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SUMMARY 

For structure-activity correlation, Partial Least Squares (PLS) has many advantages over regression, 
including the ability to robustly handle more descriptor variables than compounds, nonorthogonal descrip- 
tors and multiple biological results, while providing more predictive accuracy and a much lower risk of 
chance correlation. The major limitations are a higher risk of overlooking 'real' correlations and sensitivity 
to the relative scaling of the descriptor variables. 

INTRODUCTION 

Because most sets of biological observations, particularly those produced by testing different 
chemical structures in the same biological system, cannot be adequately described by existing 
theory, researchers often seek semiempirical models in which the changes in observed values are 
predicted as a mathematical function of properties which are better understood. 

Partial Least Squares (PLS) is an important new technique, introduced by Hermann [1] and 
Svante Wold [2,3], for producing a linear equation to describe or predict differences in the values 
of one or more properties from differences in the values of other properties. In structure-activity 
studies, such a linear equation is usually called a Quantitative Structure-Activity Relationship or 
QSAR. The described or predicted properties are called the 'dependent variables' or, in the PLS 
literature, the 'Y-block'. The describing or predicting properties are called the 'independent 
variables', or the 'X-block'. Partial Least Squares can be regarded as a major generalization of the 
more familiar technique of multiple regression (MR), since for identical problem formulations 
PLS and MR produce identical answers. Most of the initial applications of  PLS have been in 
analytical chemistry, particularly food chemistry, but the technique has had a substantial impact 
on QSAR practice within the last few years. 

COMPARISON OF PARTIAL LEAST SQUARES WITH MULTIPLE REGRESSION 

The major advantages PLS offers over MR in structure-activity studies are: 
(1) The ability to produce useful, robust equations even when the number of 'independent 
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variables', or coefficients to be evaluated, vastly exceeds the number of experimental observa- 
tions. The popular new 3D QSAR technique Comparative Molecular Field Analysis (CoMFA) 
[4], which explains differences among a small number of biological test results in terms of differ- 
ences in the fields exerted by the tested molecules at thousands of points in space, depends upon 
this property of PLS for its success. 

(2) Predictions from PLS-derived models tend to be more accurate than those from MR- 
derived models [5] (provided the problem setups are formulated optimally for each method). 

(3) PLS models are much more stable when the sets of independent variable values are correlat- 
ed rather than orthogonal, the most common situation in structure-activity studies. 

(4) A PLS study can simultaneously derive models for more than one dependent variable, for 
example for results from multiple receptor assays or against multiple microorganisms. 

The differences in behavior between MR and PLS result from their different strategies for 
identifying a linear relationship. Put as simply and qualitatively as possible, MR treats independ- 
ent variables as independent entities, scaling and offsetting each variable separately to obtain the 
best overall relationship with the dependent variable. In contrast, PLS considers all the independ- 
ent variables together, as a 'block'. In an iterative process, PLS repeatedly transforms both 
'dependent' and 'independent' variable blocks so that their commonality is maximal (see Appen- 
dix for the PLS algorithm in one widely used program). Indeed, the more familiar method of 
principal components (simple factor) analysis (PCA) proceeds identically [6], except that the PLS 
transformation objective is maximum overlap between the variable blocks, as opposed to the 
maximum within-block coverage desired in PCA, and the numerical method NIPALS [7] usually 
used in PLS differs from the mlmerical method of matrix inversion usual in PCA. Both in PLS 
and PCA, each iteration of the method extracts a new 'component'. When the number of compo- 
nents extracted by PLS equals the number of columns used in MR, MR and PLS produce the 
same QSAR from the same data. 

However, PLS and MR also differ somewhat in the philosophy underlying their use, which 
becomes important operationally in their respective criteria for 'best relationship'. Of course, in 
QSAR applications both methods seek primarily an equation which can predict the biological 
properties of molecules not used to derive the model. However, establishing a 'best relationship' 
criterion a priori is chancy, because increasing the descriptors in a model will always improve its 
fit to the existing data but often degrade its predictive accuracy for new data. 

The 'least squares' criterion of MR originates with Gauss, who showed that the best fit among 
a set of experimental observations (planetary movements), whose relative differences were caused 
only by 'independent and normally distributed' errors of measurement, to a single theoretically 
exact predictor (Newton's laws), would minimize the sum of squared differences between predict- 
ed and observed values. To make the chancy decision whether some additional independent 
variable improves an MR model, usually Fisher's F-ratios with and without the variable are 
compared. (The F-ratio is the ratio of model-explained to model-unexplained variance in the 
dependent variable, each weighted by the number of degrees of freedom.) 

