
 Physicochemical Properties in Drug Profi ling      
  Han   van de Waterbeemd 
       

  Abbreviations 

 ADME   absorption, distribution, metabolism and excretion 
 BBB   blood – brain barrier 
 BCS   Biopharmaceutics Classifi cation Scheme 
 BMC   biopartitioning micellar chromatography 
 Caco - 2   adenocarcinoma cell line derived from human colon 
 CNS   central nervous system 
 DMPK   drug metabolism and pharmacokinetics 
 FaSSIF   fasted - state simulated artifi cial intestinal fl uid 
 HB   H - bonding 
 HDM   hexadecane membranes 
 HSA   human serum albumin 
 HTS   high - throughput screening 
 IAM   immobilized artifi cial membrane 
 ILC   immobilized liposome chromatography 
 MAD   maximum absorbable dose 
 MEKC   micellar electrokinetic chromatography 
 PAMPA   parallel artifi cial membrane permeation assay 
 PBPK   physiologically - based pharmacokinetic modeling 
 P - gp   P - glycoprotein 
 PK   pharmacokinetic(s) 
 PPB   plasma protein binding 
 PSA   polar surface area ( Å  2 ) 
 QSAR   quantitative structure – activity relationship 
 SPR   surface plasmon resonance  

     Symbols 

  A  D   cross - sectional area ( Å  2 ) 
 Clog  P   calculated logarithm of the octanol – water partition coeffi cient (for 

neutral species) 

25

Molecular Drug Properties. Measurement and Prediction. R. Mannhold (Ed.)
Copyright © 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-31755-4

2



26  2 Physicochemical Properties in Drug Profi ling

  D   distribution coeffi cient (often in octanol – water) 
  diff (log  P  N – I )  difference between log  P  N  and log  P  I  
  ∆ log  P   difference between log  P  in octanol – water and alkane – water 
  k  a   transintestinal rate absorption constant (min  − 1 ) 
  K  a   dissociation constant 
 Elog  D   experimental log  D  based on a high - performance liquid 

chromatography method 
 log  D   logarithm of the distribution coeffi cient, usually in octanol – water 

at pH 7.4 
 log  D  7.4   logarithm of the distribution coeffi cient, in octanol – water at pH 

7.4 
 log  P   logarithm of the partition coeffi cient, usually in octanol – water 

(for neutral species) 
 log  P  I   logarithm of the partition coeffi cient of a given compound in its 

fully ionized form, usually in octanol – water 
 log  P  N   logarithm of the partition coeffi cient of a given compound in its 

neutral form, usually in octanol – water 
 MW  molecular weight (Da) 
  P   partition coeffi cient (often in octanol – water) 
  P  app   permeability constant measured in Caco - 2 or PAMPA assay 

(cm   min  − 1 ) 
 p K  a   ionization constant in water 
 PPB%  percentage plasma protein binding 
  S   solubility (mg   mL  − 1 ) 
 SITT  small intestinal transit time (4.5   h   =   270   min) 
 SIWV  small intestinal water volume (250   mL) 
  V   volume (mL or L) 
  V  dss   volume of distribution at steady state (L   kg  − 1 ) 

  2.1
Introduction   

 An important part of the optimization process of potential leads to candidates 
suitable for clinical trials is the detailed study of the absorption, distribution, 
metabolism and excretion (ADME) characteristics of the most promising com-
pounds. Experience has shown that physicochemical properties play a key role in 
drug metabolism and pharmacokinetics (DMPK)  [1 – 5] . In 1995, 2000 and 2004 
specialized but very well attended meetings were held to discuss the role of log  P  
and other physicochemical properties in drug research and lead profi ling, and the 
reader is referred to the various proceedings for highly recommended reading on 
this subject  [4, 6, 7] . 

 The molecular structure is at the basis of physicochemical, DMPK, as well as 
safety/toxicity properties, as outlined in Fig.  2.1 . Measurement and prediction of 



physicochemical properties is relatively easy compared to DMPK and safety prop-
erties, where biological factors come into play. However, DMPK and toxicity 
properties depend to a certain extent on the physicochemical properties of the 
compounds as these dictate the degree of access to biological systems such as 
enzymes and transporters.   

 The change in work practice towards high - throughput screening (HTS) in 
biology using combinatorial libraries has also increased the demands on more 
physicochemical and ADME data. There has been an increasing interest in physi-
cochemical hits and leads profi ling in recent years, using both  in vitro  and  in silico  
approaches  [8 – 11] . This chapter will review the key physicochemical properties, 
both how they can be measured as well as how they can be calculated in some 
cases. Chemical stability  [12]  is beyond the scope of this chapter, but is obviously 
important for a successful drug candidate. 

 The need and precision of a particular physicochemical property for decision 
making in a drug discovery project depends on the stage in the drug discovery 
process (see Fig.  2.2 ). Whilst calculated simple fi lters may be suffi cient in library 
design, more experimental data are required in lead optimization. Striking the 
right balance between computational and experimental predictions is an impor-
tant challenge in cost - effi cient and successful drug discovery.   

