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SUMMARY 

The Lohmoller-Wold decomposition of multi-way (three-way, four-way, etc.) data arrays is combined 
with the non-linear partial least squares (NIPALS) algorithms to provide multi-way solutions of principal 
components analysis (PCA) and partial least squares modelling in latent variables (PLS). 

The decomposition of a multi-way array is developed as the product of a score vector and a loading 
array, where the score vectors have the same properties as those of ordinary two-way PCA and PLS. In 
image analysis, the array would instead be decomposed as the product of a loading vector and an image 
score matrix. 

The resulting methods are equivalent to the method of unfolding a multi-way array to a two-way matrix 
followed by ordinary PCA or PLS analysis. This automatically proves the eigenvector and least squares 
properties of the multi-way PCA and PLS methods. 

The methodology is presented; the algorithms are outlined and illustrated with a small chemical 
example. 
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INTRODUCTION 

In multivariate data analysis, principal components analysis (PCA) of a da ta  matrix X is a basic 
tool. PCA decomposes X into a score matrix T times a loading matrix P plus a residual matrix 
E (Figure 1): 

X = T P ’  + E  (1) 

This decomposition is particularly useful for converting X to a few informative plots (score 
plots and loading plots) and for modelling the systematic structure in X. P C A  is equivalent to 
singular value decomposition (SVD) and slosely related to  factor analysis. 1 - 5  

*A preliminary version of this paper was presented at the Nordic Symposium for Applied Statistics, RECKU, 
Copenhagen, January 1986. 
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Figure 1 .  PCA of a matrix X and PLS analysis of the relation between two matrices X and Y 

Computationally, PCA is usually handled by computing eigenvectors of X ' X (the covariance 
matrix) or XX' (the association matrix) or by the SVD algorithms originated by Golub. If just 
the first few principal components are wanted, the NIPALS method of H. Wold' is advan- 
tageous because of its speed and simplicity. 

Recently PCA has been generalized to cope with the analysis of a data matrix divided into 
blocks, the so-called PLS analysis of H. Wold.' PLS is an abbreviation for partial least squares 
modelling in latent variables or projection to latent structures. In chemistry, two-block predic- 
tive PLS (Figure 1) has been found useful for the multivariate calibration problem. 9 -  l2 Thus, 
PLS gives an efficient way of predicting the y-values of new objects from their x-values, a 
generalization of multiple regression. 

PLS analysis is based on extended NIPALS algorithms which decompose the block matrices 
into score matrices times loading matrices with the constraint that the score vectors of the same 
component are connected. For two-block PLS, this connection is by the inner relation (2c). For 
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the predictive two-block case: 

X = T P ’ + E  (2a) 
Y = U Q ’ + F  (2b) 
U = TB + H (B is diagonal) (2c) 

Y = TBQ‘ + F* 

The inner relation (2c) gives the predictive formulation for Y: 

(F* is not the same as F in (2b) (2d) 
Increasingly often, complex investigations give arrays of order three and higher (for chemical 

examples, see Table 1). The multivariate instrumentation developed in analytical chemistry is 
a strong driving force in this development, as discussed by Hirschfeld et al. l4 Satellite images, 
microscopic images, tomographic images and other images with several channels per pixel can 
also be seen as three-way data arrays. Multivariate time series analysis is a further problem area 
where the data may be structured as three- or four-way arrays. Hence, the need for methods 
able to cope with data arrays with more than two orders (ways) analogously to the multivariate 
analysis of ordinary two-way matrices has become urgent. 

We use the terms ‘ways’, ‘orders’ and ‘directions’ for discussing the shape of the data arrays, 
not to confuse the readers and ourselves with several different meanings of ‘dimension’. The 
latter word we shall use exclusively for the ‘components’ or ‘factors’, into which the arrays are 
decomposed. This is further discussed in Reference 15. 

The directions of the data array represent sets of variables of different types. We note that 
most higher-order arrays are designed with one fundamental direction, in chemistry usually the 
common set of objects (e.g. analytical samples), characterized by the various types of variables 
(see Table 1). 

