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Abstract

One of the major challenges in computational approaches to drug design is the accurate prediction of binding affinity of
biomolecules. The strategies that can be applied for this purpose fall into two major categories—the indirect ligand-based and
the direct receptor-based approach. In this contribution, we used a combination of both approaches in order to improve the
prediction accuracy for drug molecules. The combined approach was tested on two sets of ligands for which the three-
dimensional structure of the target receptor was known—estrogen receptor ligands and acetylcholinesterase inhibitors. The
binding modes of the ligands under study were determined using an automated docking program (AutoDock) and were
compared with available X-ray structures of corresponding protein–ligand complexes. The ligand alignments obtained from
the docking simulations were subsequently taken as the basis for a comparative field analysis applying thegrid/golpe program.
Using the interaction field derived with a water probe and applying the smart region definition variable selection, highly
predictive models were obtained. The comparison of our models with interaction energy-based models and with traditional
CoMFA models obtained using a ligand-based alignment indicates that the combination of structure-based and 3D-QSAR
methods is able to improve the prediction ability of the underlying model.q 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

One of the main objectives in today’s drug design is
the prediction of new biologically active compounds
on the basis of previously synthesized molecules. The
strategies that can be applied for this purpose fall into
two major categories—the indirect ligand-based and
the direct receptor-based approach. The common aim
of both strategies is to understand structure–activity
relationships and to employ this knowledge for
proposing new compounds with enhanced activity

and selectivity profile for a specific therapeutic target.
The ligand-based methods, including traditional quan-
titative structure–activity relationships (QSAR) [1,2]
and modern 3D-QSAR techniques such as the
comparative molecular field analysis (CoMFA)
[3,4], are based entirely on experimental structure–
activity relationships for enzyme inhibitor or receptor
ligands. For the direct receptor-based methods, which
include molecular docking and advanced molecular
dynamics simulations, the 3D-structure of a target
enzyme or even a receptor–effector complex is
required with atomistic resolution, generally deter-
mined by either X-ray crystallography, NMR spectro-
scopy or protein homology model building [5].

3D-QSAR methods, especially CoMFA, are
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nowadays used widely in drug design, since they are
computationally not demanding and afford fast
generation of QSARs from which biological activity
of newly synthesized molecules can be predicted. The
basic assumption in CoMFA is that a suitable
sampling of the steric and electrostatic fields around
a set of aligned molecules might provide all the
information necessary for understanding their biolo-
gical activities [3]. The suitable sampling is achieved
by calculating interaction energies between each
molecule and an appropriate probe at regularly spaced
grid points surrounding the molecules. The resulting
energies derived from simple potential functions
(normally Coulomb and Lennard-Jones potential)
can then be contoured to give a quantitative spatial
description of molecular properties. If correlated with
biological activity, 3D-fields can be generated, which
describe the contribution of a region of interest
surrounding the ligands to the target properties.
However there is a main difficulty in the application
of 3D-QSAR methods such as CoMFA. For a correct
model, a spatial orientation of the ligands towards one
another has to be found, which is representative for
the relative differences in the binding geometry at the
protein binding site. The success of a molecular field
analysis is therefore completely determined by the
quality of the choice of the superimposition of the
studied molecules [6–8]. Therefore, the first step in
a 3D-QSAR study is the generation of a reliable
pharmacophore model. Many strategies have been
reported for this purpose in the literature [4,9,10].
Depending on the molecular flexibility and the struc-
tural diversity of the investigated compounds, this
task of unique pharmacophore generation becomes
less feasible. Despite the difficulties concerning the
molecular alignment, many successful 3D-QSAR
studies applying the CoMFA approach have been
reported in the last few years.