 Physicochemical properties are considerably interrelated as visualized in Fig. 
 2.3 . The medicinal chemist should bear in mind that modifying one often means 

Fig. 2.1     Dependency of DMPK and safety/toxicity properties on structural and 
physicochemical properties. 
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also changes in other physicochemical properties, and hence indirectly infl uencing 
the DMPK and safety profi le of the compound.    

  2.2
Physicochemical Properties and Pharmacokinetics 

  2.2.1
DMPK

 The study of DMPK has changed from a descriptive to a much more predictive 
science  [3] . This is driven by great progress in bioanalytics, development of  in vitro  
assays and  in silico  modeling/simulation, and a much better basic understanding 
of the processes. Thus, and fortunately, ADME - related attrition has lowered from 
around 40% in 1990 to around 10% in 2005  [13] .  

  2.2.2
Lipophilicity –  Permeability  –  Absorption 

 As an example of the role of physicochemical properties in DMPK, the properties 
relevant to oral absorption are described in Fig.  2.4 . It is important to note that 
these properties are not independent, but are closely related to each other. Oral 
absorption is the percentage of drug taken up from the gastrointestinal lumen into 
the portal vein blood. The processes involved are a combination of physical chem-
istry and biological (transporters, metabolizing enzymes). The transfer process 
through a membrane without any biological component is often called permeabil-
ity. It can be mimicked in an artifi cial membrane such as the parallel artifi cial 
membrane permeation assay (PAMPA) set - up (see Section  2.8.1 ). However,  in vivo  
permeability cannot be measured in isolation from biological events. All so - called 
 in vitro  measures for permeability are nothing else than different types of lipophi-
licity measures. In plotting oral absorption (percentage or fraction) against any 

Fig. 2.3     Dependencies between various physicochemical properties. 



 “ permeability ”  or lipophilicity scale (see Fig.  2.5 ) one observes a trend indicating 
that higher permeability or lipophilicity leads to better absorption. Often a plateau 
is observed too, indicating that such relationships are in fact nonlinear and can 
be approached by a sigmoidal function. Several lipophilicity scales can be related 
to each other via a Collander (Eq.  1 ) or an extended Collander relationship (Eq.  2 ) 
by adding a parameter for the difference in H - bonding (HB) between the two 
solvent systems. The equivalent for relating, for example, PAMPA scales to each 
other or PAMPA with Caco - 2 has also been published  [14, 15] .

   log logP a P b1 2= +     (1)  

   log logP p P q r1 2= + +HB     (2)       

 Instead of using surrogate measures for oral absorption with a lipophilicity or 
permeability assay  in vitro , oral absorption can also be estimated  in silico  by using 

Fig. 2.4     Importance of physical chemistry properties on permeability, absorption and 
bioavailability  [16] . (With kind permission of Elsevier.) 

Fig. 2.5     Trendships between oral absorption and permeability/lipophilicity. In reality these 
relationships are most likely sigmoidal, i.e. more complex than these trends indicate. 
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human oral absorption data from the literature  [16] . This data is rather sparse 
because oral absorption is not systematically measured in clinical trials. The data 
is also skewed towards high absorption compounds. In addition, interindividual 
variability is important (around 15%). Of course absorption can also be dose and 
formulation dependent. Therefore, early estimates are only rough guides to get 
the ballpark right.  

  2.2.3
Estimation of Volume of Distribution from Physical Chemistry 

 The distribution of a drug in the body is largely driven by its physicochemical 
properties and in part for some compounds by the contribution of transporter 
proteins  [17] . By using the Oie – Tozer equation and estimates for ionization (p K  a ), 
plasma protein binding (PPB) and lipophilicity (log  D  7.4 ) quite robust predictions 
for the volume of distribution at steady state ( V  dss ), often within 2 - fold of the 
observed value, can be made  [18] .  

  2.2.4
PPB and Physicochemical Properties 

 The percentage of binding to plasma proteins (PPB%) is an important factor in 
PK and is determinant in the actual dosage regimen (frequency), but not important 
for the daily dose size  [3] . The daily dose is determined by the required free or 
unbound concentration of drug required for effi cacy  [3] . Lipophilicity is a major 
driver to PPB%  [19, 20] . The effect of the presence of negative (acids) or positive 
(bases) charges has different impacts on binding to human serum albumin (HSA), 
as negatively charged compounds bind more strongly to HSA than would be 
expected from the lipophilicity of the ionized species at pH 7.4  [19, 20]  
(see Fig.  2.6 ).     

