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Abstract
The history of drug metabolism began in the 19th Century and developed slowly. In the mid-20th Century the relationship 
between drug metabolism and toxicity became appreciated, and the roles of cytochrome P450 (P450) enzymes began to be 
defined in the 1960s. Today we understand much about the metabolism of drugs and many aspects of safety assessment in 
the context of a relatively small number of human P450s. P450s affect drug toxicity mainly by either reducing exposure to 
the parent molecule or, in some cases, by converting the drug into a toxic entity. Some of the factors involved are enzyme 
induction, enzyme inhibition (both reversible and irreversible), and pharmacogenetics. Issues related to drug toxicity include 
drug–drug interactions, drug-food interactions, and the roles of chemical moieties of drug candidates in drug discovery and 
development. The maturation of the field of P450 and drug toxicity has been facilitated by advances in analytical chemistry, 
computational capability, biochemistry and enzymology, and molecular and cell biology. Problems still arise with P450s and 
drug toxicity in drug discovery and development, and in the pharmaceutical industry the interaction of scientists in medicinal 
chemistry, drug metabolism, and safety assessment is critical for success.
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Introduction

Much has been written about cytochrome P450 (P450, 
CYP). In this review I will deal with one aspect of P450, 
drug toxicity, and the history of how this developed. Metab-
olism will be discussed in the context of causing (or prevent-
ing) toxicity, aside from drug efficacy per se.

I have attempted to do this from a historical background, 
for a reason. I am not sure that all of the younger scientists 
in the field appreciate the history or the lessons learned, 
and they can be important. I did not enter this research area 
until 1973, so everything discussed before that is what I have 
gleaned directly from others or from the literature. During 
the early days of my career I always seemed to be one of the 

younger members of the P450 field but now I find myself 
one of the older ones, as others retire and start disappearing. 
I would like to share some thoughts about the P450 field, 
focused on drug toxicity, from my own perspective.

Suffice it to say that the story of the application of 
P450 research to the development of new drugs, over the 
past 50 years, has been a remarkable success story. In part 
because of this, the number of drugs recalled by the Food 
and Drug Administration (FDA) in the United States has 
not been high, and apparently none have been approved that 
have proven to cause cancer or birth defects. There is still 
opportunity for improvement, as discussed at the end of this 
article.

Two major themes will appear in this historical perspec-
tive on the relationship of P450s with toxicity. One will 
be that P450s prevent drug toxicity by oxidizing a drug 
to prevent its toxic effects. The opposite side will involve 
P450-catalyzed conversion of drugs to reactive products that 
cause toxicity (Fig. 1, Table 1). Over the top of these two 
over-arching themes will be effects of enzyme inhibition, 
induction, and other matters related to drug-drug interac-
tions (Table 2).
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Early history of drug metabolism

Although the field of toxicology can trace its roots back 
to ancient Greece and to Paracelsus 500 years ago [2], the 
appreciation of metabolism is more recent [3]. synthesis of 
urea [3] was a link between chemistry and physiology, and 
a number of studies on the metabolism of xenobiotics fol-
lowed. These early studies were essentially all with simple 
organic chemicals administered to animals—or humans 
(including Wöhler and other scientists themselves)—such 
as benzene, benzoic acid, and cinnamic acid. The pioneer-
ing work by Baumann, Jaffe, von Mening, Schmiedeberg, 

Thierfelder, Ure, Naunyn, Nencki, Keller, Erdmann, 
Marchand, and others primarily involved conjugations [4, 
5]. Research on simple chemicals continued into the first 
half of the twentieth century and was still focused on con-
jugation reactions, even in the early work of Williams in 
the United Kingdom [4, 6–9].

One can ask why there was only limited investiga-
tion of the fates of drugs then. One of the main reasons is 
that there were really few drugs then, compared to today. 
Organic chemistry was developing, and there was only lim-
ited thought given to the fates of drugs and also very little 
to chronic side effects. Analytical chemistry was primitive 
by today’s standards. As indicated by most of the subjects 
of [9] book Detoxication Mechanisms [9], drug metabolism 
was only beginning to emerge. However, scientists did real-
ize that these enzymatic reactions seen with simple organic 
chemicals also occurred with actual drug molecules, both 
natural products and purely synthetic ones. By 1958 Brodie 
et al. [10] had described a number of in vitro oxidation reac-
tions including deamination, N-dealkylation, O-dealkylation, 
sulfoxidation, and hydroxylation of alkyl groups and aro-
matic rings. These were usually observed with liver micro-
somes and were dependent upon NADPH (then abbreviated 
TPNH) and O2. At this time differences among animal spe-
cies were recognized, as well as sex differences and inhibi-
tion by other drugs (e.g., SKF525A).

Another line of research first reported in the 1950s devel-
oped from reports by Remmer and his associates that admin-
istration of drugs to patients could accelerate the clearance 
of other drugs [11, 12]. Further, a barbiturate could accel-
erate its own disappearance upon repeated administration. 
These studies, along with those of James and Elizabeth 
Miller and their student Allan Conney [13], were among 
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Fig. 1   General paradigm of drug metabolism and bioactivation by P450 enzymes

Table 1   Drugs with black box warnings for hepatotoxicity [1]

Drug Dose (mg/day) Reactive products

Acitretin 25–50 No
Bosentau 125–250 No
Dacarbazine 140–315 Yes
Dantrolene 300–400 Yes
Felbamate 1200 Yes
Flutamide 750 Yes
Gemtuzumab (9 mg m−3) Yes
Isoniazid 300 Yes
Ketoconazole 200 Yes
Naltrexone 50 No
Nevirapine 200 Yes
Tolcapone 300 Yes
Trovafloxacin 100–500 No
Valproic acid 1000–2400 Yes

10/14 = 71%

Table 2   Mechanisms of P450-
related drug-drug interactions

Perpetrator drug Effect on victim drug

Inducer Increased metabolism, lack of efficacy
Inducer Increased bioactivation via a minor pathway
Competitive inhibitor Decreased metabolism, toxicity due to elevated level of drug
Irreversible inhibitor Decreased metabolism, toxicity due to elevated level of drug
Allosteric activator Same as inducer
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the first to show induction of drug metabolism by xenobiotic 
chemicals.

