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ABSTRACT: Identifying and purchasing new small molecules to test in
biological assays are enabling for ligand discovery, but as purchasable chemical
space continues to grow into the tens of billions based on inexpensive make-on-
demand compounds, simply searching this space becomes a major challenge. We
have therefore developed ZINC20, a new version of ZINC with two major new
features: billions of new molecules and new methods to search them. As a fully
enumerated database, ZINC can be searched precisely using explicit atomic-level
graph-based methods, such as SmallWorld for similarity and Arthor for pattern
and substructure search, as well as 3D methods such as docking. Analysis of the
new make-on-demand compound sets by these and related tools reveals startling
features. For instance, over 97% of the core Bemis−Murcko scaffolds in make-
on-demand libraries are unavailable from “in-stock” collections. Correspond-
ingly, the number of new Bemis−Murcko scaffolds is rising almost as a linear
fraction of the elaborated molecules. Thus, an 88-fold increase in the number of
molecules in the make-on-demand versus the in-stock sets is built upon a 16-fold increase in the number of Bemis−Murcko scaffolds.
The make-on-demand library is also more structurally diverse than physical libraries, with a massive increase in disc- and sphere-like
shaped molecules. The new system is freely available at zinc20.docking.org.

■ INTRODUCTION

Commercially accessible libraries enable new research because
they allow rapid and inexpensive exploration of chemical space.
Unfortunately, as the libraries have grown into the billions of
molecules, traditional search and representation methods have
become unwieldy. For instance, a similarity search at ECFP4
Tanimoto 40% to find analogs using precalculated and indexed
ECFP4 512-bit fingerprints stored in a Postgres database took
generally under 20 s to search 100 million molecules on our
64-core computer. The same calculation often took over 3 min
for 1 billion molecules. A key problem of similarity search is
that to find the most similar molecules, the entire database
must be consulted to be sure one has found the most similar.
An incomplete scan could provide misleading results if the
most similar molecules were near the end of the database.
Whereas the number of in-stock compounds worldwidenow
around 14 milliongrows only a few percent each year, make-
on-demand libraries are growing almost exponentially and may
be bounded only by our ability to construct and represent
them computationally; even now, over 1010 are notionally
available, with some private commercial collections larger still.
It is perhaps only a few years until the number of readily
available commercial compounds will reach 1011 to 1012

molecules. New approaches are urgently needed to search
this space.

A key benefit of make-on-demand libraries is that
compounds contained in them are both new to the planet
and can be readily accessed. These never-been-made
compounds can usually be reliably synthesized because the
building blocks are on the shelf, the parallel synthetic methods
are robust, and the viability of synthesis has been predicted in
advance based on data from analogous prior reactions. As a
result, synthesis-on-demand compounds now make up over
99.9% of the world’s catalog molecules. We have experienced
synthesis fulfillment rates of over 85% from these libraries in
over a dozen projects, which is about the same success rate as
for supposedly in-stock compounds.1,2

ZINC is a publicly available database that aggregates
commercially available and annotated compounds.3−5 ZINC
provides downloadable 2D and 3D versions as well as a website
that enables rapid molecule lookup and analog search. ZINC
has grown from fewer than 1 million compounds in 2005 to
nearly 2 billion now. Its design has changed over time to
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respond to the needs of the field, the growth of purchasable
chemical space, and developments in software and hardware.
The ZINC website is used by thousands of investigators each
month, and many terabytes of data are downloaded each week
as can be seen from the usage statistics accessible via the
“About” menu followed by “usage” in the top right corner of
every ZINC page.
In addition to its original focus on molecular docking,3 an

important application of ZINC is analog-by-catalog (ABC), a
pragmatic approach based on the molecular similarity
principle6,7 to identify similar compounds with which
structure−activity relationships can be explored. Many
investigators find it helpful to search for analogs in real time,
where “what if” questions about compound availability may be
explored.
Real-time and nonreal-time search are qualitatively different,