  2.3
Dissolution and Solubility 

 Each cellular membrane can be considered as a combination of a physicochemical 
and biological barrier to drug transport. Poor physicochemical properties may 
sometimes be overcome by an active transport mechanism. Before any absorption 
can take place at all, the fi rst important properties to consider are dissolution and 
solubility  [21] . Many cases of solubility - limited absorption have been reported and 
therefore solubility is now seen as a property to be addressed at the early stages 
of drug discovery. Only compound in solution is available for permeation across 
the gastrointestinal membrane. Solubility has long been recognized as a limiting 
factor in the absorption process leading to the implementation of high - throughput 
solubility screens in early stages of drug design  [22 – 26]   . Excessive lipophilicity is 
a common cause of poor solubility and can lead to erratic and incomplete absorp-



tion following oral administration. Estimates of desired solubility for good oral 
absorption depend on the permeability of the compound and the required dose, 
as illustrated in Table  2.1   [26] . The incorporation of an ionizable center, such as 
an amine or similar function, into a template can bring a number of benefi ts 
including water solubility.   

 The concept of maximum absorbable dose (MAD) relates drug absorption to 
solubility via  [27, 28] :

   MAD SIWV SITTa= × × ×S k     (3)  

where  S    =   solubility (mg   mL  − 1 ) at pH 6.5,  k  a    =   transintestinal absorption rate con-
stant (min  − 1 ), SIWV   =   small intestinal water volume (mL), assumed to be around 
250   mL, and SITT   =   small intestinal transit time (min), assumed to be 
4.5   h   =   270   min. 

Fig. 2.6     Trendships between percentage human PPB (hPPB%) and octanol – water log  D7.4   [20] . 
Note the around 2 log units downshift of the sigmoidal relationship for acids as compared to 
neutrals and basics. (With kind permission of Springer - Kluwer.)  

Tab. 2.1     Desired solubility ( µ g   mL  − 1 ) needed for expected 
doses  [26] . 

 Dose (mg   kg  − 1 )  Permeability 

 High  Medium  Low 

  0.1   1   5   21 
  1   10   52   210 
 10  100  520  2100 
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 Dissolution testing has been used as a prognostic tool for oral drug absorption 
 [29] . A Biopharmaceutics Classifi cation Scheme (BCS) has been proposed under 
which drugs can be categorized into four groups according to their solubility and 
permeability properties  [30] . As both permeability as well as solubility can be 
further dissected into more fundamental properties, it has been argued that the 
principal properties are not solubility and permeability, but rather molecular size 
and H - bonding  [31] . The BCS has been adopted as a regulatory guidance for bio-
equivalence studies. 

  2.3.1
Calculated Solubility 

 As a key fi rst step towards oral absorption, considerable effort went into the devel-
opment of computational solubility prediction  [32 – 39] . However, partly due to a 
lack of large sets of experimental data measured under identical conditions, today ’ s 
methods are not robust enough for reliable predictions  [40] . Further fi ne - tuning 
of the models can be expected now high - throughput data has become available to 
construct such models. Models will be approximate since they do not take into 
account the effect of crystal packing, ionic force, type of buffer, temperature, etc. 
Solubility is typically measured in an aqueous buffer only partly mimicking the 
physiological state. More expensive fasted - state simulated artifi cial intestinal fl uid 
(FaSSIF) solutions have been used to measure solubility, which in some cases 
appear to give better predictions in physiologically based pharmacokinetic (PBPK) 
modeling than solubility data using a simpler aqueous buffer  [41] .   

  2.4
Ionization (p Ka ) 

 It was assumed for a long time that molecules can only cross a membrane in their 
neutral form. This dogma, based on the pH - partition theory, has been challenged 
 [42, 43] . Using cyclic voltammetry it was demonstrated that compounds in their 
ionized form pass into organic phases and might well cross membranes in this 
ionized form  [44] . 

 The importance of drug ionization using cell - based methods such as Caco - 2 in 
the  in vitro  prediction of  in vivo  absorption was discussed  [45] . It was observed that 
when the apical pH used in Caco - 2 studies was lowered from 7.4 to 6.0 a better 
correlation was obtained with  in vivo  data, demonstrating that careful selection of 
experimental conditions  in vitro  is crucial to produce a reliable model. Studies with 
Caco - 2 monolayers also suggested that the ionic species might contribute consid-
erably to overall drug transport  [46] . 

 Various ways that a charged compound may cross a membrane by a  “ passive ”  
mechanism have been described  [42] . These include transport as ion ( trans  -  and/or 
paracellular), ion - pair or protein - assisted (using the outer surface of a protein 
spanning a membrane). 



 Therefore a continued interest exists in the role of p K  a  in oral absorption, which 
often is related to its effect on lipophilicity and solubility. Medicinal chemists can 
modulate these properties through structural modifi cations  [47] . Various methods 
to measure p K  a  values have been developed  [47 – 50]  and considerable databases 
are now available. 

 The difference between the log  P  of a given compound in its neutral form 
(log  P  N ) and its fully ionized form (log  P  I ) has been termed  diff (log  P  N – I ) and con-
tains series - specifi c information, and expresses the infl uence of ionization on the 
intermolecular forces and intramolecular interactions of a solute  [44, 51, 52] . 