Structure-based methods are nowadays able to
calculate fairly accurately the position and orientation
of a potential ligand in a receptor binding site. This
has been demonstrated by various docking studies
described in the literature [11–14]. The direct methods
yield important information concerning the spatial
orientation of the ligands in the binding site and also
towards other ligands binding to the same target. The
major problem of today’s docking programs is the
inability to evaluate binding free energies correctly

in order to rank different ligand–receptor complexes.
Since docking programs generate huge amount of
possible ligand–receptor complexes, it is impossible
to determine, a priori, which ligand conformation
represents the bioactive one. The problem predicting
affinity has generated considerable interest in devel-
oping methods to calculate ligand affinity reliably for
a widely diverse series of molecules binding to the
same target protein of known structure [15–18]. For
the calculation of ligand–receptor interaction
energies, most approaches rely on molecular
mechanics force fields that represent van der Waals
and Coulombic interactions on the basis of empirical
potentials. Other approaches use more simple scoring
functions rather than calculating the affinity by mole-
cular equations [17]. These methods commonly use
available experimental data to obtain parameters for
some relatively simple functionals that allow for fast
estimation of the binding energy. The estimated bind-
ing energies or scores are widely used to discriminate
between active and inactive ligands, for example in
virtual database screening, but are mostly not accurate
enough for 3D-QSAR analysis [18]. The main
problem in affinity prediction is that the underlying
molecular interactions are highly complex and various
terms should be taken into account to quantify the free
energy of the interaction process. Only rigorous meth-
ods, such as the free energy perturbation methods, are
at the moment able to correctly predict binding affi-
nity. Since these methods are computationally very
intensive, such methods can not be applied to large
ligand series, commonly studied in QSAR analysis.

One possibility to overcome these difficulties seems
to be the combination of ligand and receptor-based
approaches. It is quite appealing to combine the accu-
racy of the structure-based alignments with the
computational efficiency of the ligand-based methods.
According to this strategy the alignment is generated
on the basis of the experimental or predicted position
of molecules in the binding pocket and 3D-QSAR
programs are then used to calculate the binding
affinity. With respect to structure-based methods, the
3D-QSAR approach has the advantage of dealing only
with the differences in affinity of a special series of
compounds. In this case the interaction energy of each
ligand is not essential, because some of the terms
describing this energy (desolvation processes, entro-
pic terms) take approximately the same value for
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Table 1
Structure of estrogen receptor ligands included in the study

No Structure No Structure No Structure



every ligand and can be neglected. The combination
of direct and indirect methods was successfully
employed recently by several groups [19–23].

In this contribution, we report on the application of
structure-based 3D-QSAR methods, exemplified by
recent molecular modeling studies on different classes
of protein ligands from our own laboratories. Special
emphasis will be placed on a detailed description of
the combined receptor/ligand-based approach. In
addition, we would like to compare the results
obtained by such a combined strategy with results
obtained from classical 3D-QSAR and structure-
based approaches.

2. Case studies

2.1. Estrogen receptor ligands

The effect of estrogens is mediated by an intra-
cellular estrogen receptor (ER), which belongs to
the steroid/thyroid nuclear hormone superfamily.
These receptors act as transcriptional activators via
a direct interaction with DNA sequences, termed as
response elements [24]. The biological action of estra-
diol (1), the most active endogenous estrogen, and
other estrogen receptor ligands and their primary
interactions with the receptor protein have been topics
of much interest over the years [25]. Particularly, the
elucidation of the structural requirements, which
enable binding of estrogens to the receptor, has
actively been pursued as a means to develop novel
therapeutic agents. Natural and synthetic estrogen
receptor ligands are used in a number of clinical appli-
cations such as, for example, breast cancer therapy,
treatment and prevention of oestoporosis, and in estro-
gen replacement therapy of postmenopausal women
[26].

Over the last years a large amount of structure-
activity information for modified estrogens and
nonsteroidal estrogen receptor ligands has been
reported in the literature [27]. Several models of the
estrogen receptor ligand pharmacophore have been
published in the last few years [27–33]. For our inves-
tigation, we selected structure–activity data for a
series of 30 structurally diverse estrogen receptor
ligands originally reported by Sadler et al. [33]. The
molecular structures of these 30 nonsteroidal estrogen

receptor ligands are represented in Table 1. The objec-
tive of our selection was twofold. Firstly, the biologi-
cal activity of the estrogen receptor ligands reported
in this study, has been measured in the same labora-
tory under the same condition. This is a prerequisite
for a successful 3D-QSAR analysis (a detailed discus-
sion on the use of biological data in QSAR can be
found in Ref. [7]). Secondly, the authors have
performed a CoMFA analysis using a traditional
ligand-based alignment rule. Therefore, it was quite
interesting to see whether applying a structure-based
3D-QSAR approach could provide a better explana-
tion of the biological data.