The discovery of P450

By 1960 pharmaceutical scientists had begun to appreciate 
the role of drug metabolism, and most of the research was 
focused on in vivo work with pre-clinical animal models. 
However, basic in vitro research could now be done. Where 
was P450 in all of this?

Reports of spectra we now recognize as P450 had 
appeared in the late 1950s [14, 15]. However, these spec-
tra were not really characterized, and the 1962 report by 
Ryo Sato and his student Tsuneo Omura [16] is generally 
considered the discovery of P450 (termed “pigment 450” 
because of the unusual wavelength maximum at 450 nm for 
the Soret band). This original report was followed by two 
more detailed 1964 papers by Omura and Sato [17, 18]. The 
association of this spectral entity with NADPH-depend-
ent hydroxylation was reported by Cooper, Rosenthal, 
and Estabrook [19] with bovine adrenal microsomes and 
what today is known as the P450 21A2 reaction, steroid 
21-hydroxylation.

Important drugs and toxicity: thalidomde 
and acetaminophen

At this point I will go back chronologically to a drug that 
has set many of the regulatory standards for today. Thalido-
mide was developed by a German company, Chemie-Grü-
nenthal, in 1957 for treatment of morning sickness (nausea) 
in pregnant women. It was used in over 46 countries between 
1957 and 1961 but was never approved by the United States 
FDA, although apparently some did enter the country. Tha-
lidomide caused > 10,000 severe birth defects, particularly 
abnormal limbs and also eye and ear problems, peripheral 
neuropathies, and damaged organ defects (intestinal tract, 
heart, lungs, and kidneys) [20]. It was withdrawn from the 
market in 1961.

This was a tragic case. Why did this happen? The com-
pound had not caused teratogenic effects in rats. The major 
problem was species differences. It was later shown to cause 
defects in rabbits and primates, as well as humans. The dif-
ference in toxicity is somehow due to metabolism, as shown 
subsequently by Williams’ group [21, 22] and later by Gor-
don et al. [23].

The fear of approving a drug that could cause birth 
defects or cancer has dominated US FDA policy to this 
day. Species differences are very much appreciated after 
this lesson with such an unfortunate outcome. If there is 
a “silver lining”, this incident was what really opened the 

field of biochemical/mechanistic toxicology and provided 
the resources needed to study new drugs.

Some developments have occurred with thalidomide 
since then. Many hypotheses (at least 30) have been 
advanced to explain the species-specific teratogenesis. 
Thalidomide is not mutagenic. It is oxidized by P450s 
(2C19, 3A4, 3A5) to reactive epoxides and quinones that 
bind to glutathione and proteins (Fig. 2) [24–28], although 
the rates of oxidation are very slow. Thalidomide also 
produces reactive oxygen species [29], which might be 
synergistic with other damage. One proposed mechanism 
of damage involves binding to the protein cereblon [30] 
although the concentrations used in these experiments 
(300 µM) may be too high to be relevant, in that a typi-
cal Cp,max value (maximum plasma concentration) for tha-
lidomide is ~ 4 µM. In recent years thalidomide has had a 
revival in that it was approved for use in treating erythema 
nodosum leprosum (leprosy) in 1998 and multiple mye-
loma in 2006, and a derivative (lenalidomide) has gone on 
to be a successful drug for treating myeloma.

Acetaminophen (paracetamol, Tylenol®) is a simple 
compound (4-hydroxyacetanilide) that was shown to be 
derived from oxidation of two earlier analgesics, phenace-
tin and acetanilide. It is used widely in the United States 
and Europe, with an estimated 23% of the population using 
it therapeutically at least once a week [31]. However, high 
doses are toxic, and this drug accounts for one-half of drug-
induced liver failures [31]. It is a classic example of Para-
celsus’s axiom “the dose makes the poison” (differentiating 
a medicine from a poison) [2].

A classic series of four back-to-back papers from the 
group of Brodie, Gillette, and Mitchell in 1973 showed that 
acetaminophen was bioactivated to a form that binds cova-
lently to proteins [32–35]. In this series of papers, radioac-
tive acetaminophen was shown to bind covalently to proteins 
in vitro and in vivo. Indices of toxicity were correlated with 
the extent of covalent binding. Subsequent work a number 
of years later implicated human P450s 2E1, 1A2, and 3A4 
in the bioactivation [36], and knocking out P450 2e1 and1a2 
in mice rendered the animals highly protected from acetami-
nophen poisoning [37, 38]. Nelson’s laboratory showed that 
2-electron oxidation of acetaminophen to the iminoquinone 
is involved in the bioactivation process [39, 40] (Fig. 3). 
Many adducted proteins have been identified [41], but it is 
not clear that a single one is responsible for the toxicity. The 
meta congener of acetaminophen (3-hydroxyacetanilide) is 
less toxic, at least in some animal models, which may be 
related to its ability to form ortho-quinones but not the imi-
noquinone [42].
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The “downstream” biological events involved in acetaminophen toxicity are still unclear [43]. Genes impli-
cated in mouse genetic studies [44] have not been replicated 
in human genetic studies [45]. Nevertheless, the roles of 

Fig. 2   Bioactivation of thalidomide [28].  Reprinted with permission from American Chemical Society. G. Chowdhury, N. Maryana, Y. Okada, 
Y. Uno, M. Shimizu, N. Shibata, F. P. Guengerich, and H. Yamazaki, Chemical Research in Toxicology 23, 1018–1024, 2010

Fig. 3   Bioactivation of aceta-
minophen
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P450s in initiation of the damage are quite clear from the 
Gonzalez mouse studies [37, 38].