Carroll et al. l6 have developed a canonical decomposition of a three-way array into a sum 
of vector products and more recently Young et al. have developed a closely related non-metric 
variant. The notation is described later: 

However, this decomposition lacks optimality properties; the generalization of PCA to three- 
way vector products is severely constrained and therefore mathematically difficult, as discussed 
by Lickteig. Moreover, the extension of this approach to the PLS situation with X divided 
into blocks has not been found. 

Table 1. Examples of data arrays of order three and higher, mainly from analytical chemistry 

Order Method(s) 

3 
3 

3 
3 
4 
4 
6 

Samples x liquid chromatography (LC) x UV spectrometry 
Samples x excitation frequency x emission spectrometry 
(fluorescence) 
Samples x gas chromatography (GC) x mass spectrometry (MS) 
Two-dimensional NMR x third modification (e.g. pH, temperature) 
Samples x chromatogram x column x spectrum, e.g. Reference 13 
Samples x two-dimensional chromatography x UV spectrometry 
’Image (three-dimensional grid samples) x time x LC x spectrometry 
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k = l  k = 2  k = 3  

11 
Figure 2. The unfolding of a three-dimensional data array X 

Ho and co-workers, 19-" Sanchez and Kowalski," LorberZ3 and others have used so-called 
rank annihilation (RA) for the special case where the third direction in the array - correspond- 
ing to objects or chemical samples - has only two 'sheets'. RA has so far not been extended 
to the general case with several object 'sheets'. 

In a little known paper, Lohmoller and H. Wold" show that a three-way array can be decom- 
posed as a Kronecker product of a vector and a matrix, and a four-way array as a Kronecker 
product of a matrix and a matrix. They develop algorithms for principal components analysis 
(PCA) and some PLS models and show that the decomposition is equivalent to unfolding the 
arrays (Figure 2) to two-way matrices followed by ordinary PCA and PLS. 

The same approach was used by Esbensen and Woldz5 who solved PCA and PLS of 
multidimensional arrays in a 'quick and dirty way' by unfolding the arrays to two-way matrices 
(Figure 2) which thereafter were analysed with standard NIPALS algorithms. 

Sanchez and KowalskiZ6 recently reported the decomposition of multiorder arrays by tensor 
calculus, which is closely related to the present treatment. 

In the present article we use the optimality proof by Lohmoller and H. Woldz4 to develop 
NIPALS algorithms for decomposing a multiorder array of order R in terms of the product 
of a vector and an array of order (R - 1). This gives a general approach to the analysis of such 
matrices which has some desirable statistical and numerical properties. This solution also has 
the appropriate form for calibration problems in chemistry and other branches of science, 
where one direction in the data arrays corresponds to objects, individuals, samples or process 
time points. 

NOTATION AND NOMENCLATURE 

We shall use lower case characters - x, y, z, t, u, v, w, p and q - for column vectors, capitals 
such as X and Y for two-way matrices and italic capitals such as X and Y for arrays with three 
and more orders. We shall henceforth briefly use the terms 3-arrays, etc.; in general we refer 
to R-way arrays with R > 2 as R-arrays. A prime denotes a transpose of a vector or a 2-way 
matrix, i.e. t '  is a row vector. 

We distinguish between one direction in the arrays which relates to objects (chemical 
samples, cases, multivariate observations) and the other directions which all relate to variables. 
We use the index i for objects (i = 1,2, . . . , N) and the indices j, k, I, and m for variables, with 
the limits 1 and J ,  K, L or My respectively. The object direction in the R-array is often referred 
to as columns in the array. 
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In image analysis the situation is reversed; one direction is variables (i) and the others ( j ,  k, I 
and m) relate to objects (pixels). 

SCOPE 

In multivariate analysis we wish to  separate the data into two parts - the systematic part and 
noise (residuals) - and moreover express the systematic part as one fraction relating only to  
objects times a second fraction relating only to variables, e.g. PCA and equation (1) above. 

Usually one also wants to  achieve further objectives, such as the noise part being as small 
as possible (least squares) and that the systematic part have certain properties, such as a high 
correlation between blocks (PLS and canonical correlation) and high discrimination between 
objects from different classes (canonical variates and discriminant analysis). 