In 1997 the 3D-structure of the estrogen receptor
has been resolved by Brzozowski et al. [34]. Until
now four X-ray structures of the receptor liganded
with different molecules—estradiol (1), diethylstil-
bestrol (2), a nonsteroidal compound, and two antago-
nists raloxifen and 4-hydroxytamoxifen—have been
published [34,35]. The availability of several structur-
ally diverse structures bound in the active site of the
estrogen receptor provided important experimental
information detailing the molecular alignment of the
studied molecules.

We took the crystal structures of the human estro-
gen receptor-a -ligand binding domain liganded with
estradiol and diethylstilbestrol (pdb code: 1ERE and
2ERD) from the Brookhaven Protein Databank. The
two crystal structures were overlaid using the back-
bone atoms (Fig. 1). The estrogen receptor shows a
nearly identical three-dimensional structure in these
X-ray structures. The only major conformational
differences are the orientation of two sidechains in
the binding pocket—His524 and Met421. As the
analysis of the crystal structures show, estradiol and
diethylstilbestrol bind in similar way to the receptor.
Both ligands show hydrogen bonds with Glu353 and
His524 and interact in addition with hydrophobic resi-
dues at the binding pocket. Due to the size of diethyl-
stilbestrol, His524 is turned somewhat further from
the binding pocket in the corresponding complex.

In order to find out the correct binding mode for all
the studied ligands, we performed a computational
docking experiment. For our docking analysis we
selected the programAutoDock (version 2.4)
which has been shown to successfully reproduce
experimentally observed binding modes [12,36,37].
The program is described in detail elsewhere [12].
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AutoDock uses a simulated annealing procedure to
explore the binding possibilities of a ligand in a bind-
ing pocket. The interaction energy of ligand and
protein is evaluated using atom affinity potentials
calculated on a grid similar to that described by Good-
ford [38]. All ligand atoms but no protein atoms were
allowed to move during the docking simulation. For
each ligand the simulation was composed of 100
docking runs, and the docked complexes were clus-
tered with an RMSD tolerance of 0.7 A˚ . The derived
complexes were then refined and the interaction ener-
gies were calculated using the YETI force field
[39,40]. This force field uses more sophisticated
energy potentials to calculate the binding energy
compared to the more simple functions implemented
in docking programs, such asAutoDock.

We started our docking studied using the two mole-
cules, estradiol and diethylstilbestrol, for which the
binding mode has been determined experimentally.

These two ligands were taken as positive controls to
test the program used for docking. Since the geometry
of the binding pocket exhibits small differences in the
two complexes, both protein structures were taken as
target receptor for the docking procedure. The
complexes, which were obtained using the correspond-
ing crystal structure (IERE for estradiol and 2ERD for
diethylstilbestrol), showed the lower interaction ener-
gies. In Fig. 2 the complex showing the lowest energy
within theAutoDock/YETI procedure for diethylstil-
bestrol is overlaid with its corresponding crystal struc-
ture. Similar results were obtained for estradiol (not
shown). Asone can recognize,AutoDock was success-
ful in reproducing the experimentally found binding
position for estradiol and diethylstilbestrol (one may
speak of reproduction if the root-mean square deviation
(RMSD) is below 1–2 A˚ [11]). The RMSD values
between the observed and calculated position are
0.21 Åfor estradiol and 0.37 A˚ for diethylstilbestrol.
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Fig. 1. Comparison of the X-ray structures of the estrogen receptor liganded with estradiol (dark-gray) and diethylstilbestrol (gray). The two
crystal structures were overlaid using the backbone atoms. Only the amino acid residues in proximity to the binding pocket are shown for clarity.



In the next step the ligand–receptor complexes for
the resulting 28 ligands were computed in the same
way. For all ligands the complex which possessed the
lowest interaction energy was selected for the further
investigation. Fig. 3 shows the superimposition of all
30 ligands (the protein structure is not shown for
clarity). We focussed then on a possible correlation
between the calculated interaction energies and the
determined biological activities. The biological
activities were taken from the original publication
[33]. They were expressed as relative binding affi-
nities (RBA) relative to estradiol which is set to
100. These numbers were then transformed to the
decadic log values. The interaction energy was calcu-
lated as the sum of the van der Waals and the electro-
static energies. The YETI force field, AM1 partial
charges and a distance dependent dielectric function
were selected for the calculation. A correlation coeffi-
cient of r2 � 0:54 and a cross-validated coefficient of
q2 � 0:49 were obtained for the 30 ligands (the calcu-
lated values are listed in Table 2, model C). Trends
between experimental and calculated can be distin-
guished, but the standard deviation ofs� 0:83
indicates the inaccuracy of the calculation. Also,
compared to the results of the original CoMFA
study by Sadler, who reported a cross-validated corre-
lation coefficient ofq2 � 0:796; one can recognize the