More developments in the 1970s

The 1970s saw many new developments in the field of drug 
metabolism. The Gordon Conference on Drug Metabolism 
began in 1970 and has been held every year since then 
(except 2020, due to the Covid-19 virus pandemic), bring-
ing together leading scientists from academia, government, 
and the pharmaceutical industry to a pleasant venue in New 
Hampshire every July. (I chaired this meeting in 1988). In 
1976 Testa and Jenner published a popular textbook on drug 
metabolism, Drug Metabolism: Chemical and Biochemical 
Aspects [46], which to a large extent succeeded the 1959s 
edition of Williams’ text Detoxication Mechanisms [47]. 
This book focused more on drugs, on types of metabolism 
that were documented, and was a standard text for a number 
of years.

Extensive studies by Nebert and his associates appeared, 
particularly on the genetics of inducibility of aryl hydro-
carbon hydroxylase in mice. Much of this work was related 
to cancer [48] but there were also some applications with 
drugs. Zoxazolamine metabolism, as measured by paralysis 
time, was related to the loss of the Ah receptor [49]. High 

doses of acetaminophen caused cataracts in mice, and Ah-
nonresponsive mice were protected [50].

Further work from Gillette, Mitchell, and their associ-
ates showed extensions of the acetaminophen story to other 
drugs, e.g., the furan furosemide [51–53]. That is, there was 
metabolic activation (presumably by P450) followed by 
covalent binding. This paradigm (Fig. 3) would be applied 
to numerous drugs (and still is), e.g., diclofenac (Fig. 4) and 
troglitazone (Fig. 5). Although not discussed here, there was 
a counterpart to this generation of reactive intermediates 
of pro-carcinogens to products that could react with DNA 
and cause cancer, as exemplified by the work of James and 
Elizabeth Miller [58] and Bruce Ames [59]. Later the efforts 
to utilize covalent binding to protein as a leading indicator of 
toxicity, especially idiosyncratic toxicity, would be empha-
sized in the pharmaceutical industry [60], although there is 
an appreciation that more is involved (vide infra).

The age of P450s opens

As already mentioned, P450 had been discovered in the 
early 1960s. By the late 1960s the question arose as to 
whether there was a single form of P450, two, or perhaps 
even more. Several lines of evidence suggested that there 
were at least two, on the basis of preferential induction of 
different catalytic activities by individual chemicals and by 
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the appearance of slightly altered but reproducible spectral 
differences [61, 62].

In 1968, the first Microsomes and Drug Oxidations 
conference was held in Bethesda, Maryland, USA [63]. 
Some of the major topics that the speakers discussed were 
whether P450 was synthesized in the rough or smooth 
endoplasmic reticulum, whether there were one or two 
P450s (some questioned whether changes in phospholip-
ids might be responsible for the altered activities), the role 
of cytochrome b5 (Estabrook, Mannering), the purifica-
tion of P450 from rabbit liver (Coon, Sato), the chemi-
cal mechanism(s) of catalysis (Ullrich, McMahon, Uden-
friend, Daly, Witkop, Jerina), and the biological basis of 
P450 induction. Some of these may seem to be unusual or 
esoteric topics today, but that was 53 years ago. Regarding 
induction, one question was whether new enzyme synthe-
sis actually occurs—one must remember that many of the 
techniques we take for granted today did not exist then. 
This meeting is still held biennially (https​://mdo.ki.se).

In 1968 Lu and Coon [64] solubilized liver microsomes, 
separated the P450, NADPH-P450 reductase, and lipid com-
ponents, and mixed these together to reconstitute catalytic 
activity (ω-hydroxylation of lauric acid). Work with this 
system was soon extended to drugs [65]. The purification of 
multiple forms of liver P450 [66] would answer the question 
of multiplicity.

Subsequently a number of individual P450s were purified 
from rabbit and rat liver [66–70] and their activities towards 
a number of drugs were characterized [71, 72]. These bio-
chemical studies facilitated the understanding of many phe-
nomena of in vivo investigations.

However, the work with rats and rabbits showed some 
interesting differences and several scientists realized that 
the human P450s would need to be characterized. At that 
time (late 1970s) access to useful human liver samples was 
problematic, but several investigators were working on the 
biochemistry [73–76]. While these early efforts did yield 
some purified proteins that can now be characterized based 
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on further experience, there was only limited insight into 
their catalytic properties at the time. Important in vivo stud-
ies by Smith et al. [77–79] showed that the metabolism of 
a particular drug could be dominated by a single (putative) 
P450 enzyme. Accordingly, it should be possible to purify 
that enzyme from human tissue by monitoring catalytic 
activity. This is a technically challenging and very labori-
ous approach, but it was used in our laboratory [80] to purify 
the enzymes now known as P450s 1A2 [81], 2C8 and 2C9 
[82], 2D6 [81], and 3A4 [83].

