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ABSTRACT: A novel methodology was developed to build
Free-Wilson like local QSAR models by combining R-group
signatures and the SVM algorithm. Unlike Free-Wilson
analysis this method is able to make predictions for
compounds with R-groups not present in a training set.
Eleven public data sets were chosen as test cases for comparing
the performance of our new method with several other
traditional modeling strategies, including Free-Wilson analysis.
Our results show that the R-group signature SVM models
achieve better prediction accuracy compared with Free-Wilson
analysis in general. Moreover, the predictions of R-group
signature models are also comparable to the models using
ECFP6 fingerprints and signatures for the whole compound. Most importantly, R-group contributions to the SVM model can be
obtained by calculating the gradient for R-group signatures. For most of the studied data sets, a significant correlation with that of
a corresponding Free-Wilson analysis is shown. These results suggest that the R-group contribution can be used to interpret
bioactivity data and highlight that the R-group signature based SVM modeling method is as interpretable as Free-Wilson analysis.
Hence the signature SVM model can be a useful modeling tool for any drug discovery project.

■ INTRODUCTION

The pharmaceutical industry constantly strives to decrease the
time from lead generation through lead optimization (LO) to
clinical development as well as finding ways to improve the
quality of the compounds progressed.1−3 The drug discovery
project team needs to constantly reflect on incoming data and
judge whether these will change the order of ranking of current
best compounds and reprioritize project activities accordingly.
The concomitant design and synthesis of new compounds is a
complex, time-consuming task, in which the medicinal chemist
seeks to balance potency, off-target interactions, pharmacoki-
netic properties, and toxicity. A critical step in project
progression is to select the right compounds to synthesize
from an almost infinite number of virtual compounds. Thus,
computational models that predict compounds with the right
properties are highly desirable. Quantitative structure−activity
relationship (QSAR) or quantitative structure−property
relationship (QSPR) approaches approximate the function
between molecular properties and the corresponding biological
end points of interest using multivariate statistics.4 The
molecular properties can be 1D (e.g., molecular weight, logP,
property count, or structural descriptors), 2D (e.g., structural
keys or hashed fingerprints), or 3D descriptors (CoMFA,5

pharmacophore fingerprints). Linear (e.g., Partial Least Square
and Multi Linear Regression) and nonlinear methods (e.g.,

Random Forest, Neural Network, and Support Vector
Machines) have been extensively used to develop QSAR, and
numerous models have been built to explain and predict
biological activity.6−11 The Free-Wilson approach was one of
the first mathematical techniques developed for the QSAR for a
series of chemical analogues.12−14 It does not require any
substituent parameters to be defined, and only the biological
activity is needed. This is in contrast to Hansch analysis,15,16

where physicochemical properties are correlated with biological
activity values. The basic idea in the Free-Wilson approach is
that the biological activity of a molecule can be described as the
sum of the activity contributions of its specific substructures
(parent core and the corresponding substituents (R-groups)),
and the major advantage of this method is its interpretability.
Although the Free-Wilson methodology has provided fruitful
transparent models17−24 for a range of experimental observa-
tions, it is hampered by the limitations in prediction scope. The
training set needs to be properly designed to be able to predict
a modeled property in an enumerated library for all R-group
combinations, and naturally it does not provide explorative
prediction for novel R-groups which are not present in the
training set. Hence, we have explored bitmap fingerprint based
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methods that can extend the scope of Free-Wilson models
without forfeiting its interpretability. Molecular fingerprints are
representations of chemical structures originally designed to
assist in chemical database substructure searching, similarity
searching, nearest neighbor analysis, clustering and classifica-
tions. DayLight,25 Unity,26 MDL27 fingerprints, and the more
recently developed Pipeline Pilot extended-connectivity finger-
print (ECFP)28 are examples of this type of descriptor. Besides
these commercially available fingerprint methodologies, there is
a freely available atom signature descriptor (signatures)
developed by Faulon et al.29 Signatures describe, similar to
ECFPs, circular fragments around each atom in a molecule. The
circular fragments are represented as trees described by strings
similar to the SMILES notation, but they are also canonical
which allows for direct comparison between fragments within
different molecules regardless of how the fragments are
represented.
In the present study, we describe a new methodology to

combine the support vector machine (SVM) algorithm and
signature descriptors generated for R-groups around a common
scaffold. This methodology inherits the key feature of Free-
Wilson analysis, which is decomposition of bioactivity into R-
group contributions and at the same time overcomes the
prediction scope problem of the Free-Wilson method.
Nonlinear SVM models are often regarded as noninterpretable
black box models.30 However, based on our previous work on