Such situations as Gauss's, where there is a reliable theory linking one set of observations 
to another, are called 'hard models' in the PLS literature. In contrast, PLS is recommended 
for 'soft models', those describing many sets of observations containing much correlated 
error. In such cases, the existence of any relationship, far from being theoretically proven, 
is in fact the desired result of the investigation. Here the PLS literature advocates that the 
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Fig. 1. Schematic representation o f  the cross-validation process. 

investigator search for 'latent variables', factors hidden within the actual observed independent 
variables, which are hopefully causative or at least correlative with similar latent variables within 
the dependent variables. In principle, each additional PLS component identifies another such 
latent relationship and in practice improves the fit between X- and Y-blocks. To address 
the chancy question, how many components are then 'best', PLS takes advantage of cross- 
validation, (aka jack-knifing, leave-l-out, leave-n-out). Cross-validation is a recent statistical 
development, general in applicability, that substitutes today's speed of computation for theoreti- 
cal assumptions about data distributions. Assuming that the optimal QSAR is the one which 
best predicts, in cross-validation one pretends that one or more randomly chosen objects 
are unknown. The entire QSAR is rederived with those objects completely omitted and then used 
to predict the dependent values of the omitted objects. The cross-validation cycle is repeated until 
all objects have been omitted, so all dependent values have been °predicted', the errors of predic- 
tion being accumulated, as shown in Fig. 1. Using cross-validation, the °optimal number of 
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components' in a PLS analysis is that for which the error of prediction in a cross-validation test 
is least. A final PLS model is then derived, using all the data and the 'optimal number of 
components'. 

Some of these rather abstract concepts about data analysis may be clarified somewhat by a 
concrete example. Suppose an investigator is empirically searching for the best lubricant by 
simple measurements of various properties of a set of unlabeled organic liquid samples. He might 
soon decide that apparent viscosity, high boiling point, low melting point, high refractivity of 
light, and low odor intensity (low volatility), solubility in gasoline, and perhaps high color 
intensity are promising predictors. If a PLS 'soft model' were formulated from a combination of 
these data, someone who knew the chemical structures of the samples might identify its latent 
variables [8] with 'molecular size', 'molecular stickiness' and perhaps 'molecular flexibility'. 

This example can be extended to crudely illustrate the virtues of cross-validation as a 'best 
model' sector. Consider also the possibility that among the unlabeled bottles there is one unla- 
beled can, which happens to contain high-quality motor oil. The decision model that would 
probably then be optimal according to an F-test - -  look for a good lubricant in a metal container 
- -  would work out badly if the next set of candidates included canned soft drinks. However, a 
cross-validation test, used with either MR or PLS [9], would at least identify a suspicious data 
distribution, by the discontinuity occurring whenever the properties of the canned liquid were 
omitted from the model development. 

EVALUATING THE PLS MODEL 

The most widely used metric for evaluating a QSAR, whether from MR or PLS, is its r 2 value, 
defined as: 

r 2 = (SDorigi.~l - SD . . . .  i n i l t g  . . . .  r)/SDoriginal 

where SDoriginal is the sum of the squared deviations of the original dependent values from their 
mean and SDremaining error is the sum of squared differences between original and 'predicted depend- 
ent values' after the QSAR has been derived. Qualitatively, r 2 indicates the 'predictive power' of 
the QSAR, because a n  r 2 o f  0.0,  resulting when SDo~gin~l equals SDremaining error, implies that model 
predictions have an average error no better than uselessly 'predicting' any unknown dependent 
value to be the average of the known values, while an r 2 of 1.0, resulting from an  SDremaining error 
equal to 0.0, implies that the average model-prediction errors are negligible compared to SDongmal. 
(The only virtue in reporting r values rather than r 2, sometimes seen in the older QSAR literature, 
seems to be that larger r values give the impression of a better QSAR.) 

