e G k T

0
/( )B (14)

where ΔG⧧ is the activation free energy (or free-energy
barrier), whereas k0 is a proportionality constant (i.e., the pre-
exponential factor, or Arrhenius constant), which takes into
account the frequency of transition attempts as well as the
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probability of recrossing events from the transition state.
Equation 14 shows the exponential relationship between kinetic
constant and activation free energy. This makes any computa-
tional prediction of kinetics particularly challenging.
Shan et al.31 and Buch et al.30 conducted the first

computational studies wherein the entire binding process was
revealed and analyzed at the atomic level from MD simulations.
Notably, Buch et al.30 characterized the trypsin−benzamidine
complex formation. They applied Markov state model
(MSM)204 analysis, a mathematical approach borrowed from
protein-folding studies, to calculate both the thermodynamics
and kinetics observables related to drug−target complex
formation. The key idea is to discretize the configurational
space of the system under investigation using some structural
metric (usually the rmsd) and traditional clustering techniques.
Then, the stochastic jumps between states are modeled by
counting the number of transitions observed in the simulation
trajectories during a certain lag time. This generates the
transition probabilities matrix, which includes both the
structural transitions (eigenvectors) of the investigated event
and the corresponding time scale (eigenvalues). This indicates
possible pathways between initial and final states and reactive
fluxes between them. Thus, MSM can predict the equilibrium
distribution of states and kinetic quantities for events occurring
on time scales longer than those reached through the ensemble
of the MD simulations that are actually performed. This returns
an understandable picture of the investigated event through a
simplified kinetic model, which does not rely on physical
reaction coordinates. Several informative reviews have provided
a more thorough and exhaustive introduction to MSM
theory.204,205

Recently, researchers using MSM to resolve ligand-binding
kinetics have begun to include the role played by protein
conformational transitions in the entire ligand recognition
process. By studying the binding of choline to ChoX and using
a flux analysis, Gu et al. quantified that a contribution of about
90% of conformational selection over induced fit is expected to
operate under experimental conditions.206 Platter and Noe ́
investigated the trypsin−benzamidine system, identifying a
combination of conformational selection and induced-fit
mechanisms in the binding kinetics.207 Notably, an advantage
of MSM over standard analysis of MD trajectories is the
possibility of identifying undersampled states along the
(un)binding process and thus of lowering the statistical
uncertainty on the calculated observables by rerunning
simulations starting from the more relevant configurations
(seeding).204 This strategy, which is opposed to the brute force
extension of previous simulations, is usually referred to as
adaptive sampling. To this regard, the on-the-fly learning
method devised by Doerr and De Fabritiis seems to be
particularly appealing not only because the adaptive sampling is
totally unsupervised but also because the iterative seeding
allows one to converge thermodynamic quantities at about 1
order of magnitude faster than conventional approaches.208

There is a growing number of software packages aimed at
constructing and visualizing MSM-derived kinetic models, such
as MSMBuilder and pyEMMA. These will most likely increase
the popularity of this technology in more application-oriented
investigations too.
Still relying on extensive and unbiased MD simulations,

Decherchi et al.32 provided a novel approach to calculating kon.
Using available experimental thermodynamic (Ki) and kinetic
(koff) data, they estimated the time needed for the very first

molecule of a ligand to move from the bulk of the solvent into
the target binding pocket (the “experimental time for first
binding”). Under their simulation conditions, the experimental
time for first binding was estimated to be about 250 ns. Then,
using all the trajectories that led to a binding event (11 out of
13 MD simulations of about 1 μs each), they obtained the
“calculated time for first binding”. This was about 220 ns, in
very good agreement with the experimental estimate. For
prospective studies, this may offer a further way of estimating
kon and comparing computational predictions with experimen-
tal data.
However, from a drug discovery standpoint, it is more

relevant to estimate and optimize the unbinding kinetics, koff.
This is because the dissociation of protein−ligand complexes,
which follows an exponential decay with the characteristic time
τR = 1/koff, is quite a reliable indicator of in vivo drug
efficacy.201,209 This is the average time required for the complex
to dissociate and is usually referred to as “residence time”. The
long time scales involved in the dissociation of protein−ligand
complexes can last from milliseconds to seconds (or even
more), which makes it remarkably difficult to simulate
dissociation events through brute force MD. In this respect,
MSM applied to long and unbiased MD trajectories has been
reported to provide estimations of unbinding kinetics rates.205