interpreting machine learning models,31 we have derived the
concept of signature-based model gradient and utilize this as a
measurement of signature contribution in the model. Here we
report the QSAR model performance on eleven different data
sets. The chosen data sets were retrieved from the GOSTAR
databases32 and were selected to represent different target
classes, with consistent biological data from the same source
and a sufficient number of data points to allow for solid
statistics. At the same time, we also compared the predictive
power of models using the Free-Wilson methodology, various
SVM models using ECFP fingerprints, signatures generated
from either full compounds or R-groups and traditional
descriptors which represent bulk molecular physicochemical
properties. Our study shows that fingerprint/signature based
SVM models in general have higher prediction accuracy than
Free-Wilson models. Comparing with SVM models generated
from molecular signatures (of the full compound), a benefit of
Free-Wilson like SVM models employing R-group signatures is
that the relative contribution from individual R-groups to the
observed activity can be derived and therefore provide the
similar interpretability as the Free-Wilson method.

■ METHODS

Data Set. In total, eleven experimental data sets were used
in the current study, taken from published chemical patents and
extracted from the GOSTAR database.32 The scaffolds of these

Figure 1. The scaffolds and R-groups for the data sets used in the study.
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eleven compound libraries are shown in Figure 1, and detailed
information for each data set is listed in Table 1. Each data set
was randomly split into training and test sets with a ratio of 4:1
by a Perl script33 for model validation purposes.
Modeling Methods. Two different molecular fingerprint

methods were used in the current study. One fingerprint
method is the molecular signature developed by Faulon et al.29

The signature descriptors were calculated using an internal
AstraZeneca implementation based on the publically available
Openbabel toolkit.34 The generated signature for each structure
is a sparse vector, in which each bit is an integer representing
the occurrence of a specific signature in a compound or R-
group. Atom signatures were computed for each molecule in a
data set of heights from zero to three. Thus for each atom in a
molecule four atom signatures were generated. Both full
molecular signatures and R-groups signatures were generated to
compare their performance. The R-group signatures serve as a
direct comparison with the Free-Wilson method, since both
methods are characterizing the R-groups for a focused library.
The pipeline pilot ECFP6 fingerprint35 with 1024 bits was used
as another fingerprint method to build QSAR models. For
ECFP6, only full compound fingerprints were generated for
model building. Besides the fingerprint based descriptors, a set
of bulk property based descriptors which comprise 196 2D/3D
descriptors (referred to as the AZdesc set), including
descriptors for molecular size, lipophilicity, hydrogen bonding,
electrostatics, and topology were calculated with Clab, the
AstraZeneca in-house descriptor engine. The details of the
AZdesc descriptors are described elsewhere.36−38 The R-group
mapping and extraction was done by using a in-house software
fRGS39 to automatically strip out all R-groups based on a user
supplied scaffold for the input molecular structure file. In the
case of symmetrical substituents, assignments were done in
such a manner that groups having the largest number of atoms
were mapped in the same R-group position. Finally the R-group
stripping was manually checked for consistency.
Support vector machine (SVM) is a machine learning

method commonly used to build QSAR models.40,41 In SVM
learning42,43 a hyperplane is constructed, which discriminates
between the data points of distinct classes (binary SVM) in
such a way that the margin between the classes is maximized.
The final position and orientation of the hyperplane is defined
by a subset of training vectors, the so-called support vectors. In
the current study, the epsilon-SVR algorithm implemented in
the open source program LIBSVM44 was used to build SVM
models. The commonly used radial basis function kernel was
employed during model building. Optimal Gamma and C

parameters obtained from a grid search for the highest cross-
validation accuracy were utilized in the final SVM models.
The Free-Wilson modeling was carried out using the Fit

Model function of the multilinear regression module in JMP,45

which in essence is the same as the original Free-Wilson
method. The only difference is the different definition of
symmetry equation, which results in different intercept and
coefficients of the multilinear regression equation, but the
predicted values are the same. To compare with the Free-
Wilson method, we combined the LIBSVM and R-group
signature descriptors to build local models. In the current study,
the correlation coefficient R2, RMSE, and the cross-validated
correlation coefficient Q2 obtained by a 10-fold cross-validation
process were assessed for all the models, and all these statistical
analysis were performed in JMP.
It is also interesting to see how models based on

physicochemical properties perform on the selected data sets.
We therefore used bulky descriptors of the full compound to
build QSAR models, and due to the inability of LIBSVM to
handle missing values and distinguish different descriptor value
types another SVM package implemented in the in-house
machine learning package AZOrange46 was used (referred to as
AZO_SVM) as the modeling algorithm for convenience. QSAR
models were built by using the AZO_SVM method with the
AZdesc descriptor set and compared with Free-Wilson models
and other fingerprint based models.