although there is no clear single line that separates them.
Search in real time provides results rapidly enough that the
investigator remains focused on the question at hand, and thus
a kind of conversation between the scientist and the database
can be said to take place. In nonreal-time search, the user
moves on to other things and must return and remember what
she was thinking when she asked the query. While individuals
vary, our own experience is that searches that reliably return
results in under 1 min are real time and engaging while
searches that take over 3 min tend to lose the immediate
attention of the investigator and are not real time. Calculations
that take between 1 and 3 min are borderline and will depend
on the concentration of the scientist, so we call them near-real
time here. To be most useful, search should be in real time or
occasionally near-real time. As the libraries have grown,
methods that could search 100 million molecules reliably for
similarity in real time, generally under 20 s, became near-real
time taking from 1 to 3 min as ZINC grew toward a billion
molecules and then became nonreal time, taking over 3 min, at
the current size heading toward two billion molecules. For
substructure and pattern searches, the problem was even
worse. Even at 100 million molecules, substructure and pattern
searches often failed to complete in under 3 min. The problem
became steadily worse as the database grew to and beyond one
billion molecules.
One approach to this problem avoids full database

enumeration entirely by instead searching in building-block
space using feature trees.8 This approach scales well, searching
only the building blocks and not the enumerated compounds
and approximating pharmacophores (“feature trees”) rather
than searching at the atomic level. While the searches are only
near-real time, reportedly taking several minutes to search 1010

implied molecules on a desktop computer, this approach
searches 10 times as many molecules as we could search using
precomputed fingerprints in the same time on our server.
Moreover, because it scales with the number of building blocks
and not with the size of the enumerated database, this
approach is likely to remain competitive as the implied size of
purchasable chemical space grows to 1011, 1012, and beyond.8

Notwithstanding these advantages of speed, fully enumerated
chemical databases retain important advantages. The mole-
cules can be interrogated more precisely at the atomic level
versus the more approximate pharmacophore represented by
feature trees. (Figure 1) For instance, searching building blocks
at the atomic level for protein kinase hinge binders can match a
specific pattern of hydrogen bond acceptors and donors,
whereas approximate feature-based methods often cannot.

Searching fully enumerated structures also allows interrogation
of the entire molecule. Approaches such as feature trees do not
allow substructure searches or pattern matching, as widely
implemented in SMARTS,9 for instance. Explicitly enumerated
databases also allow each molecule to be interrogated for
synthetic accessibility because only accessible molecules are
enumerated, while in building block space there remains some
doubt that all the implied molecules are accessible. Finally, for
atomic resolution screens, as in molecular docking, the
molecules must be fully enumerated in three dimensions.
In this work, we focus on three distinct kinds of searches:

(A) whole-molecule search in which molecules that most
resemble the entire query are prioritized, (B) substructure
search in which the molecules that contain the entire query
molecule are identified, and (C) pattern search in which
molecules containing specified molecular pattern(s) are
selected. These represent the three most common atomic-
level searches we are aware of. Substructure and pattern
searches have one big advantage over similarity searches: they
do not need to complete to give correct and useful results. For
similarity, the question is almost always, what are the most
similar molecules, and thus the entire database must be
consulted. For substructure and pattern searches, this is not the
case. Molecules either have the substructure or match the
pattern, or they do not, so any subset of the database that can
be screened provides useful and correct, if incomplete
information. Pattern searches can be particularly useful on
building block databases to identify functional group
combinations for library enumeration.
Fingerprint-based search methods vary in detail but scale

roughly linearly in the number of molecules. In our hands, all
fingerprint-based methods are challenging to use for providing
real-time public search of over one billion molecules. Radical
new nonfingerprint-based approaches offer the hope that real-
time search may remain viable for several more orders of
magnitude of library growth.
Here, we investigate how the growth of the ZINC library,

largely driven by the virtual make-on-demand libraries, has
affected the compounds, chemotypes, and Bemis−Murcko
scaffolds (hereafter “scaffolds”) readily available to the
community. We then turn to investigating how this large
new chemical space may be efficiently searched, overcoming

Figure 1. Feature trees capture pharmacophores in a “fuzzy” fashion
that cannot distinguish atomic-level details. By contrast, searches in
SmallWorld and Arthor are atomic and can match precise atom
patterns, allowing for finer discrimination at scale.
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the liabilities that have made traditional atom-resolution search
methods outdated for the growing libraries. Three distinct
types of searches are investigated: the whole-molecule
similarity search, substructure searches, and chemotype pattern
searches. We will argue that the advent of the “make-on-
demand” libraries has dramatically expanded not only the
number of new molecules readily accessible to the community,
but also the diversity of accessible compounds. The new tools
described here are made freely available via https://zinc20.
docking.org, https://sw.docking.org, https://arthor.docking.
org, and https://cartblanche.docking.org and their http
cognates.