only moderate prediction. Since we have not consid-
ered solvation or entropic effects in our calculation of
the binding energy, it is not surprising that the corre-
lation is not high. This has also been reported by other
authors who have applied this strategy [41–43].

With respect to the receptor-based methods, the
3D-QSAR approach has the advantage of dealing
only with the differences in affinity of a special series
of compounds. In this case the interaction energy of
each ligand is not important, because some of the
terms describing this energy (desolvation processes,
entropic terms) take approximately the same value for
every ligand. Since only differences in the binding
affinity are regarded, these terms are not considered.
Therefore we used the comparative field analysis to
develop a quantitative structure-activity relationship
for the investigated ligands.

The superimposition of the ligands derived from
the molecular docking was taken as starting point
for a comparative molecular field analysis. We used
the grid/golpe method for our analysis [38,44]. The
interaction field between the ligands and a water probe
were calculated using thegrid program employing a
grid spacing of 1 A˚ . Thegrid calculations gave 8740
variables for each compound. A major part of these
variables is not important for describing the inter-
action between the ligand and the receptor and is
introducing only noise in the statistical PLS analysis
[45]. These variables were selected and eliminated
using the SRD/FFD (Smart Region Definition/Factorial
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Fig. 2. Comparison of the position of diethylstilbestrol calculated by
the AutoDock/YETI procedure (dark-gray) and the one observed
in the crystal structure (RMSD� 0.37 Å).

Fig. 3. Alignment of all investigated estrogen receptor ligands
obtained by the docking simulation (estradiol is colored dark-
gray, diethylstilbestrol is colored gray).



Fractional Design) method within the GOLPE
program (for a detailed description of this approach
see [45]). The resulting models are of higher quality
than models calculated without variable selection.
Applying the SRD preselection procedure, the number
of variables was reduced from 8340 to 1105 variables
without changing the quality of the model. Region
selection based on the FFD procedure further reduced
the number of variables to 493 with major improve-
ment of the quality of the model. To form the basis for
a predictive statistical model, the method of partial
least squares (PLS) regression was used to analyze
the 30 compounds by correlating variations in their

biological activities with variations in their interaction
fields. The optimum number of principal components
corresponding to the smallest standard error of predic-
tion was determined by the leave-one-out (LOO)
cross-validation procedure. Using the optimal number
of principal components, the final PLS analysis was
carried out without cross-validation to generate a
predictive model with a conventional correlation
coefficient. The LOO cross-validation method might
lead to highq2 values which do not necessarily reflect
a general predictiveness of a model. Therefore we
have performed a second cross-validation, using five
groups of approximately the same size in which the
objects were assigned randomly. In this method 80%
of the compounds were randomly selected and a
model is generated, which is then used to predict the
remaining compounds (leave-20%-out). This cross-
validation technique has been shown to yield better
indices for the robustness and predictivity of a model
than the normal LOO procedure [46].

The results of the statistical analysis are represented
in Fig. 4. The analysis based on the structure-based
alignment yielded a correlation coefficient with a
cross-validatedq2 of 0.921 using four principle
components. The conventionalr2 of this analysis is
0.992. This means, the model explains approximately
99% of the variance in ligand binding of the investi-
gated compounds. The model expresses also good
predictive ability, indicated by the high correlation
coefficient of q2 � 0:900 obtained by using the
leave-20%-out cross-validation procedure.

The comparison of our results with the CoMFA
results of Sadler, who reported a cross-validatedq2

value of 0.796, indicated that our model constructed
on the basis of the receptor structure supplies a better
explanation of the biological activities. This is also
indicated by the small deviation of the calculated
from the experimental values in our calculation
(Table 2). The original CoMFA model is for example
not able to explain the different activities of the two
enantiomers13 and14. The structure-based approach
supplies here a unique explanation. (A detailed
description of the interpretation of the results it out
of the scope of this contribution and will be presented
elsewhere [47].)