Signature and R-Group Contributions. Any QSAR
model is an approximation of the relationship between
biological activity and compound characteristics (descriptors)
and can therefore be viewed as a mathematical function.
Different machine learning methods have different ways of
deriving these approximations, but they can always be described
by Taylor series expansions. The gradient of a function in a
point tells how this function behaves (steepness of increase or
decrease) in the neighborhood to that point, and it can be
calculated for any sufficiently smooth function; this corre-
sponds to the zero- and first-order terms in a Taylor series.
Each gradient component of a QSAR model indicates how
significant an impact the descriptor component has on the
bioactivity prediction. Hence, it is a measure of the
contribution/importance of each descriptor in the QSAR
model.
Carlsson et al.31 have previously published on how to

calculate the discrete gradient to measure the contribution of
individual signature descriptors in an Ames mutagenicity SVM
model. The same methodology is applied here to obtain the jth
component of the discrete gradient for the signature SVM
model in each compound according to eq 1:

Table 1. Data Sets Used in the Study

data set compound description data type nr. training set nr. test set data source

CDK5 CDK5 inhibitor IC50 184 46 US 20040224958 A1
IL4 IL-4 inhibitor IC50 532 133 WO 2006/133426 A2
JAK1 JAK1 inhibitor Ki 736 185 WO 2011/086053 A1
MAPK14 P38 alpha inhibitor IC50 488 122 EP 1500657 A1
PIK3CA PI3K alpha inhibitor IC50 243 61 WO 2010/139731 A1
TYK2 TYK2 inhibitor Ki 736 184 WO 2011/086053 A1
F7 factor VIIa inhibitor IC50 292 73 US20050043313
GNRHR gonadotropin-releasing hormone receptor antagonist IC50 159 39 WO20020358
MGLL monoacylglycerol lipase inhibitor IC50 982 246 WO2010124082
MMP2 matrix metalloprotease 2 inhibitor IC50 439 110 WO2005042521
PRSS2 trypsin II inhibitor IC50 271 68 US7119094
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Here hj is the step size of increment of the jth descriptor, x, and

it is set as 1 throughout the study, and f is the QSAR function.

The R-group contribution in each compound can further be

calculated by adding up all gradient components corresponding

to the signatures which are comprised in the R-group as shown

in eq 2:

∑= ×
=

C t
Df
Dxn

j

k

j
j1 (2)

Here tj is the occurrence of the jth signature in the nth R-group
of the compound, and Cn is the contribution of the R-group for
one particular compound to bioactivity. It should be borne in
mind that Cn does not represent the actual contribution to
binding affinity, but the relative importance of the R-group and
thus the R-groups can be ranked accordingly. Finally each R-
group contribution for the model is an average value over the

Figure 2. The distribution of bioactivity data for the used data sets.
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whole training set. To validate the R-group contribution
generated from the SVM model gradient, a linear regression
analysis was carried out to relate the gradient based R-group
contributions with the R-group contributions from the Free-
Wilson analysis.

■ RESULTS AND DISCUSSIONS

The primary objective of this article is to present a novel R-
group QSAR methodology that overcomes the drawback of the
Free-Wilson method on the scope of predictions without

sacrificing the model interpretability. The eleven public data
sets which were chosen comprise a variety of chemical scaffolds
and biological targets. Furthermore, the size of the data sets is
also sufficiently large to allow for solid statistical comparison
between the chosen QSAR methods.

Model Performance. The distribution of bioactivity data
for the eleven data sets is shown in Figure 2. Several types of
models were built for each data set, including models built on
ECFP6 fingerprints (with 1024 bits), molecular signatures,
signatures for R-groups only, and conventional physicochemical
descriptors. The ECFP6 fingerprint with 2048 bits was also