■ RESULTS
New Content of the ZINC Library. ZINC continues to

grow in size with ZINC20 now including 1.4 billion
compounds, 1.3 billion of which are purchasable, sourced
from 310 catalogs from 150 companies. Over 90% of catalogs
are refreshed every 90 days, and over 90% of compounds have
been verified as purchasable within the last three months (our
90/90/90 rule). Additional databases of molecules not yet
added to ZINC, totaling more than 1010 molecules, may also
be searched, as described below.
As a resource for lead discovery, ZINC has in the past

prioritized screening compounds that follow the rule-of-4
(Ro4): thus, molecular weight less than 400 g/mol and
calculated logP less than 4. Recently, we have seen an
increasing number of targets for which Ro4 molecules are too
small or insufficiently lipophilic, and correspondingly, we have
begun to load more Ro5 molecules. Of the 736 million lead-
like (Ro4) molecules in ZINC, 509 million are available for
download in 3D ready for docking.
We wondered how the diversity of the make-on-demand

library compares to that of molecules in physical screening
decks. To investigate this, we compared the ZINC make-on-
demand library, most of which is from the Enamine REAL
collection,10 with several publicly available physical libraries,
including the Molecular Libraries Small Molecule Repository
of the NIH (MLSMR),11 the Small Molecule Discovery Center
library UCSF (SMDC),12 an academic high throughput
screening center, and the “in-stock” Ro4 compounds in
ZINC5 (Table 1). To quantify the topological diversity of

the molecules within each library, we calculated Bemis−
Murcko scaffolds13 for all molecules and plotted the number of
compounds within each scaffold (Figure 2). For instance, the
MLSMR contains just over 405,000 of which almost 53,000
contain a unique scaffold, with no other analogs containing the
same scaffold (leftmost yellow dot shown in Figure 2C). By the
time there are 10 molecules per scaffold, the number of
scaffolds has fallen to 3504, a 15-fold drop. In the six million
molecule ZINC “in-stock” collection, meanwhile, there are

over 534,000 molecules that are found in unique scaffolds, and
by the time there are 10 molecules per scaffold, the number of
scaffolds has dropped to 33,542, about a 16-fold drop (light
green squares shown in Figure 2A). Indeed, the two libraries
are roughly proportional in the ratio of compounds to scaffolds
throughout their distributions with the ZINC “in stock” simply
being 15-fold larger. This increase in size largely explains the
longer tail of the “in-stock” library, where a relatively small
number of scaffolds have several thousands of compounds
within them. For all three physical collections (“in-stock”,
SMDC, and MLSMR), the rate of change of cluster sizes going
from smallest to largest scaffolds is about the same.
Intriguingly, the distribution appears broader in the make-on-
demand library. Despite being 100-fold larger than the ZINC
“in-stock” collection, for instance, there are only 10-fold more
scaffolds that contain only 1 molecule, and by the time, one
reaches 10 molecules per scaffold, the number of scaffolds has
only fallen by 3.75-fold, not 19-fold. The slower rate of decline
in scaffolds per number of molecules within them holds
throughout the distribution, further extending the long tail.
While it is certainly true that the rise of the number of scaffolds
has not kept up with the rise of compounds and that the ratio
of scaffolds to compounds in the physical libraries is higher
than that in the “make-on-demand” library, the number of
scaffolds in the “make-on-demand” library is surprisingly high.
For instance, while the number of molecules is 88-fold higher
in the “make-on-demand” than in the “in-stock” library (Table
1), the scaffolds in the former have also risen by 16-fold versus
the latter. These numbers reflect on the frequent ability to find
analogs around a Bemis−Murcko scaffold within the “make-
on-demand” library. This observation is consistent with the
parallel chemistry used to generate the libraries. It is also
consistent with the high relative diversity of the collection and
the lack of dominance of most scaffolds. The most over-
represented scaffolds are generally also the small and simple
ones, such as phenyl (3.5 M compounds), pyridine (2.8 M
compounds), and cyclohexyl (1.7 M compounds), reflecting a
weakness in using Bemis−Murcko scaffolds as a classifier for
these ultrasmall scaffolds.

