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Hansch analysis 50 years on
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The invention of quantitative structure–activity relationships (QSAR) launched
the use of computers to understand the multiple factors that contribute to the
relationship between the chemical and biological properties of molecules. The
original Hansch–Fujita QSAR continues to be performed to this day, fifty years
since its inception. In addition, it has inspired vigorous research that has in-
spired many related methods: for example, methods that use descriptors such
as substructures or three-dimensional features or methods that are based on
mathematical models such as partial least squares or recursive partitioning. The
influence of QSAR is felt in the recognition of the value of predictions from such
models by regulatory agencies and by the widespread use of octanol–water log
P in agricultural, environmental, and medicinal chemistry. C© 2012 John Wiley & Sons,
Ltd.
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INTRODUCTION

I n July 1961, approximately 50 years ago, Cor-
win Hansch and Toshio Fujita formulated the first

QSAR equation.1 It grew out of their 10-plus years of
mutual interest in the structure–activity relationships
(SARs) of the plant-growth regulators.2,3 Frustrated
by the inability of the Hammett equation to explain
the SAR, Hansch turned to octanol–water partition
coefficients.4 When these also did not explain the
SAR, Fujita suggested that both properties must be
considered, following the precedent of Taft, who had
demonstrated the combined electronic and steric ef-
fects on the rate of hydrolysis of esters.5 Equation (1)
shows the relationship that they proposed to fit and
Eq. (2) shows the resulting fit of their data:

log (1/C) = kπ − k′π2 + ρσ + k′′ (1)

log (1/C) = 4.08π − 2.14π2 + 2.78σ + 3.36 (2)

In this equation, π is the difference in the log
of the octanol–water partition coefficient of the ana-
logue as compared with the unsubstituted compound
and σ is the Hammett constant referred to the or-
tho position on the aromatic ring. The various ks are
constants to be fit with the computer. The π2 term
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indicates that there is an optimum π value. Note that
in this and subsequent early publications,6,7 there is
no term for the steric effect of substituents. Also, no
statistics of the fit were presented.

Instead of using a mechanical calculator to fit
their multiparameter equation, as Pavelich and Taft8

and Jaffé9 had done, Donald McIntyre, their colleague
from the geology department helped them fit their
data using a primitive computer.2 Using the computer
changed the process from hours of careful work at a
calculator using a knowledge of statistics, to minutes,
at a keypunch entering just the physical and biological
properties of the molecules. Hence, the decision to
use a computer to fit the equation opened up the field
to include the analysis of larger data sets and more
descriptors; it encouraged others to try the method;
and it also added the aura that the method is cutting
edge.

Even though in this first publication,1 they made
only passing claim of the universality of their ap-
proach to investigate the SAR within a series, all the
following elements of QSAR were present: (1) using
π , the change in octanol–water log P, as a descriptor
of the lipophilic/hydrophobic effects of substituents;
(2) suggesting that here is an optimum π or log P
within a series; (3) considering that not only log P
but also electronic substituent effects as described by
Hammett σ constants influence relative potency; and
(4) fitting the relationship with a computer. Each of
these elements has been the focus of many studies in
the broader QSAR literature.
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According to an August 2011 Google Scholar
search, this report has been cited 447 times; the 1964
report that generalized their findings,7 1357 times;
and the book by Hansch and Leo,10 1006 times. The
corresponding numbers for Web of Science search
are 433, 467, and 1790—all impressive figures. It is
claimed that the work of Hansch and Leo has been
cited more than 100,000 times in the past 10 years.11

The impact of this work is also reflected in an August
2011 Google search that returned 11,000 hits for the
phrase Hansch QSAR.

CURRENT STATE OF TRADITIONAL
QSAR

Throughout the remainder of his career, Hansch con-
tinued to fit QSARs and published more than 200
articles on the subject. There are now approximately
13,000 biological QSARs and 9000 physicochemi-
cal linear free energy relationships (LFERs) in the
CQSAR database that he, Al Leo, and David Hoek-
man use to store equations and data.11 Many of these
equations are unpublished. Fujita also published more
than 250 articles on QSAR, with special emphasis on
the application to agrochemicals.12

Although some might claim otherwise, QSAR is
not dead.13 Evidence for this statement is the obser-
vation that in the 19 months from January 1, 2010,
to August 1, 2011, MEDLINE identified 131 publica-
tions with QSAR as the search term. Although 45 of
these emphasized three-dimensional (3D) QSAR, all
are QSAR publications nonetheless. These reports ap-
peared in 56 journals. Bioorganic & Medicinal Chem-
istry leads the list with 29 articles, Chemical Biology
& Drug Design follows with eight, European Jour-
nal of Medicinal Chemistry and Journal of Medicinal
Chemistry with seven each, International Journal of
Molecular Sciences with six, and Chemometrics and
Intelligent Laboratory Systems and Journal of Molec-
ular Graphics and Modeling with five each.