  2.4.1
Calculated p Ka

 A number of approaches to predict ionization based on structure have been pub-
lished (for a review, see  [53] ) and some of these are commercially available. Predic-
tions tend to be good for structures with already known and measured functional 
groups. However, predictions can be poor for new innovative structures. Neverthe-
less, p K  a  predictions can still be used to drive a project in the desired direction 
and the rank order of the compounds is often correct. More recently training 
algorithms have also become available which use in - house data to improve the 
predictions. This is obviously the way forward.   

  2.5
Molecular Size and Shape 

 Molecular size can be a further limiting factor in oral absorption  [54] . The Lipinski 
 “ Rule - of - 5 ”  proposes an upper limit of molecular weight (MW) of 500 as acceptable 
for orally absorbed compounds  [25] . High - MW compounds tend to undergo biliary 
excretion. Size and shape parameters are generally not measured, but rather cal-
culated. A measured property is the so - called cross - sectional area, which is obtained 
from surface activity measurements  [55] . 

  2.5.1
Calculated Size Descriptors 

 MW is often taken as the size descriptor of choice, while it is easy to calculate and 
is in the chemist ’ s mind. However, other size and shape properties are equally 
simple to calculate, and may offer a better guide to estimate potential for permea-
bility. Thus far no systematic work has been reported investigating this in detail. 
Cross - sectional area  A  D  obtained from surface activity measurements have been 
reported as a useful size descriptor to discriminate compounds which can access 
the brain ( A  D     <    80    Å  2 ) of those that are too large to cross the blood – brain barrier 
(BBB)  [55] . Similar studies have been performed to defi ne a cut - off for oral 
absorption  [56] .   

2.5 Molecular Size and Shape  33
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  2.6
H - bonding 

 Molecular size and H - bonding have been unraveled as the two major components 
of log  P  or log  D   [57 – 59] . It was found that H - bonding capacity of a drug solute 
correlates reasonably well with passive diffusion.  ∆ log  P , the difference between 
octanol – water and alkane – water partitioning, was suggested as a good measure 
for solute H - bonding  [58, 60, 61] . However, this involves tedious experimental 
work and it appeared that calculated descriptors for H - bonding could most conve-
niently be assessed, in particular also for virtual compounds. 

  2.6.1
Calculated H - bonding descriptors 

 Considerable interest is focused on the calculation of H - bonding capability in the 
design of combinatorial libraries, for assessing the potential for oral absorption 
and permeability  [16, 62 – 65] . A number of different descriptors for H - bonding 
have been discussed  [66] , one of the simplest being the count of the number of 
H - bond forming atoms  [67] . 

 A simple measure of H - bonding capacity, originally proposed by Van de Water-
beemd and Kansy, is the polar surface area (PSA), defi ned as the sum of the frac-
tional contributions to surface area of all nitrogen and oxygen atoms and hydrogens 
attached to these  [68] . PSA was used to predict passage of the BBB  [69 – 71] , fl ux 
across a Caco - 2 monolayer  [72]  and human intestinal absorption  [73, 74] . The 
physical explanation is that polar groups are involved in desolvation when they 
move from an aqueous extracellular environment to the more lipophilic interior 
of membranes. PSA thus represents, at least part of, the energy involved in mem-
brane transport. PSA is dependent on the conformation and the original method 
 [68]  is based on a single minimum energy conformation. Others  [73]  have taken 
into account conformational fl exibility and coined a dynamic PSA, in which a 
Boltzmann - weighted average PSA is computed. However, it was demonstrated 
that PSA calculated for a single minimum energy conformation is in most cases 
suffi cient to produce a sigmoidal relationship to intestinal absorption, differing 
very little from the dynamic PSA described above  [74] . A fast calculation of PSA 
as a sum of fragment - based contributions has been published  [75] , allowing use 
of these calculations for large datasets such as combinatorial or virtual libraries. 
The sigmoidal relationship can be described by  A %   =   100/[1   +   (PSA/PSA 50 )  γ  ], where 
 A % is percentage of orally absorbed drug, PSA 50  is the PSA at 50% absorption 
level and  γ  is a regression coeffi cient  [76] . 

 Poorly absorbed compounds have been identifi ed as those with a PSA    >    140    Å  2 . 
Considering more compounds, considerable more scatter was found around the 
sigmoidal curve observed for a smaller set of compounds  [74] . This is partly due 
to the fact that many compounds do not show simple passive diffusion only, but 
are affected by active carriers, effl ux mechanisms involving P - glycoprotein (P - gp) 
and other transporter proteins, and gut wall metabolism. These factors also con-



tribute to the considerable inter - individual variability of human oral absorption 
data. A further refi nement in the PSA approach is expected to come from taking 
into account the strength of the H - bonds, which in principle already is the basis 
of the HYBOT approach  [63 – 65] .   

  2.7
Lipophilicity

 Octanol – water partition (log  P ) and distribution (log  D ) coeffi cients are widely used 
to make estimates for membrane penetration and permeability, including gastro-
intestinal absorption  [77, 78] , BBB crossing  [60, 69]  and correlations to pharmaco-
kinetic properties  [1] . The two major components of lipophilicity are molecular 
size and H - bonding  [57] , which each have been discussed above (see Sections  2.5  
and  2.6 ). 