Table 1. In-Stock and Make-on-Demand Catalogs

catalog name physical? Number website

ZINC Ro4 in-
stock

yes 6,060,000 https://zinc15.docking.org

SMDC yes 690,125 https://smdc.ucsf.edu
MLSMR yes 406,098 https://pubchem.ncbi.nlm.

nih.gov/source/MLSMR
ZINC Ro4
make-on-
demand

no 515,000,000 https://zinc15.docking.org

Figure 2. Scaffold diversity of “in-stock” and “on-demand” catalogs.
Comparison of the number of scaffolds in bins of molecules per
scaffold. Histogram tops shown. Log/log scale. Thus, there are 95 on-
demand scaffolds having 10,000 examples in the database (bottom
right) and about 4.7 million that have only a single representative (top
left).
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Another approach to assess library diversity is to compare
the shapes of molecules.14 This method uses normalized ratios
of principle moments of inertia (NPMI) to classify shape with
extreme values characterized as a rod (1D, top left), disc (2D,
bottom middle), and sphere (3D, top right). Our calculated
results show that the make-on-demand molecules cover
important areas of this space that are historically under-
represented in physical decks, such as the space in the direction
of sphere-like (top right corner) (Figure 3). For reference,
benzene is disc shaped (npr1 = 0.5, npr2 = 0.5), adamantane is
sphere-like (npr1 = 1, npr2 = 1), and Gleevec is rod-like (npr1
= 0, npr2 = 1).
We can also ask how much of the make-on-demand library is

not represented in the three different physical libraries, by
determining the number of scaffolds of the make-on-demand
libraries missing in physical decks. Almost all of the make-on-
demand molecules have no representation in physical libraries
at the scaffold level demonstrating the novelty of the make-on-

demand chemical space (Table 2). Overall, the number of
molecules in the make-on-demand libraries is massive − about
a thousand times bigger than the physical libraries MLSMR
and SMDC and about 100 times bigger than all the molecules
in stock anywhere in the world. The physical libraries are
expensive to create and can only grow slowly, while the make-
on-demand libraries are growing rapidly, further re-enforcing
these trends.

New Tools. ZINC is not only a repository for accessible
molecules and their physical representations (as are widely
used in docking, for instance) but also a suite of tools for
searching those molecules. An important use of ZINC tools is
to find analogs of a biologically active molecule, perhaps found
from a library screen. This is often called ABC and has the
advantage of rapid synthesis and testing at relatively low cost.
Previous methods for analog searching, based on stored
fingerprints in Postgres/RDKit,5 began to suffer in speed-of-
search as ZINC grew, owing to the roughly linear scaling of

Figure 3. Molecular shape distribution. NPMI analysis. Two principle-component magnitude ratios are plotted, npr1 (x-axis) and npr2 (y-axis)
(see the Methods section). Rod-shaped molecules appear in the top left of graph, disc-shaped in the bottom middle, and sphere in the top right The
heatmaps are colored by the number of molecules in each of 500,000 pixels. (A) ZINC in-stock Ro4, (B) MLSMR, and (C) SMDC. (D) ZINC
Ro4 make-on-demand.

Table 2. Scaffolds in Physical and Make-on-Demand Libraries

library
number of
molecules

number of Bemis−
Murcko scaffolds

number of scaffolds in library
AND on-demand

number of scaffolds in library NOT
IN on-demand (%)

percent of scaffolds in on-
demand NOT in library

MLSMR 406,098 108,178 25,822 82,356 99.9%
SMDC 690,125 136,862 34,234 102,628 99.8%
In-stock-
Ro4.0

6,136,700 1,263,063 495,474 767,589 97.5%

In-stock-
Ro3.5

3,546,040 744,796 400,574 344,222 97.9%

On-
Demand

531,645,834 19,590,914 0%
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enumerated fingerprints. The speed declines further still when
the fingerprint indexes can no longer fit in the computer
memory and often get swapped out to disk, which we
estimated started becoming frequent after ZINC reached 1.2
billion SMILES. To identify a method that could better scale
to the growing on-demand libraries, we implemented two fast-
search methods with different search algorithms, SmallWorld
and Arthor.
SmallWorld is a graph-edit distance and maximum common

subgraph (MCS) method. One of its key innovations is to

preindex anonymous graphs of all possible molecules that are
specifically enumerated. Searching a database indexed in this
way involves simply looking up the anonymized graph of the
target molecule followed by taking small steps in graph-edit-
distance space to traverse the preindexed map (Figure 4). As a
result, SmallWorld search time grows in sublinear time, almost
independent of the number of molecules searched, given a
sufficiently large and fast disk to hold the index. In a database
of 166 billion molecules, for instance, the most similar