One of the important features of agrid/golpe
analysis is the possibility of translating back the
PLS coefficients assigned to each variable to the
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Table 2
Actual and calculated activities

Compound Actual Model Aa Model Bb Model Cc

1 2.00 1.77 1.99 1.98
2 2.46 2.25 2.44 1.97
3 20.10 20.26 0.01 0.31
4 1.52 1.93 1.44 1.35
5 2.00 1.62 1.98 2.31
6 1.40 1.47 1.39 2.33
7 20.52 20.68 20.60 1.51
8 1.30 0.88 1.40 1.73
9 0.30 0.38 0.36 0.05

10 1.14 1.90 1.07 1.01
11 2.00 1.94 2.01 0.72
12 2.15 1.90 2.36 1.91
13 0.26 20.04 0.17 0.04
14 20.70 20.24 20.54 0.53
15 0.75 0.49 0.68 0.67
16 20.05 20.11 0.01 0.92
17 2.46 2.18 2.36 1.61
18 2.47 2.36 2.51 0.78
19 2.36 2.39 2.33 1.72
20 2.25 2.40 2.32 1.61
21 1.11 1.14 0.93 1.08
22 1.04 1.19 1.03 1.35
23 1.26 1.19 1.26 1.13
24 0.90 1.22 0.95 20.16
25 21.70 21.50 21.76 20.37
26 21.00 21.18 20.96 20.70
27 20.80 20.73 20.80 21.09
28 21.70 21.51 21.67 20.59
29 1.30 1.49 1.29 0.11
30 1.00 0.77 0.94 1.02

a Original CoMFA model of Sadler.
b grid/golpe model.
c Interaction energy model. Italics mark deviations more than

0.5 log units from the actual activity.
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Fig. 4.grid/golpe results. Fig. 4a shows the calculated vs experimental activity. Fig. 4b shows the cross-validated (LOO) squared correlation
coefficients (q2) for different model dimensionalities.



3D-positions they occupy in real space. These values
can be contoured at a particular significant level and
can be displayed as grid plot of PLS coefficients. The
contour coefficient maps indicate those areas in which
the PLS model has found a high correlation between
the ligand-probe interaction energy and the biological
activity. In our analysis we have used the water probe,
which is a polar group with the ability to participate in
hydrogen bonds and electrostatic interactions. Conse-
quently, areas containing negative coefficients corre-
spond to areas in the binding pocket where
energetically favorable interactions produce an
increase in the activity. These regions tend to coincide
with the presence of polar groups in the binding
pocket. In contrast, as area with negative coefficients

corresponds to a region where the presence of energe-
tically favorable interactions decrease the biological
activity. Such regions can appear for several reasons.
For example, they may indicate a hydrophobic region
where the presence of a polar group is unfavorable.
Alternatively, these regions may represent a ligand–
receptor interaction that may only be present through
a different binding mode, which is less favorable for
the activity [22]. Since the structure of the estrogen
receptor was known, it was quite interesting to
compare the results of our 3D-QSAR analysis, given
by the PLS coefficient maps, with the chemical and
geometrical properties of the binding site. It is neces-
sary to note, that, in general such comparison should
be attempted carefully. The PLS coefficient contour
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Fig. 5. Comparison between the PLS coefficient maps, contoured at20.004, and the amino acid residues located close to the binding pocket.
The region around His524 and the backbone of Leu525 and Gly521 contains only negative coefficients indicating that polar interactions here
would increase the activity. (Diethylstilbestrol is colored dark-gray, and the most potent ligand—compound 17—is colored gray.)



maps can by no means be regarded as a set of low
resolution picture of the binding site, since the contour
maps reflect only those regions in space, where
the ligand–probe interaction energy is correlated
with the biological activity [22,45]. Nevertheless
when the alignment is based on the receptor structure
one might expect a certain correlation.