Table 2. Model Performance for the Whole Test Sets

Mol_ECFP6_SVMa Mol_Sign_SVMb FWc Rgp_Sign_SVMd AZdesc_AZOSVMe

data set R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE

CDK5 0.59 0.38 0.62 0.36 0.57 0.38 0.58 0.38 0.38 0.47
F7 0.62 0.54 0.74 0.44 0.66 0.46 0.73 0.46 0.64 0.52
GNRHR 0.58 0.57 0.53 0.60 0.04 1.09 0.51 0.61 0.6 0.56
IL4 0.68 0.36 0.67 0.36 0.56 0.42 0.64 0.38 0.65 0.37
JAK1 0.5 0.49 0.59 0.44 0.81 0.32 0.62 0.42 0.35 0.56
MAPK14 0.3 0.61 0.37 0.59 0.20 0.63 0.38 0.59 0.36 0.59
MGLL 0.46 0.71 0.59 0.62 0.53 0.65 0.57 0.63 0.45 0.72
MMP2 0.55 0.68 0.65 0.59 0.97 0.16 0.66 0.59 0.23 0.88
PIK3CA 0.41 0.34 0.46 0.32 0.43 0.26 0.53 0.3 0.33 0.36
PRSS2 0.69 0.36 0.73 0.34 0.64 0.36 0.67 0.37 0.67 0.37
TYK2 0.56 0.5 0.62 0.47 0.75 0.42 0.62 0.47 0.58 0.49

aLIBSVM model based on ECFP6 fingerprints. bLIBSVM model based on molecular signatures. cFree-Wilson model, it cannot make prediction for
the full test set. dLIBSVM model based on R-group signatures. eAZOrange SVM model based on AZdescriptor set.

Table 3. Comparison of Model Performance on Free-Wilson Predicted Test Seta

Mol_ECFP6_SVM Mol_Sign_SVM Rgp_Sign_SVM FW AZdesc_AZOSVM

data set nr. compd R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE

CDK5 44 0.61 0.37 0.62 0.36 0.62 0.36 0.57 0.38 0.38 0.46
F7 44 0.61 0.49 0.69 0.43 0.7 0.42 0.66 0.46 0.62 0.48
GNRHR 10 0.87 0.41 0.82 0.48 0.65 0.66 0.04 1.09 0.73 0.58
IL4 120 0.74 0.32 0.72 0.33 0.72 0.34 0.56 0.42 0.74 0.32
JAK1 66 0.57 0.48 0.7 0.4 0.77 0.35 0.81 0.32 0.48 0.53
MAPK14 17 0.22 0.62 0.3 0.59 0.2 0.62 0.2 0.63 0.24 0.61
MGLL 115 0.52 0.65 0.65 0.56 0.6 0.6 0.53 0.65 0.4 0.73
MMP2 24 0.33 0.77 0.9 0.3 0.94 0.23 0.97 0.16 0.08 0.9
PIK3CA 42 0.53 0.24 0.57 0.23 0.57 0.23 0.43 0.26 0.3 0.29
PRSS2 38 0.76 0.3 0.77 0.29 0.72 0.32 0.64 0.36 0.61 0.38
TYK2 70 0.67 0.49 0.74 0.44 0.76 0.42 0.75 0.42 0.61 0.53

aThe model names are the same as for Table 2.

Table 4. 10-Fold Cross-Validation Results for Different Modeling Strategiesa

Mol_ECFP6_SVM Mol_Sign_SVM Rgp_Sign_SVM AZdesc_AZOSVM

data set Q2 RMSE Q2 RMSE Q2 RMSE Q2 RMSE

CDK5 0.54 0.45 0.62 0.41 0.58 0.44 0.58 0.36
F7 0.73 0.50 0.75 0.48 0.74 0.50 0.70 0.53
GNRHR 0.49 0.62 0.47 0.64 0.44 0.65 0.46 0.64
IL4 0.64 0.34 0.63 0.34 0.63 0.34 0.58 0.36
JAK1 0.58 0.47 0.58 0.47 0.63 0.43 0.50 0.51
MAPK14 0.34 0.64 0.31 0.66 0.37 0.62 0.28 0.66
MGLL 0.51 0.69 0.60 0.62 0.54 0.66 0.49 0.70
MMP2 0.61 0.59 0.67 0.55 0.70 0.53 0.55 0.64
PIK3CA 0.37 0.38 0.40 0.38 0.47 0.35 0.27 0.41
PRSS2 0.60 0.42 0.65 0.39 0.60 0.42 0.61 0.42
TYK2 0.60 0.51 0.64 0.47 0.68 0.44 0.61 0.49

aThe model names are the same as for Table 2.
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tested, and the model performance was found to be very similar
to the models using 1024 bits; therefore, only results of 1024
bits are reported. The model performance on all compounds in

the external test sets and on the subsets of the test sets which
were predicted by the Free-Wilson models are shown in Tables
2 and 3, respectively. To check the robustness of the modeling
strategies, a 10-fold cross-validation process was done on all the
SVM models, and the results are shown in Table 4. It can be
seen that for all the SVM models, the 10-fold cross-validation
Q2 is generally at the same level with that of the randomly
picked test set. This means that the randomly selected test sets
do not bring in any specific bias.
In most cases the model performance drops from the Free-