Figure 4. SmallWorld indexes the topological space of organic molecules into anonymous graphs. Extended figure legend. In this ideographic
representation (map) of chemical space, vertices of this graph are labeled with molecular graphs. Each graph is connected to its neighbors by
elementary steps in graph-edit-distance space, such as add a terminal atom (tup), delete a terminal atom (tdn), open a ring (rup), close a ring
(rdn), insert a linker atom (lup), and delete a linker atom (ldn).

Figure 5. SmallWorld for whole-molecule similarity in ZINC. Left, the ZINC interface that now routes similarity searches to SmallWorld. A new
popup selector now also allows the selection by the purchasability subset and/or building blocks. Right, the SmallWorld interface at sw.docking.org.
The subset of ZINC to search is selected from the DataSet popup (middle left).
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molecules were identified consistently within one or 2 s on our
computers.
A second approach, Arthor,15 uses a compact persistent

binary representation of molecules and a customized pattern
matcher based on the SMARTS language to operate on it.
Given a minimum of 128 GB of computer memory, Arthor can
search over 1 billion molecules for substructure or chemotype
patterns in around one or 2 s on modern commodity
computers (see the Supporting information). Unlike Small-
World, Arthor remains roughly linear in performance with
database growth, but it is the fastest method we have yet found
for atom-level substructure and pattern searches. Arthor can be
scaled over an array of several computers using the
RoundTable algorithm to allow rapid search of billions and
even tens of billions of molecules. Whereas Arthor does
support whole-molecule similarity search, we have chosen to
use SmallWorld for whole-molecule similarity because of its
speed, relying on Arthor for substructure and pattern searches
where it excels. To make the public search pragmatic, we cap
Arthor searches at 10,000 molecules. For common patterns,
such as phenyl and cyclohexyl, for instance, the first 10,000

molecules are often found in under a second. For rarer, more
specific patterns that occur up to a few thousand times, Arthor
easily searches 1.4 billion molecules in a second or two. It is
molecules or patterns of intermediate frequency that present a
challenge to a real-time service. In our hands, Arthor generally
completes searching 1.4 billion or hits the 10,000-molecule cap
within at most 10−20 s in the worst cases. This has allowed us
to support a freely accessible public interface to Arthor, both
standalone and via ZINC. We intend to offer a comprehensive
asynchronous search feature of larger databases, which allows
more results in the near future. For now, those who are
interested in how many of the 1.4 billion molecules of ZINC
contain a phenyl ring should download the database to their
home computer and search it there.
To investigate SmallWorld analog searches of the make-on-

demand library, we exported molecules as SMILES for both
building blocks and screening compounds, organized by
purchasability (see Box 1). We found that analogs of molecules
having thousands of analogs among the 515 million (and also
bigger multibillion-size datasets) were fast, with first results
typically appearing within seconds. Thousands of analogs −
essentially all analogs we would usually be interested in −
would usually appear within 15 s and often much faster. This is
a radical and profound improvement over any fingerprint-
based methods we are aware of. Conversely, using the older
ECFP4-fingerprint method, where the fingerprint is stored and
indexed inside Postgres, searching for the most similar 100
analogs almost always takes more than 3 min to search 1.4
billion molecules. In analog searches for over 1000 molecules,
each with over 100 analogs, SmallWorld searches on average
took 2 s to find the first 100 analogs.
Accordingly, we built a software interface to perform

similarity searches using SmallWorld from ZINC (Figure 5).
From https://zinc20.docking.org, the user selects “Substances”
from the menu bar at the top of the page (Figure 5, left panel).
On the left-hand side of the page, the bait molecules may be
drawn or SMILES pasted into the “Search using one” field.
The results are displayed as previously in ZINC15.5