We superimposed the coefficient contour maps and
the active site of the estrogen receptor and compared
them with each other. Figs. 5 and 6 show the grid plot
of the PLS coefficients for the water probe. The

contours in Fig. 5 represent negative coefficients
under20.004, while, the contours in Fig. 6 represent
positive coefficients over 0.004. Since we used the
water probe, the positive contour maps indicate the
areas where polar interaction decrease activity and
the negative contour maps show the regions where
polar interaction increase activity. In general, we
observed a nice agreement between the maps and
the positions of particular amino acid residues in the
active site. More specially, we find that a big positive
field occupies a hydrophobic pocket close to Leu346,
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Fig. 6. Comparison between the PLS coefficient maps, contoured at 0.004, and the amino acid residues located close to the binding pocket.
(Diethylstilbestrol is colored dark-gray, and the most potent ligand—compound 17—is colored gray).

Fig. 7. (a) Superimposition of the investigated crystal structures of AChE liganded with huperzine (black), tacrine (dark-gray), edrophonium
(gray) and decamethonium (light-gray). Only the amino acid residues close to the binding site are displayed. The only major conformational
difference between the four complexes is the orientation of the phenyl ring of Phe330, a residue located in the middle of the gorge. (b) Molecular
structures of edrophonium, decamethonium, huperzine and tacrine.
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Met421 and Ile424. The most active ligands possess
alkyl substituents, which are able to occupy this
pocket. A second positive field coincides with
Leu525, indicating that interactions between the
aromatic ring system of the ligands and Leu525 influ-
ence ligand binding. The region around His524 and
the backbone of Leu525 and Gly521 contains only
negative coefficients (contours in Fig. 6) indicating
that polar interactions here would increase the activ-
ity. Less pronounced fields are located close to
Glu353 and Arg394. Since all studied ligands possess
a hydroxyl group interacting with these two residues,
it is not surprising that this region do not contribute to
an explanation of the affinity variation. In conclusion,
we obtained a nice complementary relationship
between the coefficient contour maps and the binding
site of the estrogen receptor which indicate the power-
ful ability of the grid/golpe procedure for reprodu-
cing a meaningful 3D-QSAR model.

2.2. Acetylcholinesterase inhibitors

In the second example, we report on the application
of the described combined approach to a series of

aminopyridazine acetylcholinesterase (AChE) inhibi-
tors [48]. According to the cholinergic hypothesis
memory impairments in patients with Alzheimer’s
disease result from a deficit of cholinergic functions
in the brain [49,50]. One promising strategy to
overcome this deficit is the inhibition of the acetyl-
cholinesterase, the enzyme responsible for the hydro-
lysis of acetylcholine. Many compounds were
synthesized in the past and tested for acetylcholines-
terase inhibition [50,51]. The chemical structures of
these compounds are diverse, ranging from quartern-
ary compounds—such as decamethonium or edropho-
nium—to formally neutral molecules such as tacrine
or huperzine (see Fig. 7a and b). A novel family of
therapeutically promising inhibitors are the benzylpi-
peridine derivatives including donepezil. Donepezil
was recently introduced into the Alzheimer therapy
[51]. The starting point for the development of amino-
pyridazines as AChE inhibitors was the finding, that
the antidepressant minaprine (Fig. 8) shows weak
inhibition of AChE [52,53]. Since minaprine has a
unique structure among the known AChE inhibitors,
it was taken as promising lead compound. The synthe-
sized inhibitors, which are used within this modeling
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study, can be classified into six different families. The
inhibitors are described in detail elsewhere [54,55].
Examples from each family are shown in Fig. 8.

The positioning of the molecules in a fixed lattice is
the most important input variable in comparative
molecular field analysis. In order to obtain a realistic
alignment of the investigated inhibitors, we included
also in this example the known crystal structures of
AChE in our 3D-QSAR study. During the last few
years four structures of AChE complexed with rever-
sible inhibitors have been published [56–58]. Unfor-
tunately up to now no X-ray structure is available for
AChE complexed with the potent benzylpiperidine
inhibitors. As in the investigation of the estrogen
receptor ligands, we decided to use theAutoDock
program in order to determine the exact position of the
inhibitors in the binding pocket.

The detailed inspection of the four AChE-inhibitor
X-ray structures, obtained from the Brokhaven
Protein Databank (1ACL liganded with decametho-
nium, 2ACK liganded with edrophonium, 1ACJ
liganded with tacrine and 1VOT liganded with hyper-
zine) yielded crucial information concerning the
orientation of the inhibitors in the binding pocket.
AChE shows a nearly identical three-dimensional
structure in all known X-ray structures. The active
site is located 20 A˚ from the protein surface at the
bottom of a deep and narrow gorge. The only major
conformational difference between the four
complexes is the orientation of the phenyl ring of
Phe330, a residue located in the middle of the gorge
(Fig. 7a). Depending on the co-crystallized inhibitor
this aromatic residue adopts a different conformation.
However the positions of the four inhibitors in the
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Fig. 9. Comparison between the predicted position of compound PCS1050 (gray) and the X-ray structure of decamethonium (dark-gray) are
shown.



binding pocket are quite different. It seems improb-
able that a ligand-based method would be able to
predict this alignment correctly.