Wilson subset to the complete test set independent of the
descriptor set. The R2 decreases in nine out of eleven R-group
SVM models by 5−30% for the complete test set compared to
the Free-Wilson subset. The largest drop is for the MMP2
model where R2 decreases from 0.94 to 0.66. The latter is in
line with the Q2 (0.7) from the 10-fold cross-validation, which
may indicate that the structural information of the Free-Wilson
subset is better covered in the training set and results in a
deceptively high correlation. A similar scenario is seen for both
the molecular fingerprints and ECFPs. In F7 and MAPK14
models, comparing with the Free-Wilson subset, the R2

Table 5. Linear Regression Results between R-Group
Contributions from SVM Models and That of Free-Wilson
Analysis

data set nr. compd nr. R-groups R2 RMSE

F7 292 204 0.62 0.47
JAK1 736 573 0.50 0.47
TYK2 736 576 0.71 0.32
CDK5 184 53 0.33 0.29
GNRHR 159 157 0.005 0.44
IL4 532 241 (11a) 0.42 0.38
MAPK14 488 476 0.0007 0.94
MGLL 982 681 (3a) 0.35 0.79
MMP2 439 473 0.42 0.66
PIK3CA 243 122 0.52 0.32
PRSS2 271 166 0.64 0.37

aOutliers which were excluded in the regression analysis.

Figure 3. The correlations between R-group contributions from Free-Wilson models and R-group signature models for (a) F7 and (b) JAK1 data
sets. The y axis shows the R-group contribution of the Free-Wilson model, and the x axis shows the R-group contribution of the signature model.
Data points are colored according to their R-group positions. The regression analyses were done for each individual R-group position and all R-
groups, respectively.
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increases for the full test set. For the MAPK14 set the R-group
SVM model performs rather poorly, and the increase of
prediction R2 from 0.2 to 0.38 merely reflects the incomplete

statistics of the Free-Wilson subset which only covers 17 out of
the 122 compounds in the full test set. Also in this case the Q2

(0.37) of the 10-fold cross-validation is in line with that of the
full external test set. The R2 of the F7 model has a modest
improvement for the full test set and is in agreement with the
Q2 in 10-fold cross-validation for the training set. The results
are similar for the ECFPs and molecular signature models.
Further analysis on the Free-Wilson test set results reveals that
the molecular signature model performs best or equally best on
5 data sets followed by the R-group signatures and ECFPs

Figure 4. Comparison of R-group contributions in the SVM models and the Free-Wilson models for (a) JAK1 and (b) F7 data sets. In each plot the
x axis corresponds to various R-groups, and the y axis refers to their contributions in the model. The R-groups are colored according to their
substituent position on the core structure.

Figure 5. The box plot of gradients for the top 10 signatures in the
JAK1 SVM model. The y axis shows the model gradient value, and the
x axis shows the signature ID which the gradient refers to. The text in
the bracket of the x axis label indicates if the signature is for the
training or test set. The band near the middle of the box is the median
value of the gradient distribution. The bottom and top of the box refer
to lower and upper quartiles, the bottom and upper whisker
correspond to lower and upper adjacent value, and the circles refer
to outliers. The red boxes are meant for signatures from the training
set and blue boxes for the test set. The number above the box refers to
the occurring frequency of the signature in the compound set.

Figure 6. The box plot of gradients for the top 10 signatures in the F7
SVM model. The meaning of the labels and legend are the same as for
Figure 5.
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being best or equally best on 4 and 2 targets, respectively. Free-
Wilson models perform best on two data sets, and the AZdesc
model performs equally best with ECFPs on the IL4 data set.
The picture remains quite similar when analyzing the
performance on the full test set. The full compound and R-
group signature models perform best or equally best on 5
targets, respectively. The ECFPs is the best performing model
on the IL4 set, whereas the AZdesc model performs best on the
GNRHR set. In summary, four observations can be made: (i) It
seems that the models built on fingerprints (molecular
signatures, R-group signatures, and ECFP6 fingerprints)
generally have similar quality in terms of prediction accuracy
on the external test sets. (ii) Physicochemical property-based
models generally perform worse than that of fingerprint-based
models, and it is probably due to the fact that fingerprints can
catch some subtle chemical functional groups required for
ligand binding which are not encoded in physicochemical
property-based bulky descriptors. (iii) Signature models seem,
in most cases, to be slightly better than the models using
ECFPs. (iv) The molecular signature models seem to perform
slightly better than the R-group signatures which may indicate
that some interaction terms with the scaffold are important.
However, in most cases the R-group model is of comparable