The simplest way to  achieve this decomposition for an R-array is to let one direction - 
usually the one corresponding to ‘objects’ or cases - be expressed as vectors and the other 
directions together be expressed as an array of order R - 1. For the case of a 3-array X 

X =  ti @ P i  +t2 @ P 2 + .  . . + E = T .  @ P + E  (4) 
We note that if R = 2, X is a usual 2-way matrix and P is a one-way matrix, i.e. a vector. 

This then gives the ordinary decomposition into products of two vectors. 
If now the vectors t; are orthogonal to each other as well as the matrices Pi being orthogonal 

to each other (see below), and T. @ P is a least squares model of X for any number of ‘com- 
ponents’, a, this decomposition is a direct generalization of the PC decomposition. If we 
analogously decompose the R-array Y with the same ‘score matrix’ T, we have the R-way 
analogue to  equation (2), i.e. the PLS analysis of a two-block R-array. 

As we shall see below, the order, R, need not be the same in the X-part and the Y-part of 
the PLS model generalization. In fact, this follows already from the PLS model with a 2-array 
X and a 1-array Y, which is a special case of two-block 2-array PLS.27 

PLS and PCA in combination incorporate the regression problem, discriminant analysis, 
canonical variates, canonical correlation, procrustean rotation and other seemingly disparate 
problems. This has been shown by H. Wold et a/.,” Lohmoller and Wold,” S .  Wold et a/. 29 

and Martens. l 2  Hence, when PCA and PLS are generalized to 3-arrays and higher, this directly 
gives generalizations of these other analyses also. 

EXAMPLES 

We use two examples to  illustrate the methods. The first is a small numerical example with a 
three-way array X with N= 3, J = K =  2 and a two-way matrix Y (N= 3, L = 2) (see Table 2). 
This example is used to show the results of the algorithms. 

The second example has real data from an experiment of multivariate calibration with liquid 
chromatography and a UV array detector. Each analysed sample (object) is either a mixture 
of the chemical constituents anthracene and phenanthrene or a pure sample of one of these con- 
stituents. The sample was dissolved in methanol. The conditions are the same as used 
previously30 with the eluent composition being 95% methanol and 5 %  water. The known con- 
centrations of the two constituents in the N =  6 samples are contained in a 6 x 2 matrix Y for 
the calibration. A test set of four samples with known amounts of the constituents was kept 
aside to  check the prediction power of the calibrated model. 
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Table 2. Data set for the small numerical example. The two layers of X(k = 1 and k = 2) are written beside 
each other, which makes the data and results appear in unfolded form. the x-values for the three training 

set objects are all 3, 4 or 5 divided by :SO. The data are used in unscaled and uncentred form 

k =  1 k = 2  

1 Xi1 I xi2 1 Xi12 Xi22 Yil Yi2 

1 0.424264 0-  565685 0.565685 0.424264 1.0 1.0 
2 0.565685 0.424264 0.424264 0.565685 2.0 1 .5  
3 0.707101 0.707101 0 - 707 101 0.707 10 1 3.0 2.0 

test 0.5 0-6 0 .6  0 . 4  ? ? 

MATRIX NOTATION FOR R-ARRAYS 

We need some new notation and conventions for R-way matrix algebra. First some prelim- 
inaries with ordinary two-way matrices and one-way vectors. 

Product of a row vector and a matrix, typically p’ = t’X: 

Product of a matrix and a column vector, tyically t = Xp: 

Outer product between a column and a row vector, typically X = tp‘: 

(7) x . .  - t .  v - rPj 

Hadamard product between two matrices of same size, C = A * B: 

(8) cij = ai .b.. J IJ 

Below follow some definitions, which refer to 3-arrays. The extension to 4-arrays, 5-arrays, etc. 
is evident. 

Generalized transpose of an R-array: 

X” (G-transpose) (9) 
This is needed for various generalized matrix products. This G-transpose means that one, 
usually the first, direction in the array is transposed, but the others are left intact. This 
transpose has the same properties as the ordinary transpose with respect to a product, i.e. if 
t = X . . W”,  then t ‘ = W . . X”. 