However, in several notable examples reported, the error on the
koff estimation was quite high. This is most likely because
unbiased MD simulations can perform very limited sampling in
the region around the unbinding transition states.30,31 As
mentioned above, the exponential relationship between koff and
activation free energy amplifies the error in the koff prediction.
This is mainly because sampling around transition states
remains poor and the unbinding activation free energies are
rather approximate.
Mollica et al. recently suggested a practical solution for

screening the residence time of a congeneric series of
compounds.210 The authors used scaled MD, an enhanced
sampling method with which the potential energy of the whole
system is reduced by an arbitrary λ factor. In doing so, they
observed several unbinding events and acquired enough
statistics to correctly rank the dissociation constants in
pharmacologically relevant case studies. Notably, this method-
ology is CV-free, requiring no preidentification or predefinition
of a reaction coordinate or of collective variables. Therefore, the
protocol is fully unsupervised, as no (or just a little) a priori
information about the unbinding path must be known. In
addition, the good correlation between computed residence
times and experimental koff values favors this approach for
kinetics prediction. But prospective application studies are
needed to definitively assess its robustness and actual
applicability for drug discovery. Indeed, unbinding kinetics is
emerging as a crucial parameter for fine-tuning during lead
optimization for drug discovery so that compounds can be
prioritized during chemical synthesis campaigns. Conversely,
even fast approaches applied to binding kinetics estimation can
be much slower than conventional virtual screening method-
ologies, which limits their applicability to hit identification for
drug discovery.
Researchers have proposed and successfully applied other

approaches to evaluating ligand-binding kinetics within the
framework of CV-based enhanced sampling methods. Once the
free-energy barriers are determined, the kinetic constant can in
principle be estimated through eq 14 only after assessing the
pre-exponential factor. For example, in their seminal work, Bui
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et al.211 estimated rate constants for tetramethylammonium
(un)binding to AChE using US to reconstruct the PMF. They
then derived the pre-exponential factor through transition state
theory arguments. Despite this important result, to the best of
our knowledge, this and related approaches are mostly effective
for simpler computational problems. This is mostly due to
difficulties with estimating the pre-exponential factor with
reasonable accuracy for complex processes such as protein−
ligand associations/dissociations. Marinelli et al.212 conceived
an elegant procedure to address this. They first used
BEmetaD180 to reconstruct a multidimensional free-energy
landscape for the investigated process. They then used a
discrete-state kinetic-MC simulation to build a consistent
kinetic model.212 They later used this approach to successfully
compute the binding free energy and corresponding associa-
tion/dissociation rates for a peptide substrate to the HIV-1
protease.213 Conversely, Tiwary and Parrinello214 devised a way
to recover unbiased rates from metadynamics-biased simu-
lations, bypassing the problems related to the pre-exponential
factor.215 Their approach assumed that as long as the Gaussian
deposition frequency is sufficiently small, the well-to-well
dynamics is not affected by the bias potential. Unbiased rate
constants could therefore be estimated after assessing the
acceleration factor introduced by metadynamics. Notably, the
authors showed a faster convergence of rates rather than the full
free-energy reconstruction, which makes this approach
particularly appealing for drug discovery.

7. OTHER CHALLENGES FOR MD IN SBDD
Above, we discussed how MD-based methods can be used to
investigate and understand binding affinity and kinetics for
rational drug design. Now, we briefly touch upon the use of
MD to tackle two additional topics: allosteric mechanisms and
modulation, and the role of water for ligand binding and
optimization. Both topics have been actively investigated using
MD-based approaches over the past decade, as they have
become major research areas for computationally driven drug
discovery. This has led to several methodological advances,
increasing our comprehension of these complex biological
phenomena, which could play a role in drug discovery.
7.1. MD and Allosteric Modulation in Drug Design.

Allostery occurs when distant binding pockets of biological
macromolecules, mostly proteins, communicate and so
modulate their activity. Interfering with this allosteric process
can thus regulate target function acting far from the catalytic
(orthosteric) site of proteins. This offers a new strategy for
tuning target activity through allosteric ligands (Figure 9).
Since Monod and Jacob first introduced the term “allostery”

in 1961, two major conceptual models have emerged for
describing this communication between distinct binding sites:
the Monod, Wyman, and Changeux model (MWC) and the
Koshland, Nemethy, and Filmer model (KNF).216 These
phenomenological descriptions mirror the more familiar
concepts of population shift (or conformational selection)
and induced fit, respectively. Allostery is usually associated with
long-range propagation of large conformational movements
(domain motions, hinge-bending movements, etc.). Notably,
however, it can sometimes be related to alterations in dynamics
between distinct binding sites with no major conformational
changes. Indeed, while structural changes are largely driven by
enthalpy, alterations in dynamics due to an allosteric binding
(such as changes in frequencies and amplitudes of thermal
fluctuations) are primarily entropic in nature.217