Of these 131 articles, 99 address structures
of medicinal chemistry interest; 12 address issues
of toxicity; six deal with absorption, distribution,
metabolism, and excretion (ADME) properties; four
with environmental concerns; and two each with
bioinformatics, cheminformatics, chemical proper-
ties, food, and QSAR methodology. Thus, it appears
that QSAR is widely used to probe the SARs within
a series, but that toxicity and ADME properties are
also of interest.

The international scope of the use of QSAR is
evident in the 665 authors of these publications. It is
especially noteworthy that only six scientists who are

authors on four or more publications are collabora-
tors based in Beijing at the College of Pharmaceutical
Sciences, Capital Medical University, and College of
Pharmaceutical Sciences, Peking University. Next on
the list with three QSAR publications is Alexander
Tropsha from the University of North Carolina at
Chapel Hill. Robust contributions from researchers
in India are also apparent.

Some recent publications suggest the extent of
biological targets considered for QSAR. Vyas and
coworkers14 developed QSAR equations that suggest
that hydrophobicity and electronic effects govern the
inhibitory potency of 3-aminopyrazolopyridine ureas
against KDR in cell-free and whole-cell assays. Com-
plementary models highlight the importance of polar
surface area, total potential energy, principal moment
of inertia, and bend energy to alternative models;
these different results highlight the problem of assign-
ing interpretations to any one QSAR model. Yuan and
coworkers15 showed that hydrophobicity and steric
factors are the main determinants of the recognition
of phenylurea herbicides by an antibody generated to
an immobilized analogue. The analysis by Jain and
Chaturvedi16 suggested that electronic and steric ef-
fects dominate the SAR of the angiotensin II recep-
tor antagonist potency of substituted 5-(biphenyl-4-
ylmethyl)pyrazoles. Song and coworkers17 performed
QSAR analysis on diarylpyrazole imide analogues as
cannabinoid receptor-2 antagonists. Their results em-
phasize the importance of steric effects on affinity and
that no analogues with increased potency could be
predicted. Sivaprakasam and coworkers18 reported
the QSAR analysis of the inhibition of glycogen syn-
thetase kinase 3a by 3-anilino-4-phenylmaleimides.
They found that substituents on the anilino group ex-
ert a positive hydrophobic effect, whereas substituents
on the phenyl group exert complex electronic and
steric effects. Leonard and Roy19 analyzed the binding
affinity of 1-(3,3-diphenylpropyl)-piperidinyl amides
and ureas for the CCR5 receptor. They found that
electron-withdrawing substituents at the para posi-
tions of the biphenyl portion enhance affinity, that
there is an optimum octanol–water log P of 5.58,
and that complex steric effects also affect affinity.
Thus, QSAR has been recently applied to both re-
ceptor affinity and enzyme inhibition potency.

Quantitative structure–activity relationships is
widely used in the analysis of toxic endpoints of
molecules.20 A book devoted to the QSAR of mu-
tagens and carcinogens was published in 2003.21

In addition, recently investigated end points include
hERG,22 the common cold,23 and melanoma.24

Although it is powerful, traditional QSAR has
several inherent limitations: Hammett σ constants
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may not accurately describe the electronic effect of
substituents on the biological interactions of interest.
Frequently, the σ values are not available in compila-
tions, but one must guess at a value or perform a quan-
tum chemical calculation. Molecular shape is poorly
described with transferable constants. It can be chal-
lenging to apply the approach to a set of molecules
that do not share a common core. Finally, multiple
regression analysis is not appropriate to use if the
molecular descriptors are correlated or if the response
is categorical such as ‘mutagenic’ or ‘non mutagenic’.
Traditional QSAR and any method that examines the
quantitative relationship between chemical structure
and biological activity can be puzzled by activity cliffs
in which a seemingly minor structural change can lead
to a dramatic difference in potency.25

In addition to the inherent limitations of QSAR,
there are also pitfalls to its appropriate use. One prob-
lem is the omission of outliers: Such outliers from an
equation can provide valuable information if a good
reason for the lack of fit can be suggested,26,27 but
thoughtlessly omitting outliers can lead to equations
with no predictive value. Another pitfall is to inter-
pret a fit to a QSAR equation as a proof that a par-
ticular physical property contributes to potency while
ignoring the possibility that the property in question
may be correlated with another that equally well fits
the data. The report by Vyas and coworkers provides
the example of multiple explanations from different
QSARs of the same data set.14 A trivial example is
that in a series of alkyl analogues, hydrophobicity is
highly correlated with the following two properties
that are usually interpreted to indicate steric effects:
molar refractivity and the STERIMOL L parameter.
If a data set was not designed for QSAR analysis, it
may not be possible to overcome such correlations
between properties.