In the generalized transpose of an (R - 1)-array (e.g. 2-array as W” above) none of the direc- 
tions is transposed. This is needed to obtain a consistent product of an R-array with an (R - 1)- 
array. 

The norm of an R-array II X 1 1  is defined as the square root of the sum of the squares of all 
the elements in the array. 

Generalized Hadamard product, typically Z = X * Y: 

zijk.. . = x i j k . ,  , yuk.. . (10) 
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Kronecker product between a vector and an array, X =  t @ P(or P): 

x i j k  = t i p j k  

Xijkrn = t i p j k m  

and so on. 
( R  - 1)-way product of two R-way matrices, typically A = X . . X". 

a i j  = Xi * X j  

i.e. 

Uij  = 

In-out-product of a 2-matrix and an R-array, typically X =  T. 0 P :  

Xiklm . . . Xjklm , , . 
klm . . . 

xi jk  . . . = tirrpojk 
4 

Row vector times an R-array, typically P = t ' X  

( 5 )  p l  = t ' X  

(6) t = X p  

(7) X = t p '  

(8) C = A * B  

(10) z = x *  Y 

( 1 1 )  X = t  @P 

(14) P = t ' X  

(15) t =x.. P" 

I = U '  

o = r  

Figure 3.  An effort to clarify the R-way matrix notation 
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R-array times (R - 1)-array, typically t = X . . P" : 

ti= Xijk . . .  pjk ... 
jk . . .  

i.e. 

ti = Xi * P 

With this notation summarized in Figure 3 we shall now develop the generalized PC and PLS 
models and algorithms for their estimation. 

GENERALIZED PC AND PLS MODELS 

The PC model becomes 

X=T. @ P + E  

For a single component, this becomes (assuming that X is three-way): 

X = t @ P = E  

The two-block predictive PLS model is 

X = T .  @ P +  E ( 1 W  

Y = U .  @ Q + F  (18b) 

U = TB + H (B is diagonai) (1 8C) 

Y = T .  @ Q B + F *  ( 1 W  

This inner relation inserted into (18b) gives the predictive relation for Y: 

Note that the orders of X and Y need not be the same; Y may have a lower order than X .  
This difference is then reflected in the different orders of on the one hand P and W and on the 
other hand Q, respectively. W is explained below in the PLS algorithm. 

If it is so desired in a particular application, the 'loading arrays' P and Q can, sheet-wise 
(for each component), be further decomposed in terms of principal components, say 
P, = U,R,. For a 3-array, two-component PC model, for example 

X = t lUlRl+ t2UzR~ + E (19) 

In a simple case, PI and P2 may have rank one, which then makes the model reduce to the 
Carroll CANDECOMPI6 and the Ho et al. rank ann ih i l a t i~n '~  models. 

ALGORITHMS 

We present below the NIPALS algorithms for R-arrays. They usually converge in about 10 
iterations, which make them fast, in particular since they work directly on the raw data 
matrices. Their equivalence to the ordinary two-way algorithms makes it possible to use stand- 
ard two-way software. 

The three-way PCA algorithm was first developed by Lohmoller and H. Wold.24 We present it 
here to point out the obvious generalization to four and more directions in the multi-way ar- 
rays. The PLS algorithm is the result of a combination of the Lohmoller-Wold decomposition 
and the multidimensional PLS-NIPALS algorithm of Wold et a/. 5910 



MULTI-WAY PRINCIPAL COMPONENTS- AND PLS-ANALYSIS 49 

The solution may be constrained by forcing the PC loading arrays P, and PLS weight arrays 
W, to each take the form of the outer product of two vectors. Alternatively, geographical or 
other information may be used to smooth the solution, as outlined by Esbensen and WoldZ5 
in their SPACE method. 

The PCA NIPALS algorithm 

The data set-up and the resulting decomposition in one component is shown in Figure 4. The 
algorithm goes as follows: 

(A) Preprocessing, Usually, the array X is scaled to unit variance by dividing each element 
by the column standard deviation sjk . , . (calculated over objects). Then the array may 
be centered by subtracting the column mean from each element. This is analogous to the 
two-way case. Many prefer that the centering precedes the scaling, but this is arbitrary. 