In the next few years, the cDNAs were cloned and ulti-
mately heterologous expression systems were developed to 
produce the enzymes [84–86]. With purified and recom-
binant enzymes it was possible to characterize individual 
P450s in terms of their substrate selectivity towards drugs 
[87], steroids [88], and chemical carcinogens [89], includ-
ing situations where metabolism was related to toxicity [36, 
90, 91].

In 1976, an international series of biennial meetings on 
the cytochrome P450 enzymes was established as a means 
of facilitating contact of scientists in this area working in 
Eastern Bloc and western countries but has developed into 
a timely international biennial series with meetings rotat-
ing among Europe, Asia, North America, and Australia. 
The first meeting was in (Primosten) Yugoslavia, in what 
is now Croatia. Issues addressed at these research meetings 
(International Conferences on Cytochrome P450, https​://
www.p450m​eetin​gs.com) include biochemistry, biophys-
ics, gene regulation, and pharmaceutical and biotechnology 
applications.

Animal models and human comparisons

The ability to study individual human P450 reactions in vitro 
addressed a number of important comparisons with animals, 
which had been extensively relied on for pharmacokinetic 
data, as well as drug safety studies. Animal models are still 
utilized extensively in drug safety studies, particularly for 
hazard identification. However, risk assessment (the other 
key element in toxicology) utilizes principles gained through 
the study of human biochemistry.

One difference between humans and many animal models 
is P450 induction. For instance, peroxisome proliferation is 
much more robust in rodents than humans [92]. Differences 
in the pregnane X receptor (PXR) change ligand selectivity 
in the induction of P450 3A family members [93].

There are also qualitative differences in metabolism. In 
cynomolgus monkeys, P450 1A2 is not expressed and these 
are not good models for heterocyclic amines [94]. Human 
P450 2D6 has some important differences with the animal 
P450 2D Family P450s [95, 96]. One of the FDA issues is 
the relevance of “human specific metabolites”, i.e., those 

present at levels ≥ 25% in humans that are not found or only 
found at low levels in experimental animals used for safety 
testing [97–99].

Rodents are notorious for sex differences, e.g., rat P450s 
2C11 and 2C12 [100–102]. However, any sex differences in 
human P450 expression are minor [103]. This is an impor-
tant point in considering the relevance of major sex differ-
ences in pre-clinical drug toxicity or carcinogenesis and their 
relevance to humans.

Not surprisingly, the differences between the P450s in 
humans and animals may generate drug toxicities that are 
seen in animals but not man—and also the opposite (e.g., 
thalidomide, vide supra). For instance, rat P450 2C11 
was implicated in the metabolism of a drug candidate that 
released cyanide and caused brain problems only in male 
rats, which turned out to be irrelevant to the human situa-
tion [104]. Rabbit lung P450 4B1 activates the lung toxin 
4-ipomenol. This toxic natural product was tested in humans 
as a lung cancer drug but was found to produce liver toxicity 
following bioactivation by P450s 1A2 and 3A4 [105], which 
are not expressed well in human lung. Human P450 1A2 is 
an order of magnitude more active than rat P450 1A2 in the 
bioactivation of several heterocyclic amines [106].

Another species difference is polymorphisms and other 
genetic variations. As already alluded to, polymorphisms 
were well known in rodents, especially mice, at least at 
the level of gene regulation, if not in coding regions [48]. 
Human P450 polymorphisms in what is now known as 
CYP2D6 were identified in the 1970s [77–79] and in the 
1980s in P450 2C19 [107, 108]. (Note: by definition a poly-
morphism is present at ≥ 1% incidence in a population, and 
the term “variant” includes not only polymorphisms but all 
rare changes, and the term “single nucleotide variant” (SNV) 
is probably more generally appropriate, i.e., ≥ 160 CYP2D6 
SNVs are known (https​://www.pharm​var.org/gene/CYP2D​
6).) Today we realize that SNVs are seen in all human P450s 
(https​://www.pharm​var.org/gene/CYP2D​6). However the 
majority of SNVs do not affect catalytic activity (this is 
true for most genes). Many of the human SNVs have not 
been characterized in this regard. Moreover, coding-region 
SNVs may have different effects with different substrates and 
inhibitors, not surprisingly (e.g., P450 2C9 [109] and P450 
3A4 [110]). Although animal models may provide interest-
ing SNV and polymorphism models, the molecular basis is 
almost always different in humans.

Advances in analytical chemistry

The development of analytical chemistry has been cru-
cial in studies of drug metabolism and toxicity, in that 
toxicokinetics requires measurements of concentrations 
and characterization of mechanisms usually requires 

https://www.p450meetings.com
https://www.p450meetings.com
https://www.pharmvar.org/gene/CYP2D6
https://www.pharmvar.org/gene/CYP2D6
https://www.pharmvar.org/gene/CYP2D6
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identification of structures. One can appreciate the work 
that Williams and other early pioneers did with the very 
limited methods available. When did these methods 
develop?

The use of radioisotopes in metabolism studies began in 
the late 1940s. These methods, although now eclipsed by 
some others, proved to be invaluable in mass balance stud-
ies and in the measurement of covalent binding. They still 
provide the most accurate quantitation, especially when 
not all products or adducts have been characterized.

NMR spectroscopy really began in physics in the 1940s 
and was then applied in organic chemistry in the 1950s 
[111]. It has continued to develop in terms of both reso-
lution and sensitivity. When I was a graduate student in 
the early 1970s, 60 MHz was routine and 100 MHz was 
reserved for difficult jobs. Today, with superconducting 
magnets, we routinely operate at 600 MHz, with two-
dimensional methods, and acquiring spectra with sub-µg 
samples is not an issue if samples are very pure [112].