Alternatively, the user can go directly to https://sw.docking.
org and search from there (Figure 5, right panel). Here, the
subsets of ZINC to search are selected from the DataSet
popup, which includes some datasets such as WuXi GalaXi and
Mcule Ultimate that are not yet fully loaded into ZINC.
Dataset names contain the date they were prepared and the
approximate number of molecules. Other parameters for
controlling the search are available (left in the panel). Two
Tanimoto similarities based on legacy fingerprints, ECFP4, and
Daylight are calculated and displayed for historical comparison
to graph-edit distances and may be used to sort the results.
Two widely used variations of analog searching are

substructure searches and chemotype pattern matching,
which allow investigators to specify “wildcard” atom types,
functional group combinations, and much more. As with
fingerprint-based analog searches, substructure and chemotype
pattern searches in ZINC15/RDKit became increasingly
challenging with the advent of the ultralarge libraries.
Substructure and pattern searches do not need to complete

to produce useful and correct, if incomplete, results, because
both search types are answering yes/no questions to whether
molecules contain the substructure or pattern. Accordingly, we
have limited Arthor results to the first 10,000 molecules. Our
public version of Arthor is capable of finding molecules
containing a given substructure or pattern, but if there are

Box 1

Purchasability in ZINC

ZINC organizes catalogs and the compounds they
contain into six purchasability levels, three in stock, one
make-on-demand, one boutique, and one “annotated”,
that is, not for sale.
Premier − these are compounds from the most
responsive and most reliable vendors. Most of these
compounds are also well priced at around $100 or less.
In-stock − These are compounds where prices are often
higher than premier or are unknown.
Agent − These are compounds available via resellers
that do not make the compounds.
On-demand. These are compounds that are often well
priced often near $100, generally less than $200 each.
Compounds are not in stock but are synthesized on
request, generally requiring around six weeks from
order to delivery and with − in our experience − an
85% delivery success rate.
Boutique − These are compounds that are advertised
for sale. Absent further information, we either have little
experience with the vendor, or suspect that the
compounds are expensive, or both. We generally do
not dock boutique compounds, but we will consider
them during analog searches.
Annotated (Not-for-sale) − These are compounds
such as in ChEMBL, DrugBank, or other annotated
collections, where the compounds are reported to have
biological activity but do not exist in any current
commercial catalog according to information available
to us.
We assign purchasability based on our own purchasing
experience, prices when available, and based on tips
from helpful colleagues. Compounds are assigned the
highest purchasability based on their current catalog
membership. We revise purchasability continually based
on information we receive. Please contact us if you have
information to share that will help us improve ZINC.
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more than 10,000 matches in the database the results will be
incomplete. When we have more computers online dedicated
for Arthor we may revise this limit upward. Our goal is to
provide a useful public service in a pragmatic fashion.
To integrate Arthor natively into ZINC searches, indexes

were created on statically exported subsets of ZINC as well as
databases of Enamine, Mcule, and WuXi that have not yet been
incorporated into ZINC. New software was written to combine
the results of an Arthor search with other search constraints in
ZINC. A new interface was written to allow investigators to
access the Arthor tool from ZINC, selecting the substructure
or the SMARTS patterns options from the popup (Figure 6,
left panel). To search by substructure or SMARTS patterns,
investigators browse to https://zinc20.docking.org and click
on the “Substance” in the menu bar at the top. To search by
substructure, a substructure is entered in the drawing tool
(Figure 6, left). To search by a chemotype pattern, a SMARTS
pattern is typed in the input field. Optionally, investigators can
select the subsets to search from the second popup (Figure 6,
left, bottom panel). Some results should appear within a
minute. ZINC may also be searched using the Arthor tool
directly at https://arthor.docking.org (Figure 6). To search
using substructure (left panel), the user selects Substructure,
selects the database subset to use, and then draws the molecule
or pastes in the SMILES. To search using chemotype patterns,
the user selects SMARTS and enters the SMARTS pattern. In
each case, results appear on the right. Clicking on the ZINC
number in the right panel opens the ZINC database for that
molecule is a separate browser window. Clicking on the
download button (top right of the page) downloads results in a
spreadsheet-compatible format. Both the SmallWorld and the
Arthor standalone interfaces were developed by NextMove
Software. Arthor is also capable of running similarity searches,
but we do not currently use this feature because SmallWorld is
always faster and complete for the closest analogs.
Looking to the future, we have also created a new interface,