quality. This implies that the full compound fingerprint already
comprise the information encoded in R-group signatures, but
from a model interpretation perspective, the R-group signature
models have significant advantage and will be preferred since
the influential signature bit for the model can be traced to
detailed substitution positions. This is impossible to identify in
full compound models if there are certain functional groups
which occur in the core of the structure part and multiple R-
group positions simultaneously.
Provided that bioactivity data are linearly related to the R-

groups in the Free-Wilson analysis and the fingerprints in the
SVM model, both models should in theory perform similarly.
As we have discussed, Free-Wilson models can only make a
prediction on a subset of the full test set, and their
performances are listed in Table 3. The prediction results of
all other models on the same test set are also given in Table 3,
and it can be seen that among the 11 data sets, only in two
cases (JAK1 and MMP2 data sets) Free-Wilson models
perform best, whereas in all other cases, their performances
are worse than fingerprint based methods. If we take a closer
look at the JAK1 and MMP2 cases, the performance of R-group
signature models for JAK1 (R2 = 0.77) is actually comparable to
that of Free-Wilson models (R2 = 0.81), and for MMP2 it is

Figure 7. Top 10 R-group signatures for (a) JAK1 and (b) F7 SVM models. Each signature is mapped on an example R-group existing in the training
set. In the label text of each structure, the signature ID is listed at the beginning, the text in the bracket refers to the substituent position which the R-
group belongs to, and the floating number is the average gradient value for the signature in the training set. The red atom refers to the center atom of
the signature, and green atoms correspond to the neighboring atoms which are within three bond lengths to the center atom. The Xe atom here
refers to the attachment point for the R-group.
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0.94 and 0.97, respectively. From Table 3, it can also be seen
that in most cases the models with bulky descriptors based on
molecular physicochemical properties performed worse than
the fingerprint models. The GNRHR models are a striking
exception, where all SVM models (including fingerprint and
bulky descriptor models) perform well (R2 = 0.65−0.87); the
Free-Wilson does not provide a meaningful model (R2 = 0.04).
This indicates that there may be a nonlinear relationship which
the Free-Wilson method cannot handle. Overall we can see that
fingerprint based models (especially for the R-group signature
model) perform either better than or comparable to Free-
Wilson models and at the same time have the advantage of
being able to predict beyond the training set.
R-Group Contributions of SVM Models. As we have

emphasized, one major benefit of Free-Wilson analysis is that
the model can be interpreted by examining the contribution for
each R-group, which provides clear and straightforward
guidance for the medicinal chemist to design new compounds.
Nonlinear models performs well in predictions but are often
flawed by its lack of interpretability. To overcome this we
introduce the concept of the SVM model gradient. The
R‑group contribution in our method can also be calculated
based on eqs 1 and 2, and should provide similar
interpretability as the Free-Wilson model. A direct way of
validating our R-group contribution is to make a comparison
with the R-group contribution from the Free-Wilson model to
investigate if there is a significant correlation between these two
metrics. Admittedly the R-group contributions in a nonlinear

SVM model are per se not equivalent to the linear contributions
of the Free-Wilson model. However if both models perform
equally well, it strongly indicates that a dominant linear
relationship exists in the data set. Thus, our hypothesis is that
statistically good models imply good correlations between Free-
Wilson and R-group signature contributions. For all the R-
group signature models, R-group contributions were calculated
according to our previous description, and Free-Wilson R-
group contributions were generated with the JMP software. A
linear regression was then carried out to relate both
contribution metrics, and the results are shown in the Table
5 (detailed scatter plots are displayed in Figure S1 of the
Supporting Information). For IL4 and MGLL data sets, 11 and
3 outlier R-groups were removed, respectively, before the linear
regression analysis was performed. Those outliers all have a
quite large Free-Wilson R-group contribution (absolute value
larger than 2.2) comparing with the other R-groups. Much to
our satisfaction, the plots reveal that significant correlations (R2

ranging from 0.33 to 0.71) can be seen between two
contribution metrics in all but the GNRHR and MAPK14
sets. For TYK2, F7, and PRSS2 data sets, good correlations (R2

> 0.6) are obtained. These results show that the R-group
contributions calculated from SVM model gradients do
correlate with the bioactivity data and can be used as a relative
measure of R-group importance. The low correlation in the
MAPK14 set is understandable as both the Free-Wilson and the
R-group SVM model perform poorly (R2 ∼ 0.2) on this data
set. Similarly the lack of correlation in the GNRHR set is a