Because MR tries to fit the data optimally whereas PLS tries to obtain the most predictive 
relation by using cross-validation, each emphasizes a different definition of 'predicted dependent 
values' and hence of SD .. . .  ~ g  . . . .  and of 1 ~. The MR generates each predicted dependent value 
from the equation which best fits all dependent values together, while PLS generates each predict- 
ed dependent value from a cross-validation model, derived while omitting that value. Therefore, 
the PLS 'cross-validated' r 2 can never be greater than the 'classical' r 2 of MR, and in fact can be 
negative if the sum of squared prediction errors is larger than SDo~gi,a~. However, the cross- 
validated r 2 seems a much better estimate of the accuracy of'true' predictions, those for molecules 
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not considered at any stage of the QSAR development. To avoid confusion, Clementi has recom- 
mended that the PLS cross-validated r 2 be renamed q2 [10]. 

RISK OF CHANCE CORRELATION WITH PLS 

The derivation of a QSAR involves implicit decisions about which kinds of structural change 
do or do not have an effect on the biological response. Thus, like any other decision based on 
statistical analysis of data collections, a QSAR might be subject to two kinds of error: omitting 
structural factors which in fact are related to response (Type I errors); and reporting structural 
factors which in fact are not related to response (Type II errors). In practice, classical QSAR 
methodology with stepwise MR has been mainly subject to Type I! errors. There are many 
structural factors which cause any particular biological response, and if enough combinations of 
independent structural factors are independently compared to a few biological responses, sooner 
or later the numbers will agree by chance. This possibility was quantified by Topliss and co- 
workers [11], who applied stepwise MR to sets of random numbers, representing both biological 
response and structural factors. The probability of 'chance correlation' in these studies proved 
very high. From this and other work, a 'rule-of-thumb' evolved that in QSAR there should be at 
least four compounds studied for every independent variable (four times as many rows as col- 
umns) for the chance correlation risk to be acceptably low. 

This high risk with MR of reporting as true chance correlations among unrelated numbers has 
clearly hindered the development of new QSAR descriptors. To contribute to molecular discov- 
ery, a structure-activity relationship must be formulated early in a research program, when only 
a few compounds have been studied and there are many different ways of explaining the results. 
Of course, this is exactly when the risk of chance correlation is highest (whether the SAR is a 
formal QSAR or an informal 'intuition'). When only a few structural descriptors could be safely 
considered anyway, there was little incentive to move beyond the 'classic QSAR substituent trio' 
of lipophilic, electronic and steric effects. The chance correlation limits on descriptors imposed by 
MR have a delicious irony - -  the more you know about the structural differences among your 
tested molecules, the less you can rely on any particular relationship. Too much knowledge about 
a problem seemed to prevent its useful solution! 

Contrast the 'four rows for every column' stricture of classical QSAR with the situation of 
CoMFA, with its hundreds of columns for every row. The least-squares algorithm of MR cannot 
even be applied to a CoMFA data table, because there are an astronomical number of combina- 
tions among thousands of independent variables that would fit a few dozen dependent variable 
values perfectly. What confidence can then be placed in the single PLS-generated CoMFA combi- 
nation, whether cross-validated or not? 

To answer this question, several variations of the Topliss experiment have been performed 
[12,13]. One of these, in which only the biological data values underlying a successful CoMFA 
were scrambled, either by repeatedly interchanging random pairs of values or by replacing them 
with random values, offers the most direct reassurance to CoMFA practitioners. For example, 
with 21 compounds the probability of obtaining a q2 of 0.25 or higher after the biological data are 
scrambled is less than 5%. 

The more generally revealing experiments, however, were those exactly like Topliss's, in that all 
the data were random numbers and the numbers of rows and columns were systematically varied. 
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Fig. 2. Frequency of a chance correlation with a q2 greater than 0.25, as a function of the number of rows and columns 
containing random data, using PLS. 

Here the intuitively very unexpected result shown in Fig. 2 was obtained. The 3D graph plots the 
frequency of observing a q2 of 0.25 or higher with PLS in a thousand trials for a particular 
number of rows and columns. The jagged lines connect experiments involving the same number 
of rows but different numbers of columns. Each jagged line exhibits a clear maximum, which, 
within each sequence, occurs when the number of columns is equal to the number of rows. As the 
number of columns increases beyond the number of rows, the frequency of chance correlation 
decreases asymptotically to zero. 