Gas chromatography (GC) is also an invention of the 
1950s [113], which developed in the the 1960s and was 
linked to mass spectrometry then [114]. At first, large-bore 
(0.5 cm diameter) chromatography columns were packed 
by hand (I learned to do this as an undergraduate student). 
By the late 1970s these were displaced by with glass cap-
illary columns, which provided much higher resolving 
power.

High performance liquid chromatography (HPLC) 
developed in the 1970s and by 1980 had become the 
method of choice in general. The use of reversed-phase 
packings is generally very convenient in terms of speed 
and resolution, aqueous samples can be loaded directly, 
and separation development is rather routine. Ultra-per-
formance liquid chromatography (UPLC), with narrower 
bores and smaller particle sizes, developed in the mid-
2000s era.

It was not until the late 1980s that HPLC could be cou-
pled directly with mass spectrometry, due to the develop-
ment of electrospray ionization [115]. Mass spectrometry 
was already important, but most analysis had to be done 
off-line from HPLC, if GC-mass spectrometry was not 
used. LC-mass spectrometry has greatly facilitated the 
analysis of large molecules, in that formerly glucuron-
ides and sulfates had to be hydrolyzed for analysis. High 
resolution mass spectrometry (HRMS) had long been pos-
sible with magnetic sector equipment, with its ability to 
determine elemental composition, but it has been greatly 
facilitated with the newer technology, e.g., Orbitrap and 
Q-Tof instruments. Further, ion trap methods have facili-
tated analysis of cleavage of molecules and identification 
of metabolites. Developments in imaging mass spectrom-
etry since the mid-1990s have begun to facilitate drug dis-
tribution studies [116].

SNVs, polymorphisms, and toxicity

SNVs may influence drug toxicity in several ways. One 
of the most common is to accentuate the pharmacological 
effect due to lack of clearance. This is, for instance, how 
the CYP2D6 polymorphism was discovered, in that Robert 
Smith (personally) experienced a strong hypotensive effect 
of debrisoquine [77]. Other effects attributed to P450 2D6 
deficiency are perhexiline neuropathy [117], phenformin-
induced lactic acidosis [118], and captopril-induced agran-
ulocytosis [119]. Individuals deficient in P450 1A2 are 
unable to metabolize caffeine and theophylline well and 
therefore sensitive [120].

Conversely, some drugs are activated by P450s, and 
there are SNVs that involve higher activity than wild type 
enzyme, e.g., CYP2D6*53 [121, 122]. In this regard, there 
are also gene duplication SNVs that lead to overproduc-
tion of a P450, e.g., P450 2D6 [123]. P450 2D6 converts 
codeine to morphine. In one unfortunate case a mother was 
an “ultrafast” P450 2D6 metabolizer and her nursing child 
died of morphine toxicity [124].

SNVs can raise problems with drug toxicity, and the 
FDA asks for evidence that any sensitive populations will 
not be at risk with a new chemical entity (drug candidate). 
Because of all of these issues, pharmaceutical companies 
prefer to develop drugs in which a single P450—or other 
enzyme—does not dominate the metabolism, particularly a 
highly polymorphic one such as P450 2D6 or 2C19 [125]. 
These considerations may also have racial implications 
and implications for particular markets, e.g. the incidence 
of P450 2C19 poor metabolizers is 15–20% in East Asian 
countries [126]. Domination of the metabolism by a single 
P450 is an issue not only with regard to SNVs and poly-
morphisms but also with inducers and inhibitors regarding 
drug-drug interactions [127]. Other issues regarding tox-
icity due to a dominance of metabolism by a single P450 
are low bioavailability and extensive first-pass clearance 
[127].

Ethanol

Historically the metabolism of ethanol has been attributed 
to alcohol and aldehyde dehydrogenases [128, 129]. How-
ever, since the 1960s there have been evidence for a micro-
somal ethanol oxidation system that uses NADPH and pro-
duces acetaldehyde [130, 131]. Skepticism about a role 
for P450 existed, given the nature of ethanol as a small, 
polar molecule. Ultimately, the P450-catalyzed oxidation 
of ethanol was demonstrated to be done mainly by P450 
2E1 [132–134], and the acetaldehyde is also converted to 
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acetic acid by P450 2E1 [135–137]. The contribution of 
the P450 pathway relative to alcohol and aldehyde dehy-
drogenases for ethanol oxidation can vary, tending to be 
more important at high concentrations [138].

There are at least four reasons for considering P450 2E1 
in the context of drug toxicity. (1) Acetaldehyde is toxic itself 
and also generates DNA adducts, which may be involved in 
ethanol-linked cancers [139]. (2) Ethanol induces P450 2E1, 
and P450 2E1 acts on several drugs [140]. In particular, 
several low molecular weight anesthetics are substrates and 
low P450 2E1 could render an individual at risk. (3) P450 
2E1 activates some drugs to reactive species, perhaps the 
most notable being acetaminophen, which has already been 
presented above. This may be a potential issue with aceta-
minophen toxicity (vide supra) in alcoholics. (4) Ethanol is 
also a competitive inhibitor of P450 2E1, in the short term, 
and can block the metabolism of drug substrates [140].

For a number of drugs (e.g., sedatives), ethanol is con-
traindicated but most of these situations are due to pharma-
codynamic considerations, not pharmacokinetic.

Toxicophores

As the literature on P450 reactions, covalent binding, and 
drug toxicity grew, it became possible to develop lists of 
entities that could be activated to reactive forms by P450s, 

as well as other enzymes [141]. A current list, which is not 
intended to be comprehensive, is shown in Fig. 6. Some of 
the transformations are discussed elsewhere in this review, 
and others are presented in detail elsewhere [57, 142–147].