Figure 8. The top three R-groups which contribute positively (left) and negatively (right) to bioactivity in the JAK1 signature SVM model. The R-
group position and their contribution values are listed. The parent compounds which comprise these R-groups are colored in red.
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consequence of the absence of a predictive Free-Wilson model
for this target and may suggest a nonlinear structure−activity
relationship picked up by the SVM model. The F7 and JAK1
data sets were chosen for a more detailed analysis on the
correlation of the R-group contributions (shown in Figure
3a,b). The data in Figure 3 are color coded according to the
position of R-groups. For both data sets the R-groups are split
into different subgroups according to their substitute positions
on the core structure (shown in Figure 1), and a separate
regression analysis was done to each subgroup. For the F7 set,
the R3, R5 subgroups were skipped due to too few data. In
Figure 3a the correlations of R1 (red), R2 (blue), and R4
(yellow) contributions for the F7 data set are quite spectacular,
and very high correlations are obtained (R2 > 0.8). When all the
R-groups are included in the regression analysis, the R2 drops
down to 0.62. In the JAK1 set the correlation coefficient R2 for
R1 (red) and R2 (blue) subgroups is 0.49 and 0.89, respectively
(shown in Figure 3b), while R2 for all R1 and R2 substituents is
0.5. Although it is unclear why R2 of R1 and R2 subgroups have
such a large difference, the correlation for the R2 subgroup
alone is obviously much better than mixing up R1 and R2
subgroups. Thus, it may suggest that the correlations of R-
group contributions between SVM and Free-Wilson models
could be higher when looking into each substitute position.
In Figure 4 the R-group contributions from SVM and Free-

Wilson models are aligned side by side for comparison.
Notably, the distribution pattern of R2 contribution in the

JAK1 SVM model and R4 contribution in the F7 SVM model
are significantly different from that of corresponding Free-
Wilson models, whereas the other R-groups align well. Most of
the SVM R-group contributions in these two subgroups (R2 in
the JAK1 set and R4 in the F7 set) are negatively shifted
comparing with Free-Wilson models. However, from Figure 3,
we know that these R-group contributions are highly correlated
between the SVM and Free-Wilson models. This implies that
the SVM R-group contribution value does not reflect the
absolute contribution to bioactivity but a relative ranking of R-
group’s contribution instead, and this ranking should better be
applied to R-groups belonging to the same substituent position,
while the Free-Wilson R-group contribution more or less
represents the absolute bioactivity contribution of individual R-
groups. This is actually understandable because the R-group
contributions in Free-Wilson analysis are obtained by linearly
fitting to the bioactivity data, whereas the R-group contribu-
tions in the SVM model are calculated based on model
gradients which are not directly related with bioactivity data.

Model Interpretability for JAK1 and F7 Data Sets.
Another feature of the R-group signature model is that the
contribution can be further decomposed to the signature level
as described in eq 5. Here the JAK1 and F7 data sets are chosen
as examples to demonstrate this. The box plots in Figures 5 and
6 show the distribution of the top 10 signatures in terms of
gradient absolute value for JAK1 and F7 data sets, respectively.
Each plot includes the five signatures making the largest

Figure 9. The top three R-groups which contribute positively (left) and negatively (right) to bioactivity respectively in the F7 signature SVM model.
The R-group position and their contribution values are listed. The parent compounds which comprise these R-groups are colored in red.
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positive contribution to the model and also the top five
signatures contributing most negatively. The detailed structures
of those signatures are shown in Figure 7. In Figure 5, the
gradients for signature no. 1061 and 3109 have much larger
variation than other signatures, and they represent small
fragments which occur frequently in the training set (724 and
464 times). This means that the contribution for these two
signatures depend heavily on their surrounding environment.
While signature no. 900 also occurs frequently in the training
set, its contribution varies much less than signature no. 1061
and 3109. For the F7 data set (Figure 6), all frequently
occurring signatures seem to have much less variation
compared with signature no. 1061 and 3109, respectively, in
the JAK1 training set. The gradient distributions of those
signatures which exist in both training and test sets are also
compared, and it appears that the distributions for the same
signature in both the training and test set are fairly similar.
Figure 7 shows the average gradient values for these top 10
signatures in JAK1 and F7 data sets, respectively, and they
should, in principle, represent the contributions of these
signatures to the bioactivity. Comparing signature no. 622 and
625 in Figure 7a, it seems that these two signatures are quite
similar, but changing the sulfonamide group to amide decreases
the contribution. The gradients values for signature no. 900 and
708 imply that changing the position of the attachment point
on the piperidine ring of the R1 position from the meta
position to the para position may have a positive influence on
the bioactivity. The positive gradient values for signature no.
966, 947, and 962 in Figure 7b suggest that adding an amino
group on the R2 phenyl ring could have a positive effect on
bioactivity. It seems that examining the bioactivity contribution
at the signature level can also provide some useful SAR
information, but it should always be borne in mind that the
gradient value listed in the figure only corresponds to the
signatures which are mapped on the R-group structure in the
figure and does not mean the whole R-group contribution. The
R-group contribution is calculated via summing up the gradient
values of all the signatures contained in the R-group. So when
new R-groups based on the signature contributions are
designed, the R-group contribution should always be calculated
to make sure the final additive effect of the R-group is positive.
The top three R-groups contributing positively and