 According to published International Union of Pure and Applied Chemistry 
recommendations the terms hydrophobicity and lipophilicity are best described as 
follows  [79] : 
    •       Hydrophobicity  is the association of nonpolar groups or molecules in an 

aqueous environment which arises from the tendency of water to exclude 
nonpolar molecules  

    •       Lipophilicity  represents the affi nity of a molecule or a moiety for a 
lipophilic environment. It is commonly measured by its distribution 
behavior in a biphasic system, either liquid – liquid (e.g. partition 
coeffi cient in 1 - octanol – water) or solid – liquid (retention on reversed - phase 
high - performance liquid chromatography or thin - layer chromatography 
system).    

 The  intrinsic lipophilicity  ( P ) of a compound refers only to the equilibrium of the 
unionized (neutral) drug between the aqueous phase and the organic phase. It 
follows that the remaining part of the overall equilibrium, i.e. the concentration 
of ionized drug in the aqueous phase, is also of great importance in the overall 
observed partition ratio. This in turn depends on the pH of the aqueous phase 
and the acidity or basicity (p K  a ) of the charged function. The overall ratio of drug, 
ionized and unionized, between the phases has been described as the  distribution 

coeffi cient  ( D ), to distinguish it from the intrinsic lipophilicity (P). The term has 
become widely used in recent years to describe, in a single term, the  effective (or 

net) lipophilicity  of a compound at a given pH taking into account both its intrinsic 
lipophilicity and its degree of ionization. The distribution coeffi cient ( D ) for a 
monoprotic acid (HA) is defi ned as:

   D = + −[HA] [HA] [A )organic aqueous aqueous/( ]     (4)  

where [HA] and [A  −  ] represent the concentrations of the acid in its unionized and 
dissociated (ionized) states, respectively. The ionization of the compound in water 
is defi ned by its dissociation constant ( K  a ) as:

2.7 Lipophilicity  35
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   Ka
+H A HA= [ ][ ] [ ]−     (5)  

sometimes referred to as the Henderson – Hasselbalch relationship. The combina-
tion of Eqs.  (4) – (6)  gives the pH - distribution (or  “ pH - partition ” ) relationship:

   D P K= + [ ]{ }( )1 a
+H     (6)  

more commonly expressed for monoprotic organic  acids  in the form:

   log P D K{ } −( ) = −1 pH p a     (7)  

or

   log log logD P K= − +( )−1 10pH p a     (8)  

  For monoprotic organic  bases  (BH +  dissociating to B) the corresponding relation-
ships are:

   log P D K{ } −( ) = −1 p pHa     (9)  

or:

   log log logD P K= − +( )−1 10p pHa     (10)  

  From these equations it is possible to predict the effective lipophilicity (log  D ) of an 
acidic or basic compound at any pH value. The data required in order to use the 
relationship in this way are the intrinsic lipophilicity (log  P ), the dissociation con-
stant (p K  a ) and the pH of the aqueous phase. The overall effect of these relationships 
is the effective lipophilicity of a compound, at physiological pH, is approximately 
the log  P  value minus one unit of lipophilicity, for every unit of pH the p K  a  value is 
below (for acids) and above (for bases) pH 7.4. Obviously for compounds with mul-
tifunctional ionizable groups the relationship between log  P  and log  D , as well as 
log  D  as a function of pH become more complex  [65, 68, 70] . For diprotic molecules 
there are already 12 different possible shapes of log  D  – pH plots. 

 Traditional octanol – water distribution coeffi cients are still widely used in quan-
titative structure – activity relationship (QSAR) and in ADME/PK studies. However, 
alternative solvent systems have been proposed  [80] . To cover the variability in 
biophysical characteristics of different membrane types a set of four solvents has 
been suggested, sometimes called the  “ critical quartet ”   [81] . The 1,2 - dichloroeth-
ane – water system has been promoted as a good alternative to alkane – water due to 
its far better dissolution properties  [82, 83] , but may fi nd little application because 
of its carcinogenic properties. 

 Several approaches for higher throughput lipophilicity measurements have been 
developed in the pharmaceutical industry  [50]  including automated shake - plate 
methods  [84]  and immobilized artifi cial membranes  [85] . A convenient method to 



measure octanol – water partitioning is based on potentiometric titration, called the 
pH method  [86] . Methods based on chromatography are also widely used, e.g. 
chromatographic hydrophobicity indices measured on immobilized artifi cial 
membranes (IAM)  [19, 87] . Another chromatography - based method is called Elog 
 D  giving log  D  values comparable to shake - fl ask data  [88] . 

  2.7.1
Calculated log  P  and log  D

 A number of rather comprehensive reviews on lipophilicity estimation have been 
published and are recommended for further reading  [89 – 91] . Due to its key impor-
tance, a continued interest is seen to develop good log  P  estimation programs 
 [82 – 94] . Most log  P  approaches are limited due to a lack of parameterization of 
certain fragments. For the widely used CLOGP program (Daylight/Biobyte com-
puter program for the calculation of log  P ), a version making estimates for missing 
fragments has become available  [95] . 