For drug design, targeting allosteric binding sites offers
several potential advantages over traditional orthosteric sites.
These can be summarized as (i) improved selectivity, (ii)
improved druggability, (iii) activity rescuing, and (iv) activity
potentiation.218 The potential for improved selectivity is
because orthosteric inhibition is often associated with poor
specificity toward a given target, such as protein kinases or
GPCRs. This is mainly due to different targets within the same
family sharing similarities in their orthosteric sites. Allosteric
ligands thus offer a viable strategy for targeting binding sites
that are topologically diverse and often less conserved, which
could in principle allow better target selectivity. In addition,
allosteric modulation expands the druggability of a given target
to include different pockets of the same target protein.
Furthermore, it offers the possibility of rescuing the activity
of dysregulated proteins caused by disease-related mutations,
which often lead to drug-resistance issues. Mutation of key
amino acids can prevent the binding and efficacy of drugs
targeting the orthosteric site. In this case, the allosteric effector
can restore the protein function by canceling or surmounting
the conformational change associated with the dysregulated
activity of mutated/resistant forms of the targeted proteins.
Finally, allosteric ligands could potentiate the target activity,
with examples including benzodiazepines for GABAA219 and
galantamine for nAChRs.220

The potential advantages are, however, counterbalanced by
some serious challenges in effectively discovering and
optimizing small molecule allosteric ligands. These are mainly
related to the structural and dynamic nature of allosteric
pockets, which are usually rather shallow, superficial, and highly
flexible or even transient. These difficult features are then
reflected in allosteric ligands with poorer affinity (in the low
μM range) for the target than orthosteric inhibitors, which
usually reach low nM potency. It can also be particularly
challenging to experimentally verify allosteric modulation by
new compounds. Sophisticated functional assays must be put in
place to verify and confirm the allosteric mode of action of new
ligands. Finally, poor target affinity makes it more difficult to
structurally resolve allosteric ligand/target complexes by X-ray
crystallography.
In this context, MD-based approaches could be used to

detect and characterize allosteric binding sites. The current
time scales of MD simulations allow the formation of transient

Figure 9. Allosteric modulation in BCR-ABL (PDB codes 2f4j and
3k5v). The ligand GNF-2 binds to the myristate pocket (red circle,
allosteric site) concomitantly to the bending of the αI′-helix and
induces a c-ABL-like autoinhibited conformation of BCR-ABL that has
reduced kinase activity.
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pockets to be observed.221,222 Enhanced sampling techniques
for MD-based conformational sampling further increase the
ability of MD simulations to detect allosteric pockets, as
recently reported for accelerated MD.223 Through MD
simulation runs, researchers can also identify communication
pathways between putative allosteric sites and the active site of
the targeted protein. This challenging task has been addressed
by new methods, which borrow from the concepts on which
the MWC allosteric model is based. That is, most MD data
analysis methods rely on identifying correlated motions
through which the structural and/or dynamic information can
be transmitted between distal pockets. Well-established
methods are based on calculating the covariance matrix of
atomic fluctuations:224

= ⟨ − ⟨ ⟩ − ⟨ ⟩ ⟩c r r r r( )( )ij i i j j (15)

where ri and rj are the instantaneous position vectors of atoms i
and j, respectively, in the reference frame of the protein, and the
brackets stand for ensemble average. The diagonal elements of
the matrix correspond to mean-squared fluctuation of atoms
and are related to their B-factors. Upon diagonalization of the
covariance matrix (or principal component analysis, PCA), one
can obtain a set of orthogonal modes of motions that maximize
the fluctuation amplitudes along each mode and that represent
a quasi-harmonic approximation of the free-energy surface of
the protein.224 The “essential subspace” of protein dynamics
can also be used to visualize correlated motions with common
graphical software. Moreover, achieving the essential subspace
corresponds to extracting relevant CVs, along which the
conformational free energy of the protein can be projected and,
if needed, resampled. Similarly, the cross-correlation matrix can
be calculated by normalizing the elements of the covariance
matrix:

=
·

C
c

c cij
ij

ii jj
1/2 1/2

(16)

The values of the elements of the cross-correlation matrix range
from −1 for fully anticorrelated motions to +1 for fully
correlated motions. They correspond to the Pearson correlation
coefficient. In contrast to the elements of covariance matrix,
however, the magnitude of the correlated motion is lost.
Both analyses, however, suffer from two major drawbacks.