(a 1) Xijk . , . = ( x i j k  . . . / s j k . ,  ,) - Xjk . . . 
(B) Initialize the component index, a: 

(a 2) a =  0 

(C) Then, for each component: 

(a3)  a = a + l  
(a 4) t-start = column in X with largest variance. 
(a 4.1) t is normalized to II t 1 1  = 1. 
(a 5 )  P = t ’ X  (see equation (14)). 
(a 5.1) Alternatively to (a 4.1), P can be normalized; say normalized so that 

II p I I  = 1. 

t 

I. 

E 
Figure 4. Three-dimensional data array and it5 generalized principal components decomposition 
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Here an additional NIPALS loop may be inserted that decomposes P into, 
say, ur‘ ,  or u m ’  + um’. This loop should then be run through twice, i.e. 
for the simplest case P = ur’(u-start is ‘largest’ column in P): 
(0) h = o  
(i) r ’  =u ’P /u ’u  
(ii) norm to 1 1  r 11 = 1 
(iii) u = Pr  
(iv) h = h + 1; if h < 2 then back to (i) 
(v) set P = ur‘ and proceed with (a 7). 

t = X .  . P”/II P 11 (see equation (15)). 
Check convergence: back to (a 5 )  if 

d =  (tnew - fold)’(fnew - fold)/(Nfnew’fnew) > 10- lo 

After convergence, residuals: E = X -  t 0 P .  
(D) For the next component, set X =  E and return to  a 3. 
(E) To estimate the adequate number of components, use cross-validation in analogy with 

the 2-array case according to  Wold,3’ or standard criteria such as stopping when suffi- 
ciently much of the variance in X has been described or when the variance of P goes 
below 1 * O  (if t is normalized to length one; when P is normalized, one looks instead at 
the variance of t ) .  

(F) The t-values for new objects (test objects) are calculated as follows: 
(i) Scale and center the object array X using (a 1) above. 
(ii) Calculate to for all pertinent model dimensions ( a  = 1, . . . , A )  as: 
(a 10) t, = X*P, 
The size of the residuals E after the last t-value can be used in the ordinary SIMCA- 

MACUP way to check if the new object is similar to the class training set or not. 

The predictive PLS two-block, mode A NIPALS algorithm 

The data set-up and the resulting decomposition in one component are shown in Figure 5. The 
algorithm goes as follows. 

(A) Preprocessing. Usually, the arrays X and Yare scaled to unit variance by dividing each 
element by the column standard deviation sjk.. , . Then, the array is often centered by 
subtracting the column mean from each element. This is analogous to  the two-way case. 
Below in (b l),  z denotes x or y. Centering often precedes scaling, but the order is 
arbitrary: 

(b 1) 
(B) Initialize the component index, a: 

(b2)  a=O 
(C) Then, for each component: 

(b3) a = a + l  
(b 4) u-start = column in Y with largest variance. 
(b 5 )  W = u’X/u’u (see equation (14)). 
(b 6) Normalize so that ( 1  W 1 1  = 1, or alternatively in step (b 7),  normalize to 

(b 6.1) Here we may, in analogy with steps (a 5.2) above, decompose W into, say, 
sr’ with an extra NIPALS shunt. 

Zijk . . . = (zijk . . ./sjk.. .) - ijk . . . 

I I  t II = 1. 
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W 

P 

Figure5. Three-dimensional data array X and a data array Y connected by a two-block PLS-model with one 
component 

(b 7) 
(b 8) 

t = X . . Wf’/ll W II * (see equation (15)). 
Compute the convergence criterion: 

d =  (hew - fold)‘(fnew - fold)/(Nfnew’fnew) 

(b 9) 
(b 10) 
(b 11) 

(b 12) After convergence: 

Q = t‘ Y/t’t (see equation (14)). 
Convergence? Go to (b 12) if d (from b 8) < lo-’’. 
u = Y .  . Q”/II Q 11’ (see equation (15)). 
Back to  (b 5) .  