This result is surprising, because surely the probable number of opportunities for chance 
correlation steadily increases as the number of columns of random values increases, as verified in 
the Topliss studies. What these experiments must mean is that PLS can no longer detect correla- 
tions involving only a few columns as the number of columns increases. To confirm this inference, 
random variables were added to tables containing a perfect correlation, and indeed it was found 
that, as the number of random variables increased, the probability of observing a q2 of 0.25 or 
higher decreased indefinitely from 100%. Thus, PLS can clearly fail to discover good correlations 
involving only a small fraction of the independent variables under consideration. Of course, a 
stepwise MR will always find small numbers of highly correlated columns. 

These empirical results comparing MR and PLS are consistent with general statistical expecta- 
tions. If PLS yields less Type II errors (chance correlation) than MR for a given set of data, then 
it is expected that PLS should be more subject to Type I errors (overlooking 'true' correlations). 
In QSAR practice, however, chance correlation has certainly been a problem whereas overlook- 
ing true correlations has not. 

SIGNAL-TO-NOISE RATIO IN PLS 

From these experiments with PLS on random and correlated numbers, one can imagine that 
there are two competing factors that determine whether or not a particular correlation is observed 
by PLS: 



275 

(1) The strength of the 'signal', i.e., the proportion of the variance in all the independent 
variables together which correlates with variance in the dependent variable(s). 

(2) The strength of the 'noise', i.e., the proportion of the variance in all the independent 
variables together which does not correlate with variance in the dependent variable(s). 
PLS will succeed in finding a relationship with a usefully high q2 only if this signal/noise ratio is 
high enough. This behavior is quite unlike experiences with MR, wherein variables that are not 
explicitly related to the dependent variable have no influence at all on the goodness of the 
resulting model. 

Since q2 is the primary indication of whether or not a PLS has any useful predictive utility, 
techniques for raising q2, necessarily by improving the signal-to-noise ratio within the independ- 
ent variables, are of great current interest. The GOLPE (Generating Optimal Linear PLS Estima- 
tions) technique [10] of Clementi and co-workers has yielded superior values in several 3D QSAR 
studies, although not always superior 'true predictions'. GOLPE preselects the most relevant 
independent variables, using a D-optimal design in the variable loadings space (i.e., variables are 
sought which both initially tend to correlate with the dependent variable(s) and also provide the 
most independent information about chemical structure). In terms of the signal/noise ratio con- 
cept, GOLPE drops variables which are most likely to include noise, i.e., that are unrelated to the 
dependent variable(s). 

One other counterintuitive property of PLS is the fact that results depend on the relative 
'scaling' of the independent variables. With MR, if one decides to reexpress a column of distances 
in Angstroms instead of centimeters, the only effect on the resulting QSAR is that the 'distances' 
coefficient will be multiplied by 10 -7. With PLS, the result will be that no variables other than 
distances will appear in the (cross-validated) QSAR. This behavior is another manifestation of the 
sensitivity of PLS to signal/noise ratio. If one multiplies all the values in a column by 10 7, the 
magnitude of the resulting values, whether signal or noise, will overwhelm any possible influence 
from any other column. 

There is no obvious way to avoid the scaling dependencies of PLS. 'Autoscaling' before 
analysis, i.e., rescating all independent variables to the same (unit) variance, does give each 
variable the same initial opportunity to influence the PLS result. However, autoscaling is itself a 
scaling choice, which in some situations yields physically implausible results. 

Many of the apparent anomalies experienced in applying PLS to the 3D molecular field 
samples that are the CoMFA descriptors are easily understood, once the fundamental influence 
of signal-to-noise ratio on PLS results is fully appreciated [14]. Autoscaling works badly within 
molecular fields, because its effect is to say that 'a receptor atom distant from a ligand atom is just 
as likely to strongly interact as one touching a ligand atom'. Electrostatic interactions were 
negligible compared to steric interactions in early CoMFA studies, because the units of steric 
interaction happened to yield steric fields of variance about three times that of electrostatics. 
Similarly, efforts to include single 'scalar' variables, such as logP in 3D QSAR with CoMFA 
fields, to model transport effects, were ineffective because the variance"in a single logP column 
was inconsequential compared with the hundreds or thousands of field -~ariables. These difficul- 
ties were overcome by the introduction of 'CoMFA Standard' scaling, a variant of autoscaling 
which gives each field overall the same variance as each scalar variable, but retains the same 
relative scaling of individual values within a field. A more subtle anomaly is the failed expectation 
that the q2 from PLS on 3D molecular field samples should improve as the field sampling density 
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is increased. However ,  because mos t  regions o f  3D space have little relevance to the dependent  

variable, a uni form increase in sampling density increases the 'noise '  in the independent  variables 
at least as rapidly as the 'signal' ,  so improvement  in q2 will no t  often occur. 