The presence of any these moieties in a prospective 
drug candidate should be a warning to a medicinal chem-
ist that there is a possibility of bioactivation, which could 
take the form of mechanism-based inactivation, genera-
tion of electrophiles that bind proteins, and mutagenesis/
carcinogenicity (Fig. 1). Alternate structures should be 
considered, assuming that pharmacological efficacy is not 
lost. However, it should also be emphasized that the pres-
ence of one of these structures in a drug does not mean 
that bioactivation or toxicity will occur. For example, there 
are safe thiophene drugs on the market (Fig. 7). Deriva-
tives of aniline are suspect (Fig. 8) and have been asso-
ciated with a number of problems (e.g., acetaminophen, 
phenacetin) but the best-selling hypercholesterolemic 
drug atorvastatin (Lipitor®) has a long history of safety 
(Fig. 7). Many good drugs contain carboxylic acids (which 
can have toxicity issues related to glucuronidation, Fig. 4). 
The point can also be made that even a simple phenyl 
ring is only one step away from a reactive product (i.e., 
epoxide). Nevertheless, the presence of one of the entities 
in Fig. 6 should trigger caution as one moves a compound 
on. If there is a choice among candidates, then the one 
devoid of these moieties would be preferred in the absence 
of other factors.
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Idiosyncratic toxicity

Idiosyncratic means “individualized” here, and drugs in this 
category can be particularly problematic. The incidence of 
toxicity (often liver damage) is low, generally on the order of 
1/103 or even 1/104. Even a large clinical trial might involve 
30,000 individuals, so such problems may well be missed. 
Animal models have not been particularly useful in identi-
fying idiosyncratic reactions, in that (1) similar numbers of 
animals would be required and (2) even if an idiosyncratic 
reaction is seen in animals the mechanism might differ from 
that in humans.

Bioactivation can be involved (Tables 1, 3). An interest-
ing example is tienilic acid, a thiophene that is oxidized to 
either an S-oxide or an epoxide by P450 2C9 [148, 149] 
(Fig. 9). Radioactivity from tienilic acid was bound almost 
exclusively to P450 2C9 in liver microsomes [148] (Fig. 10). 
Some of the patients administered tienilic acid also devel-
oped antibodies that recognized either free or tienilic acid-
conjugated P450 2C9 [148]. These events raise the hypoth-
esis that bioactivation of tienilic acid, covalent binding, and 
formation of autoantibodies is a paradigm for the idiosyn-
cratic liver damage [150]. It may be, but the presence of 
these antibodies has never been causally linked to hepatox-
icity, and efforts to develop animal models have not been 
successful [151, 152]. These anti-P450 2C9 antibodies are 
also related to phenytoin exposure [153].  

A similar situation was seen with dihydralazine and 
P450 1A2, i.e. bioactivation by P450 1A2, covalent bind-
ing to P450 1A2, plus circulating antibodies that recognize 
P450 1A2 [154, 155] (Fig. 11). Again, a causal relation-
ship between autoantibodies and liver toxicity is yet to be 
established.
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Table 3   Examples of links of 
bioactivation to idiosyncratic 
drug reactions [146]

ADR Adverse drug reaction

Drugs withdrawn (United States) Temporarily withdrawn or 
withdrawn in other countries

Marketed drugs

Aclofenac (anti-inflammatory)
Hepatitis, rash

Aminopyrine (analgesic)
Agranulocytosis

Abacavir (antiretroviral)
Cutaneous ADRs

Alpidem (anxiolytic)
Hepatitis (fatal)

Nefazodone (antidepressant)
Hepatitis (> 200 deaths)

Acetaminophen (analgesic)
Hepatitis (fatal)

Amodiaquine (antimalarial)
Hepatitis, agranulocytosis

Trovan (antibacterial)
Hepatitis

Captopril (antihypertensive)
Cutaneous ADRs, agranulocytosis

Amineptine (antidepressant)
Hepatitis, cutaneous ADRs

Zileuton (antiasthma)
Hepatitis

Carbamazepine (anticonvulsant)
Hepatitis, agranulocytosis

Benoxaprofen (anti-inflammatory)
Hepatitis, cutaneous ADRs

Clozapine (antipsychotic)
Agranulocytosis

Bromfenac (anti-inflammatory)
Hepatitis (fatal)

Cyclophosphamide (anticancer)
Agranulocytosis, cutaneous ADRs

Carbutamide (antidiabetic)
Bone marrow toxicity

Dapsone (antibacterial)
Agranulocytosis, cutaneous ADRs,
aplastic anemia

Ibufenac (anti-inflammatory)
Hepatitis (fatal)

Diclofenac (anti-inflammatory)
Hepatitis

Iproniazid (antidepressant)
Hepatitis (fatal)

Felbamate (anticonvulsant)
Hepatitis (fatal), aplastic anemia
(fatal), severe restriction in use

Metiamide (antiulcer)
Bone marrow toxicity

Furosemide (diuretic)
Agranulocytosis, cutaneous ADRs,
aplastic anemia

Nomifensine (antidepressant)
Hepatitis (fatal), anemia

Halothane (anesthetic)
Hepatitis

Practolol (antiarrhythmic)
Severe cutaneous ADRs

Imipramine (antidepressant)
Hepatitis

Remoxipride (antipsychotic)
Aplastic anemia

Indomethacin (anti-inflammatory)
Hepatitis

Sudoxicam (anti-inflammatory)
Hepatitis (fatal)

Isoniazid (antibacterial)
Hepatitis (can be fatal)

Tienilic Acid (diuretic)
Hepatitis (fatal)