 With only few exceptions, most log  P  programs refer to the octanol – water system. 
Based on Rekker ’ s fragmental constant approach, a log  P  calculation for aliphatic 
hydrocarbon – water partitioning has been reported  [96] . Another more recent 
approach to alkane – water log  P  and log  D  is based on the program VolSurf  [97] . It 
is believed that these values may offer a better predictor for uptake in the brain. 
The group of Abraham investigated many other solvent systems and derived equa-
tions to predict log  P  from structure for these solvent systems, which are also 
commercially available  [94] . 

 Log  D  predictions are more diffi cult as most approaches rely on the combination 
of estimated log  P  and estimated p K  a . Obviously, this can lead to error accumulation 
and errors of 2 log units or more can be found. Some algorithms, however, are 
designed to learn from experimental data so that the predictions improve over time. 
An interesting approach is also the combination of a commercial log  D  predictor 
with proprietary descriptors using a Bayesian neural network approach  [98] .   

  2.8
Permeability

 An overview of permeability assays is presented in Table  2.2 . As discussed earlier 
in this chapter, these permeability scales are correlated to each other as well as the 
various lipophilicity scales via extended Collander equations.   

  2.8.1
Artifi cial Membranes and PAMPA 

 When screening for absorption by passive membrane permeability, artifi cial mem-
branes have the advantage of offering a highly reproducible and high - throughput 
system. Artifi cial membranes have been compared to Caco - 2 cells and for passive 
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diffusion found to behave very similar  [72] . This fi nding was the basis for the 
development of the PAMPA for rapid prediction of transcellular absorption poten-
tial  [117 – 120] . In this system the permeability through a membrane formed by a 
mixture of lecithin and an inert organic solvent on a hydrophobic fi lter support is 
assessed. Whilst not completely predictive for oral absorption in humans, PAMPA 
shows defi nite trends in the ability of molecules to permeate membranes by 
passive diffusion, which may be valuable in screening large compound libraries. 
This system is commercially available  [121] , but can easily be set up in - house. 
Further optimization of the experimental conditions has been investigated, con-
cluding that predictability increases when a pH of 6.5 or 5.5 is used on the donor 
side  [122, 123] . It was also demonstrated that the effect of a cosolvent such as 
dimethylsulfoxide (DMSO) could have a marked effect depending on the nature, 
basic/acid, of the compound  [123] . Stirring of the donor compartment to limit the 
contribution of the unstirred water layer appears to be important to get meaningful 
results. There have been so far no reports in the literature about using PAMPA 
data in a drug discovery project. 

 A similar system has been reported based on polycarbonate fi lters coated with 
hexadecane, also called hexadecane membranes (HDM)  [124, 125] . Thus, this 

Tab. 2.2      In vitro  models for membrane permeability. 

 Permeability model  Reference 

 Solvent – water partitioning 
    octanol – water distribution   52  
 Chromatography 
    IAM   99 – 103  
    ILC   104  
    MEKC   105  
    BMC   106  
 Vesicles 
    phospholipid vesicles   107  
    liposome binding   108, 109  
    Transil particles   110 – 112  
    fl uorosomes   113  
    SPR biosensor   114, 115  
    colorimetric assay   116  
 Artifi cial membranes 
    impregnated membranes   72  
    PAMPA   117 – 123  
    fi lter IAM   121 – 123  
    hexadecane - coated polycarbonate fi lters (HDM)   124, 125  
 Other 
    surface activity   126  
 Cell - based assays 
    Caco - 2   76, 78  
    Madin - Darby canine kidney   127  



system consists of a 9 -  to 10 -  µ m hexadecane liquid layer immobilized between two 
aqueous compartments. Also here it was observed that in this set - up for lipophilic 
compounds the diffusion through the unstirred water layer becomes the rate - limit-
ing step. To mimic the  in vivo  environment permeability measurements were 
repeated at different pH values in the range 4 – 8 and the highest transport value used 
for correlation with percentage absorbed in human. This gives a sigmoidal depen-
dence, which is better than when taking values measured at a single pH, e.g. 6.8. 

2.8.1.1 In Silico  PAMPA 
 The experimental  P  app  data have been used to build predictive models. However, 
since PAMPA is already a model, an  in silico  model based on this is a model of a 
model. The predictability for  in vivo  permeability or absorption of such  in silico  
PAMPA model can be questioned (see Eq.  11 ), since it is two steps from reality:

   mod model el random× =     (11)     

  2.8.2
IAM, Immobilized Liposome Chromatography (ILC), Micellar Electrokinetic 
Chromatography (MEKC) and Biopartitioning Micellar Chromatography (BMC) 

 IAM columns are another means of measuring lipophilic characteristics of drug 
candidates and other chemicals  [99 – 103] . IAM columns may better mimic mem-
brane interactions than the isotropic octanol – water or other solvent – solvent parti-
tioning system. These chromatographic indices appear to be a signifi cant predictor 
of passive absorption through the rat intestine  [128] . 