C O N C L U S I O N S  

Al though  the dependence o f  PLS results on  the overall signal-to-noise ratio a m o n g  the inde- 

pendent  variables and on the scaling o f  individual variables is often surprising to the Q S A R  

researcher when first encountered,  it is a minor  inconvenience compared  to the risk o f  chance 

correlat ion when M R  is used with m a n y  variables, and the impossibility o f  using M R  successfully 

when the candidate  variables ou tnumber  the observations.  Given the large number  and the 

colinearity o f  the variables which are physicochemically plausible descriptors for  almost  any set 

o f  structure--activity data,  and the improved predictivity which is observed for PLS in compara-  

tive studies o f  da ta  analysis methods,  PLS  seems the natural  choice o f  the informed researcher for  

data  analysis in any Q S A R  situation. 
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A P P E N D I X  

PLS with cross-validation algorithm in SybyllQSAR 

Algorithmically the PLS implementat ion can be stated as follows: 
Let Pij be the predictor  matrix, 

Rik be the response matrix, 
i = 1..N is row index, 
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j = 1..p is predictor column index, 
m = 1..p as j, 
k = 1..r is response column index, and 
a = 1..A is component index 
g = 1..G is subgroup index for cross-validation, if desired. 

First perform block-based 'CoMFA standard' scaling, if desired, on X matrix. 
Partition the rows into G disjoint groups by random selection. 

FOR EACH CROSS-VALIDATION S U B G R O U P  g: 
Construct the subgroup matrices by dropping nonincluded rows to form X~j (predictors, from P 
matrix) and Yik (responses, from R matrix), with i = 1..n, n < N. 
Compute mean and (if autoscaled) sigma for each column in X, and generate 

X'ij = ~ - meanj or (if autoscaling), 
X'ij = (Xij ~ mean/sigmaj and similarly for Y'ik" 

F O R  EACH C O M P O N E N T  a: 

initialize response latent variable: 
Via = Yil for all i 

DO THIS... 

compute predictor weights: 

Wlja ~- E (X'ij " Via) 
J 

scale predictor weights to unit length: 

Wlij = W l i j / 4  Wlja 2 

predictor latent variables: 

Uia = • (X'ij "Wl 0) 
J 

response weights: 

W2k~ = E (Y'ik" (Uia) 
i 

scale response weights to unit length: 

W2ka = W 2 k a / @  i W2ka 2 

response latent variables: 

Via = Y, (Y'ik " W2ka) 
k 
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. . .UNTIL CONVERGENCE OF Via OR ITERATION COUNT IS REACHED.  

inner relationship: 

ROa = Z (Via" Ui . ) /~  (U~a 2) 
i i 

predictor loadings: 

Bja = E (X'ij" ROa" U i a / E  (ROa) .  U~a): 
i i 

residuals: 

X'ij = X'ij - Uia + ROa" Bja 

Y'ik = Y'ik -- Uia" ROa" W2ka 

END OF COMPONENT LOOP. 

Compute the regression coefficients as follows: 
Set Zjm to the identity matrix 
Set bmk to the zero matrix 

FOR EACH COMPONENT a 

bmk = b m  k + W2ka" ROa " ~  (Zjm ' Wlja) 
J 

Zjm = Zjm - Bja " R O  a • ~ (Znm" Wlna) 
11 

Unscale the coefficients and obtain the offset term: 

FOR EACH RESPONSE C O L U M N  k 
Initialize the OFFSETk to be (meank) 

FOR EACH PREDICTOR C O L U M N  j 

bjk = bjk" (sigmak)/(sigmam) 
OFFSETk = OFFSETk - bjk. (meanj) 

END PREDICTOR LOOP 

FOR EACH ROW r 'NOT'  IN SUBGROUP 

Compute the predicted Rrk = OFFSET k + ~ (bjk " Xrj ) 
J 

Compute the error of prediction e = Rrk - predicted Rrk 
Add e 2 to SSEka , the sum of squared errors for response k at component a 

END ROW PREDICTIONS 

END RESPONSE LOOP 

...END OF COMPONENT LOOP 