(i) X-loadings: 

P = t’X/t‘t  (see analogy in step b 9) 

We note that we cannof decompose P into a few product terms UbVb‘  

because then the score vectors t, no longer become orthogonal. 
If we wish to have P normalized to 11 P 11 = 1, then that is done here 

by dividing P by, say, c = 11 Pold 11. Then t and W must be multiplied by 
the same scalar, c, to retain the numerical equivalence of the solution. 

(ii) (Normalize Q to one). Not necessary. See iii. 
(iii) Compute b, in the inner relation (u, = but, + h): 

b, = t, u,/t, t, 

Note that if Q. is not normed b, will be 1-0. 
(b 13) Residuals: 

( X )  E = X - t @ P  
( Y )  F =  Y - t  @Qb, 

(D) For the next component, set X =  E and Y = F and return to b 3. 
(E) To estimate the adequate number of components, use cross-validation in analogy with 

(F) Predictions of Y for new objects (test objects) are made as follows: 
the two-way case31 or an analysis of variance on the inner relation (u = b . t + hh3’  

(i) Scale and center the object array X using (b 1) above. 
(ii) Calculate the first t-value by (b 7). 
(iii) Calculate X-residuals from (b 13X). 
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(iv) Calculate the second t-value by (b 7). 
(v) X-residuals, etc. Go on until all pertinent t-values have been calculated (for 

dimension 1,2,. . . , A).  
(vi) Calculate predicted Y-values as 

(b 14) 
The Y-values are then obtained in scaled and centred form, which can be converted 

The size of the X-residuals E after the last t-value can be used in the ordinary SIMCA- 

Y= tibiQi + t2b2Q2 + . . . 

to the original co-ordinates by using the transformation (b 1) backwards. 

MACUP way4,5,29 to check if the new object is similar to the calibration set or not. 

SOME PROPERTIES OF THE ALGORITHMS 

If (a 5 )  is substituted into (a 7) we obtain (c is a scalar): 

t = C X . .  X”t  

Hence t is an eigenvector of the generalized association matrix, and the NIPALS algorithm 
a variant of the power method. This proves the convergence of the algorithm unless it happens 
to start exactly on another eigenvector, which is extremely unlikely if t-start is chosen as the 
X-column with the largest variance. 

If we merge the indices jk . . . into a single index, say r, we see that the algorithm is equivalent 
to the ordinary two-way algorithms with X unfolded to a 2 - a r r a ~ . ~ ~ + ~ ’  This is another way to 
prove the eigenvector - least squares - properties of the solution. For the generalized PC 
solution, we may call t and P singular vectors and matrices of X .  

By inserting (b 3, (b 9) and (b 11) into (b 7) it is easy to prove that for the first dimension 
the PLS vector t is an eigenvector of X . . X” Y .  . Y” and u an eigenvector of the generalization 
of YY‘XX’. For later dimensions, t and u are instead eigenvectors of E .  . E“ F. .  F“, etc. 

Also here we can merge indices and obtain the equivalence to the solution obtained by 
unfolding. 

From this it follows that the PC loading array P has layers which are orthogonal to each 
other (11 P, * P b  11 = 0 if a # b )  and so has the PLS weight array W. The t-vectors of both the 
PC and the PLS models are orthogonal to each other. 

Finally, we realize that the above decompositions and algorithms are valid for arrays with 
orders 3,4,5, . . . , i.e. for any finite order. 

THE RANK OF AN R-ARRAY 

We can now define the effective rank of the R-array X as the number of ‘components - 
generalized PC model dimensions t,. 0 P - needed to make the norm of the residuals, 11 E (I, 
sufficiently small for a given purpose. We note that this rank is different from that discussed 
by Lickteig, 

The number of components determined by cross-validation relates to the predictive ability 
of the model with a certain fraction of the data temporarily deleted. This is a lower bound to 
the ‘effective’ rank, which may be too low in some instances. In multivariate calibration, 
experience shows12 that, if the numbers of variables and calibration samples so permit, one 
should add a few PLS components beyond the cross-validation limit. 

who is concerned only with (vector x vector x vector) decompositions. 
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SMALL NUMERICAL EXAMPLE 

The PCA of the X-data in Table 2 shows the first component to  be dominating and the third 
to be very small (see Table 3). Consequently, the PLS analysis gives almost the same decom- 
position of the X-part as the PCA (Table 3). In Table 4 the score values t, for the PC and PLS 
analyses are shown together with the predicted y-values for the objects 1-4 by the PLS model 
with two components. 