 A related alternative is called ILC  [104, 105] . Compounds with the same log  P  
were shown to have very different degrees of membrane partitioning on ILC 
depending on the charge of the compound  [105] . 

 Another relatively new lipophilicity scale proposed for use in ADME studies is 
based on MEKC  [106] . A further variant is called BMC and uses mobile phases of 
Brij35 [polyoxyethylene(23)lauryl ether]  [129] . Similarly, the retention factors of 16 
 β  - blockers obtained with micellar chromatography with sodium dodecyl sulfate as 
micelle - forming agent correlates well with permeability coeffi cients in Caco - 2 
monolayers and apparent permeability coeffi cients in rat intestinal segments 
 [130] . 

 Each of these scales produce a lipophilicity index related but not identical to 
octanol – water partitioning.  

  2.8.3
Liposome Partitioning 

 Liposomes, which are lipid bilayer vesicles prepared from mixtures of lipids, also 
provide a useful tool for studying passive permeability of molecules through lipid. 
This system has, for example, been used to demonstrate the passive nature of the 
absorption mechanism of monocarboxylic acids  [131] . Liposome partitioning of 
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ionizable drugs can be determined by titration and has been correlated with human 
absorption  [108, 109, 132] . Liposome partitioning is only partly correlated with 
octanol – water distribution and might contain some additional information. 

 A further partition system based on the use of liposomes, and commercialized 
under the name Transil  [110, 111] , has shown its utility as a lipophilicity measure 
in PBPK modeling  [112] . Fluorescent - labeled liposomes, called fl uorosomes, are 
another means of measuring the rate of penetration of small molecules into mem-
brane bilayers  [113, 120] . Similarly, a colorimetric assay amenable to HTS for 
evaluating membrane interactions and penetration has been presented  [116] . The 
platform comprises vesicles of phospholipids and the chromatic lipid - mimetic 
polydiacetylene. The polymer undergoes visible concentration - dependent red – blue 
transformations induced through interactions of the vesicles with the studied 
molecules.  

  2.8.4
Biosensors

 Liposomes have been attached to a biosensor surface, and the interactions between 
drugs and the liposomes can be monitored directly using surface plasmon reso-
nance (SPR) technology. SPR is measuring changes in refractive index at the 
sensor surface caused by changes in mass. Drug – liposome interactions have been 
measured for 27 drugs and compared to fraction absorbed in humans  [114] . A 
reasonable correlation is obtained, but it is most likely that this method represents 
just another way of measuring  “ lipophilicity ” . The throughput was 100 substances 
per 24   h, but further progress seems possible. In more recent work using this 
method it is proposed to use two types of liposomes to separate compounds accord-
ing to their absorption potential  [115] .   

  2.9
Amphiphilicity

 The combination of hydrophilic and hydrophobic parts of a molecule defi nes its 
amphiphilicity. A program has been described to calculate this property and cali-
brated against experimental values obtained from surface activity measurements 
 [133] . These values can possibly be used to predict effect on membranes leading 
to cytotoxicity or phospholipidosis, but may also contain information, not yet 
unraveled, on permeability. Surface activity measurements have also been used to 
make estimates of oral absorption  [126] .  

  2.10
Drug - like Properties 

 The various properties described above are important for drugs, in particular for 
those given orally. The important question arises whether such properties of drugs 



are different from chemicals used in other ways. This has been subject of a 
number of investigations  [134, 135] . Using neural networks  [136, 137]  or a decision 
tree approach  [138] , a compound can be predicted as being  “ drug - like ”  with an 
error rate of around 20%. A further approach to predict drug - likeness consists of 
training of the program PASS (prediction of activity spectra for substances)  [139] , 
which originally was intended to predict activity profi les and thus is suitable to 
predict potential side effects. 

 From an analysis of the key properties of compounds in the World Drug Index 
the now well accepted  “ Rule - of - 5 ”  has been derived  [25, 26] . It was concluded that 
compounds are most likely to have poor absorption when MW    >    500, calculated 
octanol – water partition coeffi cient Clog  P     >    5, number of H - bond donors  > 5 and 
number of H - bond acceptors  > 10. Computation of these properties is now avail-
able as a simple but effi cient ADME screen in commercial software. The  “ Rule -
 of - 5 ”  should be seen as a qualitative absorption/permeability predictor  [43] , rather 
than a quantitative predictor  [140] . The  “ Rule - of - 5 ”  is not predictive for bioavail-
ability as sometimes mistakenly is assumed. An important factor for bioavailability 
in addition to absorption is liver fi rst - pass effect (metabolism). The property dis-
tribution in drug - related chemical databases has been studied as another approach 
to understand  “ drug - likeness ”   [141, 142] . 

 Other attempts have been made to try to defi ne good leads. In general lead - like 
properties are lower/smaller than drug - like properties. Thus, MW    <    350 and Clog 
 P     <    3 should be good starting points for leads  [143, 144] . A  “ Rule - of - 3 ”  has been 
proposed  [145]  for screening of small fragments, which says the good lead frag-
ments have MW    <    300, Clog  P     <    3, H - bond donors and acceptors  < 3 and rotatable 
bonds  < 3. 