APPROACHES THAT OVERCOME THE
LIMITATIONS OF TRADITIONAL
QSAR

The limitations of traditional QSAR did not stop
development in the field, but instead inspired many
workers to devise solutions to the problems. These
approaches involve inventing more easily calculated
descriptors of molecules, specific solutions to de-
scribe differences in molecular shape within a set of
molecules, and expanding the repertoire of statistical
and machine learning methods to analyze the data
sets. These various new methods retain the essence of
traditional QSAR, that is, the use of a computer to de-
velop a model that relates the chemical and structural
features of molecules to their biological properties.

It is now easy to calculate from the structure
diagram not just octanol–water log P,28–30 but thou-
sands of molecular descriptors to use for QSAR.31

For example, such descriptors may be derived from
molecular connectivity analysis,32 counts or recogni-
tion of particular fragments in a molecule,33,34 or spe-
cific fingerprints originally designed to aid substruc-
ture searching.35 Although such descriptors might not
provide the clear relationship between physical prop-
erties and potency, many have been found to have
predictive value.36

Today there are many sources of readily avail-
able software to develop a model for the relationship
between molecular and biological properties. For ex-
ample, Excel provides for the calculation of a regres-
sion equation; the community-supported R statisti-
cal package provides access to hundreds of statistical
and visualization methods; and Weka provides many
machine-learning and data-mining methods.37,38

Since the pioneering development of Com-
parative Molecular Field Analysis,39 3D QSAR
methods40–42 have become a valuable approach to
the analysis of SARs. Typically, they require choos-
ing a conformation for the calculations. This may rely
on explicit or implicit superposition of the molecules
over the atoms proposed to be essential for recog-
nition by the target biomolecule,43–45 or a rule-based
method for generating conformations.46 The resulting
shape descriptors might be calculated from aligned
molecules, for example aligned in a lattice,39 or from
the conformation itself.47,48 However, there are also
methods that select the conformation as part of the
QSAR.49,50

The final difference between traditional QSAR
and that practiced today is that although the com-
puter is still used to derive a model, the model is not
necessarily derived by regression analysis. Instead,
one may fit and test the model with various neural
networks,51,52 partial least-squares regression,53

support vector machines,54,55 etc. The approach has
also been broadened to include classification methods
(e.g., active vs inactive) with discriminant analysis,56

recursive partitioning,57 Bayesian classifiers,58

etc.
The pitfalls of QSAR noted in the previous sec-

tion extend to these expanded methods. In addition,
early studies by Topliss and coworkers59 highlighted
the problem of examining too many potential descrip-
tors when using regression analysis. This represents a
potential problem with QSAR based on many calcu-
lated properties. The pitfall of using many descrip-
tors has led to the use of various validation meth-
ods to assess the confidence that one might have in a
model.60,61
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A more serious issue with some of the ap-
proaches is that the easy interpretation and use of
the models is not forthcoming—hence the interest in
‘inverse QSAR’ methods that design molecules to fix
a complex equation.62

Finally, a particular pitfall of 3D QSAR is the
tendency to believe that the results shed direct insight
into the structure of the macromolecular binding site:
Again, artificial correlations may obscure the true ba-
sis of the statistical result.

THE USE OF QSAR PREDICTIONS BY
REGULATORY AGENCIES

A major validation of the utility of QSAR models and
impetus for the improvement in methodology is the
recognition that they have enough signal to be use-
ful for setting priorities of regulatory agencies. Both
the United States Food and Drug Administration (US
FDA) and the European Union promote the use of
QSARs to identify chemicals of concern.

Thus, the US FDA implemented CRADA (Con-
fidential Research and Development Agreements) to
provide software vendors with validated toxicity data
to support the development of QSARs. The resulting
QSARs are validated by the US FDA.20,63–66 Impor-
tantly, they focus on the complementarity between
models developed from the same data but with dif-
ferent descriptors or statistical methods. They also
address the important issue of the applicability do-
main, which molecules should be predicted, of the
models.