Table 3. Resulting loadings (PC and PLS) and PLS weights for the data in Table 2. SS denotes remaining 
sum of squares. Q has not been normalized; hence b, = 1.0 in (b 12, iii) 

ss-x ss-Y 11 21 12 22 Yl Y2 

f f = O  4.0 21 -25 
PCA, a =  1 0.040 0.5 0.5 0.5 0.5 
PCA, 0 = 2  4 x  0-5 -0.5 -0.5 0.5 
PLS, P(Q), 0.040 1.0 0-5  0.5 0.5 0.5 1.82 1.34 

P(Q)2 4~ 0.386 0.49 -0.51 -0.51 0.49 3.50 1.74 
PLS, w1 0-51 0.49 0.49 0.51 

w2 0.49 -0.51 -0.51 0.49 

Table 4. Resulting scores b (and u, for PLS) for the PC and PLS analyses of the data in Table 2, together 
with predicted y-values from the two-component PLS model (see Table 3) 

~ ~~ 

PC PLS PLS predictions 

I t l  r2 tl t2 ul u2 Y l  Y2 

1 0.9899 -0.1414 0.9873 -0.1416 0.6181 -0.2196 1-303 1.076 
2 0.9899 0.1414 0.9823 0.1413 1.1053 0.0633 2-303 1-576 
3 1.4142 O.oo00 1.4140 -0.0002 1-5925 0.1089 2-576 1.894 
4 1.oooO -0*0100 0.9983 -0-1002 1.468 1.162 

EXAMPLE 2: MULTIVARIATE CALIBRATION WITH HPLC-UV DATA 

As an experimental data set, data from liquid chromatography with UV detection was chosen. 
There were six calibration samples and four test samples. They were mixtures of anthracene 
and phenanthrene with overlap in both the spectral and the chromatographic parts. 30 For the 
illustration, ten wavelengths were selected from the 180 available and only ten points were 
chosen from the time axis. This selection was made to fit the data set into available programs. 
In real applications, of course, larger data sets would be used. 

The resulting X-block with calibration data is a 6 x 10 x 10 three-way matrix. The Y-block 
for PLS is a 6 x 2 two-way matrix. The results for the complete data set will all wavelengths 
and chromatographic data will be published separately. 

First a principal component analysis was carried out on only the X (three-way) matrix. This 
showed that three components were able to describe 99.6% of the remaining sum of squares 
after variance scaling and subtraction of the mean. 

The PLS modelling was carried out without and with constraints on the weight matrices W,. 
In the latter case, W, was forced to  rank 1 with the decomposition W = cs' . The results of the 
PLS calibration for these data are given in Table 5 .  
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Table 5 .  The PLS model of properties for the experimental data. SSY is the sum of squares of the y- 
variables. ‘Normal’ refers to non-constrained W and ‘constrained’ - to constrained W, respectively. F 
inner relation refers to the F-statistics of the inner PLS relation. The last column refers to the PCA of 

the X-part of the data 

SSY F inner relation PCA 

Comp. no normal constrained normal constrained X-variance left 

1 38% 38% 148 149 16% 
2 1 070 1 070 143 145 7 To 
3 0*02% 0*01% 616 988 0.36% 
4 0.002% 0.006% 64 8 0*001% 

The table shows that after variance-scaling and centring, three components describe 
99.983% of the sum of squares of the Y-block and that a further modelling is not necessary. 
The drop in the F on the inner relation confirms this fact. The number of objects is too small 
to allow cross-validation. 

The constrained PLS analysis gives a slightly better model with the information a little better 
concentrated in the first three components. 

Predictions were carried out on the four test samples with the three-component model. The 
results are shown in Table 6. 

These results are good, considering the amount of overlap of chromatograms and spectra and 
the fact that only ten wavelengths and ten time samples in the chromatograms were used. The 
worst predictions are found for the low anthracene concentrations. It should be noted here that 
these results can be obtained with unfolding and the existing SIMCA programs. 