 Similarly, in a study on drugs active as central nervous system (CNS) agents and 
using neural networks based on Bayesian methods, CNS - active drugs could be 
distinguished from CNS - inactive ones  [145] . A CNS rule - of - thumb says that if the 
sum of the nitrogen and oxygen (N   +   O) atoms in a molecule is less than 5 and if 
the Clog  P     −    (N   +   O)    >    0, then compounds are likely to penetrate to the BBB  [146] . 
Another  “ rule ”  is PSA    <    90    Å  2 , MW    <    450 and log  D  at pH 7.4 of 1 – 3  [147] . In 
designing CNS drugs it is important to distinguish BBB penetration and CNS 
effi cacy. The latter is a subtle balance between permeability, effect of BBB trans-
porters, lipophilicity, and free fraction in blood and brain  [148] . 

 These aforementioned analyses all point to a critical combination of physico-
chemical and structural properties  [149] , which to a large extent can be 
manipulated by the medicinal chemist. This approach in medicinal chemistry has 
been called property - based design  [2] . Under properties in this context we intend 
physicochemical as well as PK and toxicokinetic properties. These have been 
neglected for a long time by most medicinal chemists, who in many cases in the 
past only had the quest for strongest receptor binding as the ultimate goal. 
However, this strategy has changed dramatically, and the principles of drug - like 
compounds are now being used in computational approaches towards the rational 
design of combinatorial libraries  [150]  and in decision making on acquisition of 
outsourced libraries.  
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  2.11
Computation versus Measurement of Physicochemical Properties 

  2.11.1
QSAR Modeling 

 Calculation of many different one - , two -  and three - dimensional descriptors for 
building predictive QSAR models for physicochemical (and ADME/toxicity) prop-
erties is possible using a range of commercially available software packages, 
such as ACD, SYBYL, Cerius 2   , Molconn - Z, HYBOT, VolSurf, MolSurf, Dragon, 
MOE, BCUT, etc. Several descriptor sets are based on quantifi cation of three -
 dimensional molecular surface properties  [151, 152]  and these have been explored 
for the prediction of, for example, Caco - 2 permeability and oral absorption  [16] . It 
is pointed out here that a number of these  “ new ”  descriptors are often strongly 
correlated to the more traditional physicochemical properties. An aspect largely 
neglected so far is the concept of molecular - property space looking at the confor-
mational effects on physicochemical properties  [153] . 

 Numerous QSAR tools have been developed  [152, 154]  and used in modeling 
physicochemical data. These vary from simple linear to more complex nonlinear 
models, as well as classifi cation models. A popular approach more recently became 
the construction of consensus or ensemble models ( “ combinatorial QSAR ” ) com-
bining the predictions of several individual approaches  [155] . Or, alternatively, 
models can be built by running the same approach, such as a neural network of 
a decision tree, many times and combining the output into a single prediction. 

 To build robust predictive models good quality training set and sound test set are 
required. Criteria for a good set include suffi cient coverage of chemical space, good 
distribution between low -  and high - end values of the property studied, and a suffi -
ciently large number of compounds. Models can be global (covering many types of 
chemistry) or local (project - specifi c). There are many reasons why predictions can 
fail  [156]  and medicinal chemists need to be aware of these. There is also a differ-
ence between a useful model and a perfect model. The latter does not exist! 

 In - house physicochemical data collections are growing rapidly through the use 
of HTS technologies  [157] . Therefore, the need for rapidly building and updating 
is also increasing. Systems for automatic and regular updating of QSAR predictive 
models have been reported  [158]  and we expect these to become more widespread. 
A consequence of regularly updated  in silico  models is that the predicted values 
will change too. This will require adapted ways of working by the chemists and 
DMPK scientists in projects using more dynamic data generation and interpreta-
tion tools.  

  2.11.2
In Combo : Using the Best of two Worlds 

 In modern drug discovery speed and cost control are important in addition to high 
quality.  In silico  virtual screening for drugability  [159]  is a good fi rst step in library 
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design and compound acquisition. Once compounds have been made for a tar-
geted project a well - balanced approach using both  in silico  predictions and  in vitro  
screening will be a good strategy to guide the programme in a cost - effi cient 
manner. New experimental data can be used to update predictive models regularly 
so that the ongoing projects can benefi t from the latest local and global models 
available  [158, 160] .   

  2.12
Outlook

 Physical chemistry plays a key role in the behavior of drugs. Measurement of the 
key properties has been automated and industrialized to high throughput. The 
data can and are used to build robust predictive models. These can in turn be used 
to limit the use of experiments when not strictly needed. This is of course com-
pound saving and more cost - effective. Predictive models are also great tools in 
virtual screening, prioritization decision making and guiding projects. The rest of 
this book provides in - depth insight into some of the properties briefl y discussed 
in this introductory chapter.  
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