The first limitation is because atomic correlation is only
detected for parallel motions. Due to the form of eq 15, fully

correlated motions of two atoms oscillating along perpendicular
directions will return a null correlation. Moreover, the Pearson
coefficient only treats linear correlations, excluding nonlinear or
higher-order correlations. To overcome this, Lange and
Grubmüller devised a generalized metric, called mutual
information (MI),225 which quantifies the correlation between
random variables as the deviation of their joint probability
distributions from the hypothetical distributions of independent
random variables. Thus, MI returns a null value only in the case
of fully uncorrelated motions but properly detects any kind of
correlation. In analogy to PCA, the same authors developed a
consistent way to extract collective degrees of freedom based
on the MI metric (full correlation analysis, FCA).226

The second limitation that affects metrics based on atomic
fluctuations (including the previously reported implementation
of MI) is that they are based on Cartesian coordinates. Hence,
they are appropriate for detecting major conformational
changes that are typical of classical allosteric sites. Conversely,
the MutInf approach developed by McClendon et al.227 is
related to MI, but the analysis is performed on the internal
degrees of freedom (backbone and side chains). Moreover,
relying on an entropy-based metric (as well as MI), this
approach seems to be particularly suited to detecting minor or
subtle alterations in dynamics, such as those involved in
entropic-driven allosteric modulations. A robust statistical
analysis based on Bayesian filtering and sampling penalties
further strengthens an unambiguous detection of relevant
correlated motions. Notably, these correlation methods are
often complemented by graph-theory and community network
analysis in order to characterize communication channels
between distal binding sites. For example, Sethi et al.228

identified signaling pathways in different tRNA−protein
complexes by building a dynamical network where the nodes
represent amino acids or nucleotides, whereas the weight of the
edges (wij) is proportional to the information transfer between
the two nodes i and j quantified in terms of the Pearson
coefficient (wij = −log(|Cij|)). Community network analysis229

is thus used to identify loosely interconnected but locally
densely intraconnected substructures. The allosteric signal is
then detected as a function of the number of shortest paths
between critical nodes belonging to different communities.
Similarly, Rivalta et al.230 identified the allosteric pathways in
imidazole glycerol phosphate synthase, using the same
theoretical framework, although operating with MI as a

Figure 10. Water-mediated protein−ligand interactions from crystallographic structures. (A) Bound pose of deoxythymidine at the binding site of
thymidine kinase (PDB code 1KIM) and (B) bound pose of a benzisoxazole-based derivative at the binding site of HSP90 (PDB code 3BMY).
Ligands, relevant protein residues, and bridging water molecules are reported in ball and stick representation. Water molecules are highlighted by red
spheres. The boundaries of the binding pocket are represented by a transparent white mesh. Dotted red lines represent the most relevant hydrogen
bonds.
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measure of the information transfer between nodes. There are
also complementary approaches that focus on energy couplings
rather than on correlated motions alone. One group recently
proposed an elegant combined approach based on structural
fluctuation analysis and pairwise energy decomposition to
characterize the allosteric mechanism for the homologous
PDZ2 and PDZ3 proteins.231

Nowadays, extended MD simulations can be combined with
a growing number of methods for analyzing correlated motions.
This has generated several informative MD-based studies of
allosteric modulation in different target families. These include
Foda et al.’s study on allosteric network and binding
cooperativity in Src protein kinases128 and Morra et al.’s
integrated MD/dynamic pharmacophore approach for identify-
ing and targeting allosteric hot-spots on the N-terminal domain
of the molecular chaperone Hsp90.232 Here too, the field is in
its infancy. Future MD applications and analysis methods are
needed to definitively assess the reliability of these protocols for
prospective drug discovery, in particular for contributing to the
search for novel allosteric modulators as drug candidates in
different therapeutic areas.
7.2. MD To Investigate the Role of Waters in Drug