negatively for JAK1 and F7 sets are displayed in Figures 8
and 9, respectively. For each R-group, one parent compound
structure is also displayed together with its bioactivity data for
clarification. For JAK1 inhibition, three cyclohexane based R1
substitutions have the largest contribution, which is probably
due to the contribution of hydrophobic signatures such as no.
690 and 1061. The three most negative R-group contributions
are related to three large R1 substituents, and compounds
containing these R-groups generally have low activity. For the
F7 set, a guanidine containing R1 group is ranked as the group
which has the largest positive contribution to F7 inhibition. The
second and third positive R2 groups have an amino substituted
phenyl ring, and this is consistent with the signature
contributions shown in Figure 7b. The three most negatively
contributing groups are all R4 substituents. In the top 10
signatures in Figure 7b, there is only one negative signature
which comes from the R4 substituent. Hence, the negative
contributions of those R4 substituents are probably due to
some other negatively impacted signatures. Actually if the
examined signature list is extended to the top 20, there will be
two more negative R4 signatures showing up. Inspecting the

whole data set also shows that compounds having those R4
groups generally have fairly low activity. It is worthwhile to
mention that the current handling of small signatures
containing only one or two atoms is still not accurate enough.
These small signatures appear frequently in compounds, and
their contribution to bioactivity could be different depending
on, for example, how far they are away from the core structure.
One direction for the future development would be to encode
this distance information into signature to further improve the
model, and we will report the progress on this aspect in due
course.
Overall these R-group contribution analysis results show that

the nonlinear R-group SVM model provides similar interpret-
ability as the Free-Wilson analysis and can be an intuitive tool
for medicinal chemists to design new compounds. Moreover,
the R-group SVM models have in general better prediction
accuracy than Free-Wilson models, and by employing the R-
group signature our new methodology has the superiority in
increasing the prediction domain of the test set, which is a key
limitation of Free-Wilson analysis. We may also conclude that
the R-group signature SVM methodology compares well to the
molecular FPs (ECFP and signatures) presented in this work as
well as to the models using the traditional bulk descriptors.
Admittedly, we have not performed an extensive evaluation
using other QSAR methodologies, as this has not been the
purpose of the paper, but we are quite confident that our
approach will perform well in comparison with these methods.
Finally it must be emphasized that this methodology is not
necessarily restricted to signature descriptors, and other types
of structural fingerprints generated from R-groups can also be
expected to be applicable to this method.

■ CONCLUSIONS
Free-Wilson analysis has obvious advantages in local QSAR
models; for example, model interpretability and no need for
substituent parameters.13 However, its application is largely
restrained by the fact that it is not applicable for making
predictions outside the scope defined by the already used
training set R-groups. Here we introduce a novel methodology
to overcome these drawbacks without sacrificing the model
interpretability. We have used the R-group signatures as
descriptors to build nonlinear SVM models. Because of the
more general description of signatures, our method can make
predictions on compounds containing R-groups which are not
present in the training set. The results for the nonlinear SVM
models using either molecular or R-group fingerprints are, in
most cases, as good as or better than the corresponding Free-
Wilson models. Most importantly, the concept of the SVM
model gradient is introduced in the current study as a measure
of individual signature as well as whole R-group model
contributions. The strong correlation between R-group
contributions of the Free-Wilson and the signature SVM
models indicates a dominant linear SAR as requested by the
Free-Wilson method and forms the basis for the comparison of
contribution from R-group signatures and Free-Wilson R-
groups. Our results show that in the majority of the eleven
selected focused data sets, R-group contributions derived from
SVM models demonstrate a significant correlation with Free-
Wilson R-group coefficients. These results highlight that
gradient-based R-group contributions provide clear interpret-
ability to nonlinear SVM models and therefore have the
potential to become a powerful modeling tool with applications
in any drug discovery project.
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