Cartblanche.docking.org, that combines SmallWorld and
Arthor searches into a single interface. Cartblanche is designed
to make finding and purchasing molecules easier - a lightweight
yet powerful chemical search tool. Cartblanche uses a shopping
cart metaphor to allow the user to save molecules, curate lists
(“carts”), assign estimated prices, and prepare an order for
sending to vendors. Cartblanche may be used anonymously

while registration enables additional benefits such as multiple
and persistent shopping carts. Additionally, there are databases
that cannot be made public because of fears of contaminating
chemical space for patenting. Access to these additional
resources is available on request to chemistry4biology@gmail.
com, including the Enamine REAL Space On-Demand 13.5
Billion molecule set. Cartblanche and these bigger libraries are
continuing to evolve and are being made available now as is in
the hope that they will be useful.

■ DISCUSSION

Four themes emerge from this work. First, purchasable
chemical space and the ZINC database that organizes it has
become so big that new technologies are needed for real-time
search. As purchasable chemical space continues to grow in the
coming years, this engineering challenge will continue. Second,
ZINC contains many new scaffolds and many molecules that
are new to the planet, far exceeding what is available in physical
public libraries. The scale and diversity of what can simply be
searched and purchased are an opportunity for research. Third,
because it is fully enumerated, ZINC can be searched precisely
using explicit atomic-level graph-based methods, such as
SmallWorld, pattern, and substructure methods such as Arthor
as well as 3D methods such as docking. The new tools
presented here allow ZINC to be searched rapidly, often in real
time. The whole-molecule search in SmallWorld should
continue to work in real time for several further orders of
magnitude of library growth, albeit with considerable effort to
curate and support the service. Finally, ZINC and the other
tools described here are freely available to everyone via zinc20.
docking.org and other docking.org websites.
Purchasable chemical space has grown so much and so

rapidly that public tools that could easily handle all of the
purchasable chemical space five years ago are no longer fast
enough to support real-time search. This growth is an exciting
opportunity for investigators seeking chemical novelty, but a
big challenge for those implementing tools that are easy to use.
Fortunately, radically new technology in the form of
SmallWorld and Arthor with the Roundtable algorithm has
provided us with a mechanism to continue to offer free public
search of public chemical libraries using fully enumerated
databases.

Figure 6. Arthor for substructure and SMARTS chemotype pattern matching in ZINC. Left, substructure search. Right, SMARTS search for
aliphatic boronic acid or ester plus an aromatic carboxylate in the same molecule.
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As chemical space has grown so has its scaffold and shape
diversity. For 88 times as many compounds as those in the
make-on-demand library as those molecules that are in stock,
the number of Bemis−Murcko scaffolds in the libraries has
grown 16-fold. The novelty of the screening compounds is
largely because of the novelty of the building blocks that have
simply not been previously accessible for enumerating libraries.
The structural diversity is also broadly based, as quantified by
the inertial ratios shown in the rod/disk/sphere plots. The
coverage of this space by make-on-demand compounds is far
denser and broader. There is far more chemical matter in the
region tending toward sphere-like than is available in any
physical decks, which are notoriously biased toward first rod-
like and secondarily disc-like. Together, the chemical diversity,
scaffold diversity, and shape diversity of the make-on-demand
libraries have a diversity that far exceeds public physical
libraries, and likely private ones as well as 97% of scaffolds in
make-on-demand libraries have no representative in physical
libraries.
Purchasable chemical space can be searched quickly and

precisely at the atomic level. Of the three distinct types of
search, whole-molecular similarity has the greatest ability to
scale, owing to the SmallWorld algorithm. Chemotype pattern
searches are particularly useful for building blocks, where the
presence of distinct functional groups and scaffolds can be used
to find reagents for library building or synthesis, including for
DNA encoded libraries. At the scale of current building block
collections, even the most complex Arthor searches take only a
few seconds.
Several caveats merit mention. All of these databases are