Binding. Water molecules can influence the binding affinity of
a ligand to its targeted biomolecule in different ways (Figure
10). First, interfacial waters can mediate the initial approach of
the ligand to the pocket, with an active role in determining
ligand−protein binding or rejection. Desolvation of the binding
pocket is then necessary for drug binding. During this process, a
network of waters could affect ligand binding, raising complex
considerations of whether or not the displacement of ordered
waters can produce an entropy gain, ultimately aiding binding
affinity.233,234 For example, it can be very challenging to
determine from structural data alone whether a key bridging
water, which mediates the ligand−target interaction in the
crystal structure of the complex, should be maintained or
displaced during ligand optimization.235,236 The entropic
reward derived from releasing an ordered water molecule into
the bulk should be coupled to an enthalpic gain generated by
forming tight protein−ligand interactions. Clearly, this area
presents major scientific challenges related to better under-
standing of the fundamental principles that govern drug
binding. Thus, rational drug design could be greatly impacted
by methods and approaches to understand and quantify the
crucial entropic/enthalpic balance due to water displacement or
solvent reorganization upon ligand binding.
Over the past decade, MD simulations have been extensively

used to characterize waters located in the binding sites, with a
focus on those buried waters with long residence times in
protein structures. These often raise questions as to whether or
not water-mediated interactions should be retained to improve
lead compound potency. Major progress has been made in
locating water molecules in the targeted binding pocket and
identifying and classifying specific water molecules that should
be displaced and retained to improve binding affinity. Thus,
there are now several computational methods for better
quantifying the enthalpy−entropy compensation in protein−
ligand binding.237

Nowadays, long MD trajectories can serve to sample the
solvation network of binding sites, revealing hydration patterns
within the binding pocket that can complement or support
structural data. For example, MD-based approaches have been
used to characterize the role of the interfacial waters during
ligand approach and binding.238−240 From MD simulations, one

can identify and analyze water sites by the peaks in water
density or averaging over water molecule locations during the
collected trajectories. Also, from short MD runs, Lazaradis et
al.’s inhomogeneous fluid solvation theory (IFST)241 conven-
iently allows quantification of the entropic and enthalpic
contributions and overall thermodynamics of water molecules
in the binding site. More recently, researchers have developed
methods like WaterMap, which uses IFST, to map the locations
and thermodynamic properties of water molecules that solvate
protein binding sites, indicating which should be removed or
retained to improve ligand binding affinity.242 Similarly,
researchers have reported, several other methods, such as
waterFLAP, for characterizing waters in the binding sites. These
work by coupling (short) MD trajectories to other methods/
approaches such as docking and scoring, or MM-PB/GBSA
calculations.243 This field is vast and increasing, with the
potential to more directly link the in-depth description of
thermodynamics of binding site waters with the rational design
of new, more efficient ligands.

8. SUMMARY AND PERSPECTIVES
As extensive molecular dynamics (MD) becomes ever more
affordable, it promises to impact fast-paced drug discovery
programs. Mainly because of the advent of GPUs and software
codes that can fully exploit these innovative hardware
architectures, it is nowadays possible to run MD simulations
in the time frame of microseconds up to a few milliseconds.
This allows a thorough sampling of the conformational space,
including that of large biomolecules. This can include, for
example, the complete description of the pathway of the ligand
binding to its target protein. These long MD trajectories can
then be coupled to free-energy methods to provide the free-
energy profile of protein−ligand binding, with the thermody-
namic and kinetic data being crucial for drug discovery.
Although brute force MD-based approaches can be quite

powerful, they are computationally very demanding. This limits
their practical use for drug discovery to just a small number of
ligands. In the past few decades, researchers have reported
several different strategies for overcoming this by enhancing the
sampling of relevant regions of the free-energy surface. Of
these, free-energy perturbation (FEP) has best demonstrated its
great potential to impact drug discovery. FEP is ready for prime
time. We expect that an increasing number of MD-based FEP
prospective studies will be published, ultimately proving FEP to
be an efficient tool for optimizing a variety of new leads. The
very successful MC-based FEP studies reported recently are
one such example.143 However, FEP does not describe the
route of binding and unbinding, which instead can be depicted
by other pathway-dependent enhanced sampling methods.
Here, for example, we have extensively covered metadynamics
and steered MD, which are among the first methods used to
dissect routes for protein−ligand binding and unbinding.
Nevertheless, metadynamics depends on the correct definition
of the collective variables used to describe the chemical process
under investigation. The CVs must be properly identified in
order for metadynamics to accurately predict the free-energy
landscape related to the ligand-binding process and so aid lead
optimization campaigns. This is particularly true given its recent
evolution (e.g., WTmetaD). Alternatively, more accurate and
expensive protocols of metadynamics could be used to
thoroughly investigate binding routes, providing thermody-
namic and kinetic profiles associated with drug binding and
unbinding. In analogy, when using a single distance-dependent
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reaction coordinate, steered MD can evaluate binding affinity
quickly but only in a qualitative manner. For this reason, we can
envision a scenario where steered MD could be used as a
postprocessing tool for virtual ligand screening in order to
improve the enrichment factor of active hits from among the
best-ranked compounds.
Binding kinetics, and in particular residence time (i.e., the