Phenytoin (anticonvulsant)
Agranulocytosis, cutaneous
ADRs

Tolrestat (antidiabetic)
Hepatitis (fatal)

Procainamide (antiarrhythmic)
Hepatitis, agranulocytosis

Troglitazone (antidiabetic)
Hepatitis (fatal)

Sulfamethoxazole (antibacterial)
Agranulocytosis, aplastic
anemia

Zomepirac (anti-inflammatory)
Hepatitis, cutaneous ADRs

Terbinafine (antifungal)
Hepatitis, cutaneous ADRs
Ticlopidine (antithrombotic)
Agranulocytosis, aplastic anemia
Tolcapone (anti-Parkinson’s)
Hepatitis (fatal)
Trazodone (antidepressant)
Hepatitis
Trimethoprim (antibacterial)
Agranulocytosis, aplastic anemia,
cutaneous ADRs
Thalidomide (immunomodulator)
Teratogenicity
Valproic acid (anticonvulsant)
Hepatitis (fatal), teratogenicity
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Some individuals also have autoantibodies to P450s 2D6 
[156], although no drug association has never been estab-
lished. With P450 2E1, the presence of autoantibodies is 
associated with exposure to halothane, an anesthetic sub-
strate [157–159]. Interestingly, some people have anti-P450 
3A autoantibodies after exposure to aromatic anticonvul-
sants (e.g., phenytoin) [160] but surprisingly the antibodies 
only recognize animal 3A family enzymes, not P450 3A4 
[161].

Abacavir was shown to cause an immune hypersensitiv-
ity syndrome in individuals with the HLA-B*57:01 allele. 
In 2012 an X-ray crystal structure of the parent drug bound 
to HLA-B*57:01 protein showed the binding of abacavir 
(parent drug) to two amino acids unique to the variant and 
can explain the observed alteration in the preference for 
peptide binding that is associated with the hypersensitivity 
[162, 163]. This is not related to bioactivation (the parent 
drug is the actor here) but does suggest that induced immune 

responses may have a more general role in liver toxicity. 
However, no similar scenario has been identified since then, 
and whether this is a more general paradigm for hepatoxicity 
remains to be established.

Drug–drug interactions

Some of these have already been presented. Drug–drug 
interactions cause a significant number of deaths each year. 
Better data is available for hospitalized patients, and in one 
report 7% of the patient deaths were attributed to drug–drug 
interactions [164].

Some of these are pharmacodynamic, but only pharma-
cokinetic issues will be discussed here. The general mecha-
nism is for one drug to influence the metabolism of another 
(Table 1). This can be due to an increase or decrease in 
drug metabolism. In some of the literature one drug has 

Fig. 9   Alternate mechanisms 
for the bioactivation of thio-
phenes [149]
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Fig. 10   Bioactivation and generation of autoantibodies from tienilic acid [148]
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been termed the “victim” and the other the “perpetrator”, 
although this may not apply in some of the more complex 
situations. Most pharmacokinetic drug-drug interactions are 
due to either P450 induction or inhibition, mostly the latter 
(Table 1).

A classic example is that of terfenadine (Fig. 12) [90, 
165], the first non-sedating antihistamine on the market. At 
least two million prescriptions for terfenadine (Seldane®) 
were written, and for most individuals this drug provided 
relief from allergies without the side effect of drowsiness. 
However, some deaths were reported (estimated to be as 
many as 170). At the time, the manufacturer (Marion-Mer-
rill-Dow) knew the pathways for metabolism (Fig. 12) but 
did not know which P450(s) was involved. On their request, 
our laboratory addressed the issue and implicated P450 3A4 
[90], which was consistent with clinical reports of interac-
tions with the inhibitors ketoconazole and erythromycin 
[166, 167]. Inhibition of P450 3A4 (or just having very low 
levels otherwise) allows the parent drug to accumulate in 
plasma and to interact with the hERG ion channel. Subse-
quently the FDA required a contraindication warning and 
then later withdrew terfenadine from the market. The drug 
was replaced by the metabolite fexofenadine (Allegra®) 
(Fig. 12), which had a successful history of its own and is 
still on the market as a generic drug [165]. This case shows 
how much the FDA—and the pharmaceutical industry—
have changed since 1990, in terms of obtaining data on roles 
of P450 in the metabolism of new drug candidates, as a part 
of the drug development process.

Drug–natural product interactions

Although drug–drug interactions related to P450 activities 
are well-known, less is known about interactions with chem-
icals in two groups of natural products—food and herbal 
medicines. Both are complex mixtures.

Grapefruit juice was found, through a rather serendipitous 
clinical study [168], to inhibit the oxidation of the dihy-
dropyridine calcium channel blocker and hypotensive agent 
felodipine, a P450 3A4 substrate [169]. This phenomenon 
is seen with many P450 3A4 substrates, particularly those 
in which much of the metabolism occurs in the small intes-
tine [170]. The main entity in grapefruit juice responsible 
appears to be the furanocoumarin bergamottin (Fig. 13) 
[171, 172]. Many drug labels for P450 3A4 substrates (≥ 85) 
now carry contraindication warnings, and of these at least 
43 drugs are considered serious [127]. Although the inges-
tion of grapefruit juice can increase the area-under-the-curve 
(AUC) several-fold [173–175], apparently no deaths have 
been attributed to this phenomenon.