The differences between the constrained model predictions and those of the unconstrained 
model are small. 

Table 6. True and predicted results (ppm) for the test samples 

Anthracene Phenanthrene 

Predicted Predicted 

Sample Normal Constrained True Normal Constrained True 

1 9-11 8.55 8-04 14.8 15.1 14.4 
2 11.0 10.8 8.16 29.0 29.1 28.9 
3 17.7 17.8 16-0 39.3 39.5 40.9 
4 23.6 23.1 23.7 29.5 29.8 28.6 

ss 12.2 10.8 3.6 3.9 
Predicted 

CONCLUSIONS AND DISCUSSION 

The decomposition of a multiorder (R-way) array into the product of a vector and an (R - 1)- 
way array is a straightforward, almost trivial, extension of the ordinary PC and PLS decom- 
positions of two-way arrays. 

The formalism makes it easy to understand why a three-way array in the general case cannot 
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Table 7. Decompositions of a four-way array based on the properties of topological and measure spaces 
and their mapping operators 

4 = 1 @ 1 @ 1 @ 1  extremely difficult 
4 = 1  8 1 8 2  (or 1 8 2  @ 1 ..) difficult 
4 =  1 8 3  (or 3 @ 1) OK 
4 = 2 @ 2  OK 

be decomposed into products of three vectors. This can be made only if the loading matrices 
of the generalized PC decomposition have exactly the rank one. This may happen in a chemical 
application of, say, spectroscopy times chromatography times samples - like the one used as 
example 2 - when there are no interactions between the constituents and the detector is exactly 
linear, i.e. Beer’s model is exactly Though Beer’s model is often a rather good 
approximation, it is rarely ‘exact’. With the present formalism it is possible to calculate an 
optimal decomposition and then, thereafter, further decompose the loading matrices and 
investigate their approximate rank, how much that is explained by its first component, etc. 

Lohmoller and H. Woldu decompose four-way matrices into Kronecker products of two-way 
matrices; X =  C, P, 0 Q,. This may be warranted in some cases, but we find it more practical 
to keep one direction in the 4-array or (R > 4)-array distinct and express that as a vector. This 
makes it possible to identify this direction with an ordinary latent variable which can carry in- 
formation to other blocks in path models, as exemplified in the PLS multivariate calibration 
example above. This also makes it possible to use ordinary score plots for visualizing relations 
between objects when the data for each object have order two or higher. The possible decom- 
positions of a four-way table are shown in Table 7. 

Multiple regression, multivariate analysis of variance, canonical correlation, discriminant 
analysis, canonical variates, procrustean rotations, pattern recognition, time series analysis and 
other multivariate data analytical methods can all be approached by PLS modelling. This 
makes the present methodology have even further generality, since all these methods are now 
easily generalized to R-way arrays via PLS and PC modelling. 

The NIPALS algorithms are fast and efficient as long as we are interested only in the few 
first dimensions in the expansions of X (and Y in the PLS case). This makes them useful even 
on personal computers, in particular since they are simple to program and available in commer- 
cial packages for those less interested in writing their own software. 

Since three-way and four-way data arrays are becoming common in science and technology 
(see introduction), the generalized PC and PLS expansions may have many applications. Many 
of these comply with the design with a common set of objects characterized by (R - 1) direc- 
tions of variables. We can also envisage similar generalizations of the ‘transposed PLS design’, 
where a common set of variables is measured on different sets of objects related in a causal 
way. One simple illustration of this concept is that of toxic substances measured in a set of am- 
bient air samples and in a set of blood samples in a study of pollution methabolic pathways. 

Table 1 lists a series of potential chemical applications of R-way decomposition with R rang- 
ing from 3 to 6. The conceptual problems of interpretation and visualization of the higher order 
applications may turn out to be much more difficult than the mere implementation of PCA or 
PLS algorithms. 

Finally, we note that the number of data elements in a multiorder array is often very large. 
Hence, in order to analyse such arrays in practice, efficient methods are needed for reducing 
the data volumes to manageable size. Such methods are not yet developed and should therefore 
be given high priority to make the information in multiorder arrays easier available. 
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