inverse of koff), is nowadays considered to be one of the key
parameters in lead optimization for potency and efficacy in vivo.
In this context, other methods (including scaled MD and
similar smoothed-potential approaches) are emerging as
suitable for unbinding-kinetics investigations and koff predic-
tions. Prospective applications will likely appear in the literature
in the near future, further testing the actual applicability of this
quite novel approach to kinetics predictions.
From the above, it is clear that MD-based methods can

nowadays help in several key drug discovery steps. The
aforementioned methods are just a few of the many MD-based
approaches to studying ligand binding. Each deserves attention.
Rational drug design will be majorly impacted by the inclusion
of full flexibility and entropic effects in studying protein−ligand
recognition processes, allosteric modulation, and the thermo-
dynamics and kinetics of binding-site waters. This will
ultimately increase understanding of ligand binding, returning
a more accurate and quantitative description of this crucial
event for drug discovery and development.
Although the recent results from MD-based drug discovery

studies are very encouraging, we should nevertheless remember
that major challenges must be overcome to deepen the impact
of MD-based methods on drug design. Improvements in the
current force field are expected (and most probably needed) to
further progress the accuracy of free-energy predictions. The
currently available molecular mechanics force fields partially or
fully neglect polarization effects, charge transfer, and many
electronic-based interactions (π−π, cation−π, halogen bonds,
etc.). In this respect, polarizable force fields or quantum
mechanical calculations might be used in future to help refine
free-energy estimations for increasingly accurate predictions.
The limits of force field and MD-based methods should be
pushed to correctly treat other challenging target families (such
as metalloproteins), which include many drug discovery targets
that can still only be studied with limited accuracy.
One additional key challenge in drug discovery comes from

the fact that potency, although essential, is only the very first
step toward the discovery of a promising drug candidate. Once
a potent inhibitor is discovered, this must be tuned into a
druglike compound with a favorable ADMET profile, during
the lead optimization phase. Most of the time, this is the very
key step, and the real bottleneck, in drug discovery. The ability
of predicting thermodynamics and kinetics of binding through
MD-based methods has the potential to impact lead
optimization as well, indicating which compounds and
modifications are the most favorable ones. If this will be
demonstrated by prospective studies, MD-based methods will
take more standard, and static, SBDD approaches to a new
level. Toward this goal, we expect and call for research efforts
proving that thermodynamics and kinetics of binding, retrieved
from MD-based methods, can pragmatically impact the overall
complex lead optimization phase of a drug discovery project.
We conclude that the time has come for an operational use of

MD and related methods for fast-paced drug discovery, which
would offer savings in time and money. Novel methods, novel
software, and novel hardware have boosted the widespread

diffusion of MD-based methods within the pharmaceutical
community. Indeed, MD is on the verge of joining the already
large arsenal of computational tools routinely applied in
biopharmaceutical drug discovery. Despite the limitations and
major challenges in using MD simulations for drug discovery,
we therefore conclude by calling for more MD-based
prospective studies. Prospective studies will serve as the
ultimate proof that MD can indeed be used to assist the costly
and highly challenging drug discovery process.

■ AUTHOR INFORMATION
Corresponding Authors
*M.D.V.: e-mail, marco.devivo@iit.it; phone, +39 010
71781577.
*A.C.: e-mail, andrea.cavalli@unibo.it; phone, +39 051
2099735.

Notes
The authors declare the following competing financial
interest(s): Andrea Cavalli and Giovanni Bottegoni are co-
founders of BiKi Technologies, a startup company that
develops tools for drug discovery based on molecular dynamics.
Giovanni Bottegoni is CEO of the same company.
Biographies

Marco De Vivo obtained an M.Sc. in Chemistry and a Ph.D. in
Pharmaceutical Chemistry in 2004 from the University of Bologna.
Then, for 3 years, he was a postdoctoral researcher in the group of
Prof. M. L. Klein at the University of Pennsylvania, before joining the
structure-based drug design group at Rib-X Pharmaceuticals. In 2009,
he joined the Istituto Italiano di Tecnologia (IIT), where he leads the
Laboratory of Molecular Modeling and Drug Discovery. He is also a
Research Associate at the IAS-5/INM-9 Computational Biomedicine
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