As in the previous example, the known crystal
structures of AChE were taken as positive controls
for the performance of theAutoDock approach.
The same parameters were taken as for the docking
of the estrogen receptor ligands. First results we
derived from the AutoDock/YETI calculations
showed that the program was able to predict the
experimentally determined positions of the inhibitors
correctly. However, the experimentally observed
complexes possessed not the lowest interaction
energy. An exact analysis of the crystal structures of
AChE showed that various water molecules are
present in the binding pocket and are involved in the
binding process. The analysis showed further that

some of the water molecules are found in all four
complexes in very similar places, independently of
the size of the inhibitors. Therefore, we included
these six conserved water molecules in our docking
studies.

An excellent agreement between the calculated
complexes and the crystal structures was observed
when we considered the six structurally conserved
water molecules during our docking studies. Not
only are the RMSD between theoretically predicted
and experimentally determined positions quite low
(tacrine: 0.28 A˚ ; huperzine: 0.51 A˚ ; edrophonium:
0.71 Å; decamethonium: 1.15 A˚ ), but also the posi-
tions found in the X-ray structure are in all cases
those with the lowest interaction energy.

Encouraged by these results we applied the devel-
oped procedure to our data set of 48 aminopyridazine
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Fig. 10. Favorable regions of interaction between the hydrophobic DRY probe and the active site (contour level20.6 kcal/mol). PCS1050 is
displayed for comparison.



inhibitors. Since the aminopyridazine derivatives
possess a comparable size as decamethonium, and it
is likely that they interact in a similar way with the
binding site, we took the protein structure from the
AChE-decamethonium complex for the docking
experiment. Fig. 9 shows the predicted position of
PCS 1050, a potent inhibitor, in comparison to the
position of decamethonium observed in the corre-
sponding crystal structure. The hydrophobic parts of
the aminopyridazine inhibitors interact with an
aromatic residue at the bottom of the gorge (Trp84),
with aromatic residues in the middle of the gorge
(Phe330, Phe331 and Tyr334) and with two aromatic
residues at the entrance of the gorge (Trp279 and
Tyr70). The benzyl ring of the inhibitor displays
classic p–p stacking with the aromatic ring of
Trp84. It thus occupies the binding site for the quar-
ternary ligands. The charged nitrogen of the piperi-
dine makes a cation–p interaction with Phe330 and
electrostatic interactions with Tyr121.

Additional interactions of the piperidine ring occur

with Phe331 and Tyr334. No direct hydrogen bonds
were observed between the polar groups of the inhi-
bitor and the binding site. Similar binding modes were
observed for the other inhibitors [48]. To further vali-
date the docking results we analyzed the binding
pocket using the well-known programgrid [33].
grid generates a contour map of the interaction
energy versus the three-dimensional position of the
probe with respect to the crystal structure of the
protein. This information can lead to the prediction
of how various functional groups of the inhibitors will
interact in a specific region within the active site.
Several probes were used to analyze the active site
of AChE. The results were compared with the posi-
tions of inhibitors. We observed good agreement
between the positions of the cationic head of the inhi-
bitors and the contour maps obtained using the catio-
nic trimethylammonium probe, as well as, between
the location of the hydrophobic parts and the contour
maps obtained using the hydrophobic DRY probe (as
an example, the results for the DRY probe are shown
in Fig. 10). This agreement further supported our
docking results.