An example of a drug-drug interaction, although not 
related to overt toxicity, involves 17α-ethynylestradiol, the 
estrogenic component of most oral contraceptives. Induc-
tion of P450 3A4 by rifampicin and barbiturates leads to 
more rapid clearance and a lower AUC, thus to therapeutic 
ineffectiveness and unanticipated pregnancy [148, 176–178]. 
The same phenomenon has been reported with the herbal 
remedy St. John’s wort [179], which contains the powerful 
PXR-dependent inducer hyperforin [180].
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On‑going issues

Although much progress has been made, there are still things 
to learn. One deficiency is predicting the in vivo magnitude 
of P450 SNVs. For instance, even the CYP2D6*3 polymor-
phism, which results in loss of the entire enzyme due to 
aberrant mRNA splicing, has varying effects in vivo with 
different drugs [181], and the results cannot be explained 
simply by the contribution of other P450s. The prediction is 
even more complicated with coding region SNVs, e.g., those 
in P450 2C9 [109].

Drug-drug interactions can still be unpredictable. For 
instance, although ketoconazole is a strong inhibitor of P450 
3A4, its effect on in vivo metabolism of different drugs can 
be rather variable [182]. The differences cannot be attrib-
uted only to the extent of first-pass metabolism in the small 
intestine.

Another issue is predicting time-dependent inhibition of 
P450s. This appears to be a particular issue with P450 3A4 
[183, 184]. Many of the drugs that cause time-dependent 
inhibition do not have any of the common toxicophores 
(Figs. 6, 8) nor do they have the chemical characteristics 

of other known mechanism-based inhibitors, e.g., acety-
lenes. This is a problem in vitro as well as in vivo, in that 
a major effect on clearance can preclude candidates from 
development.

Although most of the interest in human drug metabo-
lism centers around the five major hepatic P450s (1A2, 
2C9, 2C19, 2D6, 3A4) [185], others can also contribute, 
including P450s 1A1, 2A6, 2B6, 2C8, 2E1, 2J2, 3A5, 3A7, 
and 4F2 [186]. A point of interest is that even P450s that 
are generally devoted to the metabolism of endogenous 
substrates (e.g., steroids, fatty acids) can also react with 
drugs and elicit effects [187]. An interesting example is 
P450 11A1 (Fig. 14). This enzyme catalyzes cholesterol 
side chain cleavage, the first committed step in steroid bio-
synthesis. However, it was implicated in the bioactivation 
of a drug candidate in the adrenal glands [188]. The Zhang 
et al. reference [188] contains a list of other drugs that 
interact with adrenal P450s, including aminoglutethim-
ide, metyrapone, etomidate, ketoconazole, and mitotane. 
Another interesting case is brain P450 46A1, which can 
act on and is also stimulated by drugs such as efavirenz 
[189, 190].
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Another problem in drug toxicity is understanding the 
biology. Bioactivation can be assigned a causal role in drug 
toxicity through transgenic (knock-out) studies, at least 
in animals. In many cases, the covalent modification that 
results is generally regarded to be important (e.g., Figs. 1, 2, 
3, 4, 5, 9, 10, 11, 12, 13, 14, Tables 1, 3) but the biology is 
less clear. In the 1970s and at least early 1980s, many in the 
field were of the opinion that there was a protein modified 
that was the “master switch” and could explain all toxicity. 
ATP-dependent calcium pumps were in vogue as candidates 
[191, 192]. However, with time, it has become clear that 
(1) many proteins (and other molecules) become modified 
[41] and (2) there are multiple pathways leading to toxicity 
in a cell [193]. There is also a continuum of effects of reac-
tive electrophiles on cells ranging from evoking protective 

responses (e.g., anti-oxidant response element, KeapI/Nrf2) 
to apoptosis to necrosis [193].

Although recombinant P450 systems have been very use-
ful in studying drug metabolism over the past 25-plus years, 
they cannot provide all of the answers regarding toxicity. 
There is a need for more complex systems that report cellu-
lar and tissue change. Humanized animal models (mice) are 
one solution, but in vitro systems are desirable, even if some 
of the requisite cellular complexity is lost. This remains a 
problem in the pharmaceutical industry, in that advancing 
toxic drug candidates is a very wasteful process.

A number of in vitro approaches have been discussed in 
recent literature [60, 194–200]. Different companies have 
varying approaches to predicting toxicity, although many 
of the main elements are similar. One approach taken in the 
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TOX21 project, which is not driven by the pharmaceutical 
industry but does use some drugs, is the use of very high-
throughput screens [201]. A major criticism of these can be 
made in that they have not incorporated metabolism capabil-
ity, especially the use of P450s. One of the major issues in 
both hazard identification and risk assessment, the keystones 
of toxicology/safety evaluation, is deciding what is toxic: the 
parent compound or a metabolite. The point can be made 
that high-throughput toxicity screens devoid of metabolic 
capability resemble attempts at structure–activity relation-
ship for mutagenesis before Ames introduced the use of liver 
post-mitochondrial supernatants (“S9”) into the Salmonella 
typhimurium test system that now bears his name [59].

In closing, it should be pointed out that the focus of this 
review has been human drug toxicity. However, all of these 
issues need to be considered in the context of drugs used in 
veterinary practice as well [202–204].

Pulling all of this together in the context of dealing with 
numerous compounds and structural leads is difficult, but 
it is an integral part of pharmaceutical development. Some 
success has been achieved in in silico prediction of (chemi-
cal) sites of oxidation [205–207]. Because of the large 
database that has accumulated and the relative simplicity 
of mutagenesis, SAR has been useful in predicting genetic 
toxicology [208, 209] but not as well for toxicity [201, 210]. 
However, toxicology in vivo or even a single tissue is com-
plex and can involve many events [193], many of which 
probably remain to be described, posing an ongoing chal-
lenge to safety assessment in the pharmaceutical industry.
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