moving targets. Every month, over 20,000 make-on-demand
compounds become in stock, that is, they are synthesized, and
perhaps a quarter as many in stock become depleted − sold
out. Make-on-demand libraries grow and shrink far more
rapidly. We have seen 109 new molecules appear in a single
month, and it is common to see hundreds of millions of make-
on-demand compounds reclassified as unavailable at modest
parallel synthesis prices as vendors gain experience and learn
they are not as easy to make as once believed. The new tools,
inevitably, also have limitations. For all of its advantages, the
search time with Arthor scales roughly linearly with the
database size for substructure and chemotype pattern searches.
Eventually the almost unbounded growth in accessible
chemical space will pose a problem, as an order of magnitude
more molecules will require an order of magnitude more
memory and/or cpus, and that will rapidly become limiting. A
SmallWorld-like algorithm for substructure and pattern
matching with sublinear scaling would be hugely enabling for
the field. The hardware needed to run the services described in
this work cost hundreds of thousands of dollars and require
hundreds of person-hours monthly simply to maintain with
current information.
Notwithstanding these caveats, new free tools are available

now. ZINC supports whole-molecule similarity search with
SmallWorld using graph-edit-distance search, annotated with
traditional ECFP4 and Daylight Tanimoto similarity values
calculated. Substructure search is supported by Arthor, as is full
chemotype pattern search using SMARTS. These new tools
may be sufficient to allow molecular searches to scale with the
explosion of compounds in ZINC, at least for the next several
years. As ZINC grows beyond 10 billion molecules toward 100
billion and beyond, newer approaches may be considered.

■ METHODS

We used RDKit version 2018_03, OpenBabel version 2.3.2,
and Molinspiration version 2015. We use Postgres 12.0 for the
database to host ZINC and Centos7 operating systems.
Our public SmallWorld (version 4.0.1) is hosted on a

computer with 16 Intel Xeon E5-2623 v4 running at 2.60 GHz
and 64 GB of RAM. The anonymous index is stored on a 114
TB SSD disk array formatted with ZFS z2. Indexes are
prepared and stored on a second 114 TB disk array formatted
in the same way. The private SmallWorld instance is currently
hosted on the same computer.
Smallworld uses a map of anonymous graphs for indexing,

which is currently 42 TB, dated March 2020. It should be
stored on as fast disk as can be afforded (we currently use
SSD). The database indexes are 13−14 million molecules per
GB. Thus 13.5 TB takes about 1 TB. The database can be
prepared in chunks of 500 M molecules each and then merged
and sorted to build the final index.
Our public Arthor server (Version 3.3) is hosted on a

heterogeneous set of eight computers, each with a minimum of
128 GB of memory, a minimum of 7.6 TB of SSD disk, and
between 80 and 128 cores. Arthor works best with lots of
memory, because the indexes are best accessed when memory
cached.
Arthor uses two kinds of index, one for similarity search,

which we do not support here, and the other for both
substructure and pattern (SMARTS) searches. The sub-
structure/pattern indexes index seven−nine million molecules
per GB. Thus, 1.7 TB of disk is required to index 13.5 billion
molecules. For larger databases (> two billion molecules) we
create Arthor indexes of 500 million molecules each and split
them across as many computers as possible, each with as much
memory as possible but never less than 128 GB.
ZINC20 is hosted on an array of computers. The database

itself is on a computer with 32 Intel Xeon Gold 5222 CPUs
running at 3.80GHz. The Postgres database resides on a 114
TB SSD disk array formatted with ZFS z2. This machine has
1.5 TB of RAM expandable to 3.0 TB.
The web server runs on two computers each with 80 cores of

Intel Xeon Gold 6138 CPUs at 2.00GHz. One of these has 400
GB of RAM, the other 128 GB of RAM. Database curation and
loading are performed on our private cluster of approximately
1000 cores.
The public version of the Small Molecule Discovery Center

collection was sourced as SMILES by request. The MLSMR
was downloaded from PubChem on September 1, 2019. The
Enamine collection and the WuXi GalaXi and Mcule Ultimate
collections were made available by agreement with the
suppliers.
The NPMI for the rod/disc/sphere plots were calculated

using RDKit using the following commands.
mol = C.AddHs(mol).
AllChem.EmbedMolecule(mol, useExpTorsionAnglePrefs =

True, useBasicKnowledge = True).
npr1 = round(CD.CalcNPR1(mol), 4).
npr2 = round(CD.CalcNPR2(mol), 4).
Bemis−Murcko scaffolds were calculated using the mib

toolkit by Molinspiration (molinspiration.com). Histograms
were prepared using python scripts, Jupyter notebooks, and
Microsoft Excel.
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The performance section from the Arthor 3.2 User
Manual benchmarking Arthor performance on a variety
of hardware. These are all available in the supporting
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(PDF).
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