The alignment of all inhibitors, obtained by the
docking procedure, is displayed together with the
molecular surface of the binding pocket in Fig. 11.
This alignment was further used as input for a
comparative molecular field analysis using the water
probe for the generation of the molecular field. Here
48 aminopyridazine derivatives [48] were included in
a grid/golpe analysis aimed to obtain information
about the regions around the ligands which correlate
with a variation in biological activity. The same
computational steps as applied for the estrogen recep-
tor ligands were applied to the AChE inhibitors. Using
the srd/ffd procedure withingolpe we were able to
reduce the number of variables from 16589 to 1238.
Fig. 12 shows a plot of the experimental against calcu-
lated values and the values of the squared correlation
coefficients (r2) and of the squared coefficients (q2) for
different model dimensionalities (the experimental
activities have been determined using AChE from
Torpedo californica and are expressed as2log IC50

values [55]). Three components were found to be
significant (q2 � 0:851 and SDEP� 0:33). The
conventional r2 of this analysis is 0.972. This
means, the model explains approximately 97% of
the variance in ligand binding of the investigated
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Fig. 11. This shows the superposition of all investigated inhibitors in
the active site as obtained by the docking experiment. The protein
surface is displayed for comparison. The positions of the protonated
nitrogen atoms and the aminopyridazine groups are comparable for
all the potent inhibitors.
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compounds. The model expresses also excellent
predictive ability, indicated by the high correlation
coefficient of q2 � 0:830 obtained by using the
leave-20%-out cross-validation procedure.

Since the three-dimensional structure of our target
is known, we were able to analyze the quality of the
developed model by comparing the PLS coefficient
maps of the inhibitors with the architecture of the
active site. The regions, which the model indicates
as important for the activity, should be close to the
residues present in the binding pocket. Fig. 13 shows
on the left side the negative PLS coefficient maps and
on the right side the positive PLS coefficient maps.
Since we used the water probe the positive contour
maps indicate the areas where polar interaction
decrease activity and the negative contour maps
show the regions where polar interaction increase
activity. In general we observed good agreement
between the maps and the positions of important
amino acid residues in the active site. The three
main positive fields are close to the important
aromatic residues in the gorge. The negative maps
are more widely distributed, but also for these maps
a clear correlation was found between the location of

the maps and the position of polar amino acid
residues.

Since the position of each inhibitor in the active site
was calculated automatically the virtual testing of new
compounds—not synthesized so far—seems to be a
promising method for the design of new acetylcholi-
nesterase inhibitors.

3. Conclusion

In this contribution we showed that the combina-
tion of ligand-based and receptor-based methods
could lead to highly predictive and meaningful
QSAR models. Besides the good predictiveness, the
received models are also able to point out which inter-
action sites in the binding pocket might be responsible
for the variance in biological activities.

In this context, it must be considered that a PLS
analysis indicates only where a variation in the inter-
action fields is correlated with a variation in the biolo-
gical activities. If all molecules of a data set would
show a certain important interaction with the receptor,
indicated by similar interaction energy at a particular
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Fig. 13. Comparison between the PLS coefficient maps and the location of important residues in the binding pocket (indicated by the arrows).



grid point for all compounds, this would not be
reflected by the resulting PLS model. Thus the degree
of correspondence depends strongly on the structural
diversity of the studied ligands. If one considers these
circumstances, important information can be obtained
from a comparison of the contour maps and the bind-
ing site, which can then be integrated in the drug
design process.

In the last decade, structure-based methods have
become major tools in drug design, including lead
finding and optimization [5]. It has also been shown,
that structure-based methods are able to predict fairly
accurate the position of ligands in receptor binding
sites. Apart from the accurate prediction of experi-
mental data, modern docking methods become ever
more efficient. Meanwhile docking programs are
developed, which can perform the docking of highly
flexible ligands in a few minutes on a modern work-
station [11,32]. The major problem is still the predic-
tion of binding affinities, probably limited by the
approximation used in today’s force field methods.
The application of 3D-QSAR methods—such as the
grid/golpe procedure—may facilitate the prediction
of binding affinities if one has a series of compounds
which bind in a similar way to a target protein.

Since a multivariate QSAR analysis considers only
the information, which applies to the considered data
set, advantages are offered in comparison to the more
rigorous methods. The rigorous methods have to
consider all influences on ligand binding, and must
calculate the corresponding amounts correctly. We
guess that a multivariate QSAR analysis is able to
provide a kind of scoring function valid for a particu-
lar data set. Since the reported combined strategy is
able to rapidly predict biological affinity, the method
can be applied to large ligand series. As long as no
methods are developed, which are able to solve the
affinity prediction problem, structure-based 3D-
QSAR is an exciting strategy for future drug design
studies.
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