The European Union created the European
Chemicals Agency to administer REACH (Registra-
tion, Evaluation, Authorisation and restriction of
CHemicals). It states that for each chemical circulat-
ing in the European territory, a complete dossier on
physicochemical, biological, and toxicological prop-
erties has to be compiled.67 QSAR results can be used
provided that (1) they are derived from a (Q)SAR
model whose scientific validity has been established,
(2) the substance falls within the applicability domain
of the (Q)SAR model, (3) the results are adequate for
the purpose of classification and labeling and/or risk
assessment, and (4) adequate and reliable documen-
tation of the applied method is provided.68

THE SPECIAL ROLE OF
HYDROPHOBICITY ON THE
BIOLOGICAL PROPERTIES OF
MOLECULES

Perhaps the most pervasive influence of QSAR has
been the recognition that the octanol–water log P of

a molecule influences not just its penetration through
membranes, but also its affinity for the biological tar-
get. At the same time that Hansch decided to use
octanol–water log P as a property that might be re-
lated to potency, biochemists recognized the key role
that hydrophobic forces play in protein stability.69 In
fact, hydrophobicity is thought to be the main driv-
ing force for moving a molecule from water into a
binding site.70,71

That the importance of the log P of a molecule
has penetrated the thinking of medicinal chemists is il-
lustrated by the fact that an August 2011 search of the
Journal of Medicinal Chemistry yielded 993 hits on
the terms ‘octanol and water and log’. However, log
P is not relegated to medicinal chemistry as demon-
strated by the numbers in Table 1. In fact, the journal
Environmental Science and Toxicology contains the
most articles (1422) that discuss octanol and water.
Note also that, in accord with Fujita’s influence on
the field, the Journal of Agricultural and Food Chem-
istry contains more than 300 articles that discuss the
issue.

Table 1 shows that the importance of octanol–
water log P continues to be a concept of importance
in the articles published from January 2010 to July
2011. At least 22 scientific journals publish more than
10 articles that include these terms. Of those articles
from journals published by the American Chemical
Society, 113 are considered to be related to environ-
mental concerns, 99 to medicinal chemistry, 55 to
biochemistry, 27 to agricultural chemistry, and 25 to
toxicology. This again illustrates the reach of one of
the central concepts of QSAR into many areas of in-
vestigation into the biological effects of chemicals.

The value of log P to biological research is un-
derscored by the development of many predictors of
this property. Although CLOGP is an expert system,72

many of the other programs derive the predictions
from the same type of descriptors and statistics used
by QSAR.73,74

Log P is a key property for triaging hits from
high throughput screening and combinatorial chem-
istry. Which of the active hits is a better choice for lead
optimization? The octanol–water log P is frequently
one criterion or it might be combined with potency as
in the ligand-lipophilic efficiency index, LLE (LLE =
pIC50–log P).75 In addition, the popular rule-of-five
for predicting permeability includes log P as one of
its four criteria.76 The Golden Triangle considers the
distribution coefficient D, which is correlated with
log P within a series of constant pKa.77 Log P is also
a prime factor in models for ADME78–80 and brain
penetration.81,82 In such models, notion of an opti-
mum is often implied, if not made explicitly.
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TABLE 1 Number of Articles that Include the Words ‘Octanol’ and ‘Water’ and ‘Log’

Articles Published From
Journal Total Number of Articles January 2010–July 2011

Environmental Science & Technology 1422 145
Journal of Medicinal Chemistry 993 87
Journal of Pharmaceutical Sciences 735 52
European Journal of Medicinal Chemistry 165 51
Journal of Agricultural and Food Chemistry 310 42
Journal of Chemical Information and Modeling 357 32
Bioorganic & Medicinal Chemistry 255 31
Medicinal Chemistry Research 2004–2011 39 31
Journal of Chemistry Engineering Data 114 22
Molecular Informatics (incorporating QSAR & Combinatorial Science

and Quantitative Structure–Activity Relationships)
292 20

Journal of Environmental Monitoring 66 20
Langmuir 124 19
Analytical Chemistry 275 18
Journal of Physical Chemistry B 196 18
Journal of Physical Chemistry C 196 18
Molecular Pharmaceutics 58 17
Chemistry Research in Toxicology 89 16
Bioconjugate Chemistry 68 13
Dalton Transactions 42 13
ACS Symposium Series 184 12
Industrial Engineering Chemistry Research 112 11
Chemistry Reviews 84 11

CONCLUSIONS

Although the traditional Hansch–Fujita QSAR ap-
proach continues to be practiced today, the semi-
nal papers inspired a plethora of other approaches

to understand biological SARs, an appreciation of
the power of such approaches by regulatory agencies,
and the widespread understanding of the importance
of the octanol–water log P to the biological potency
of compounds.
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