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The Medicinal Chemistry of Tuberculosis

Chemotherapy

Gwendolyn A. Marriner, Amit Nayyar, Eugene Uh, Sharon Y. Wong,

Tathagata Mukherjee, Laura E. Via, Matthew Carroll, Rachel L. Edwards,

Todd D. Gruber, Inhee Choi, Jinwoo Lee, Kriti Arora, Kathleen D. England,

Helena I.M. Boshoff, and Clifton E. Barry III

Abstract The development of effective chemotherapy for the treatment of tuber-

culosis (TB) began in the 1940s and has been reinvigorated recently due to concern

regarding the emergence of highly drug-resistant TB strains. This chapter explores

the medicinal chemistry efforts that gave rise to current frontline and second-line

drugs in global use today and attempts to comprehensively summarize ongoing

discovery and lead optimization programs being conducted in both the private and

the public sector. TB has a large number of disease-specific considerations and

constraints that introduce significant complexity in drug discovery efforts. Concep-

tually, the disease encompasses all the drug discovery challenges of both infectious

diseases and oncology, and integrating these considerations into programs that

often demand collaboration between industry and academia is both challenging

and rewarding.
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1 Introduction

1.1 TB: A Global Epidemic

Tuberculosis (TB) is the second major cause of death due to an infectious disease in

adults worldwide with nine million new cases and close to 1.8 million deaths

annually [1]. TB is caused by Mycobacterium tuberculosis (MTb), an airborne

pathogen transmitted among humans which infects macrophages in the lungs.

Two possible outcomes follow macrophage infection: (1) the infected macrophage

can be recognized by effectors of the innate immune system and eradicated; or (2)

the bacilli may further multiply in the cell, ultimately leading to its destruction and

the infection of newmacrophages drawn to the site of infection. The second scenario

may initiate T cell-mediated adaptive immunity enabling the host to eradicate the

bacilli at the initial site of infection. Failure of adaptive immunity to eradicate the

bacilli leads to uncontrolled growth of the organism and subsequent spread through

the lymphatic system to secondary sites. These sites may be in the lung or in some

cases in extra-pulmonary sites, which is manifested as clinical disease with various

degrees of severity which, if not treated, kills more than 50% of patients. There is

also an intermediate situation wherein adaptive immunity may be able to contain the

growth of the organism by controlling its metabolism for years, even decades, until

waning of immunity allows reactivation of this latent form of disease [2]. More

recently, researchers have begun to suspect that latent disease may not be a single
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metastable state but rather a subtle guerilla war with waxing and waning local

battles on a small scale resulting in a “spectrum” of subclinical active disease [2].

Based on the global incidence of a positive response in the tuberculin skin test,

which is associated with adaptive immunity, it is estimated that about two billion

people are latently infected with MTb [1]. Of these two billion people, about 10%

will develop active tuberculosis in their lifetime, although HIV infection dramati-

cally increases this risk to a 10% annual risk of conversion to active TB [3]. TB is

the major cause of death in HIV-infected individuals. A person with contagious

pulmonary TB infects 10–15 more people on average, which created tuberculosis

epidemics in the developed world until the advent of chemotherapy. Isolation of

patients resulted in limited success in TB control through the establishment of

sanatoria in the mid-nineteenth century. Sanatoria patients would occasionally

achieve spontaneous resolution of the disease, although subsequent relapse rates

were high, highlighting the chronic and dynamic nature of this infection.

Albert Calmette and Camille Guérin produced a strain of Mycobacterium bovis
(bacille Calmette-Guérin, BCG) by serial passaging of an isolate of the related

bacillus that causes TB in cattle on potato–bile–glycerin media until it was no longer

virulent in laboratory animals. Vaccination started in the 1920s, but the efficacy of

the vaccine varied greatly depending on factors such as geographic location and

strain of BCG used for vaccination [3, 4]. Large-scale clinical trials throughout the

world have shown that the vaccine protects against severe forms of TB in children

but does not protect against the development of adult pulmonary TB [3]. Thus, BCG

vaccination has not reduced the global incidence of TB. Disturbingly, recent data

suggest that this vaccine applied now for decades on a global scale may also have

accelerated the development of even more virulent forms of TB [5].

In accord with the Millennium Development Goals established by the United

Nations, the World Health Organization’s “Stop TB” Strategy aims to halve the

prevalence of, and mortality due to, TB compared to that seen in 1990 by the year

2015 and to have reduced the incidence of new TB cases to one per million by 2050.

Very few think that these goals remain realistic, given our current progress with

available tools. Our only chance of achieving such progress lies in the development

of better diagnostic methods and new drugs to combat both drug-sensitive and drug-

resistant disease [6].

1.2 The Medical History of Current TB Chemotherapy

Effective chemotherapy for tuberculosis began in 1940s with the discovery and use

of streptomycin (STR, Fig. 1; 1a) and para-aminosalicylic acid (PAS, Fig. 1; 2a)

[7–9]. The first randomized controlled study of STR treatment for TB by the British

Medical Research Council (BMRC) showed that streptomycin was effective in the

short term but that ultimately so many patients developed STR-resistant TB and

hearing loss that at 5 years, no net clinical benefit was seen [10]. Contempora-

neously, PAS was found to be bacteriostatic against MTb (including STR-resistant

strains) in experimental models and able to prevent the development of STR
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resistance [11, 12]. PAS was also shown to be useful in pulmonary TB patients as

monotherapy, but development of resistance occurred and patients tolerated the

drug poorly, mainly due to gastrointestinal side effects and occasional hepatitis [13].

A BMRC trial in subjects with pulmonary TB found that STR with or without PAS

was as effective, or even slightly more effective, than PAS alone, but that the

combination with PAS greatly reduced the development of drug resistance [10]. By

the end of the 1940s, the standard of care was combined therapy with STR and PAS,

typically given for 12–24 months.

The 1950s were significant because of the discovery and initial use of isonizaid

(INH, Fig. 1; 3a). There were several trials to optimize treatment combinations of INH

with STR and PAS. Although INH was generally well tolerated in patients, some

experienced rash or hepatitis with this drug. INH treatment led to rapid improvement

over the first month of therapy, but recrudescence of disease was common due to

acquired resistance [9, 14, 15]. Drug combination studies showed that INH with STR

was superior to INH with PAS as measured by radiographic, microbiologic, and

clinical improvement. In addition, such studies showed that STR was more effective

than PAS in preventing the emergence of INH resistance [9, 16]. The triple drug

combination of INH, STR, and PASwas found to be better than therapy with INH and

PAS combined and achieved 98% sputum culture conversion at 6months compared to

84% with INH and PAS alone [17]. These early studies also underscored the impor-

tance of extended treatment durations with chemotherapy of less than 1 year, 1 year, or

15 months associated with an 8%, 1.4%, or 0% relapse rate, respectively [17].

Other drugs discovered during the 1950s include cycloserine (Fig. 1; 4a) [18],

ethionamide (Fig. 1; 5a), and the closely related prothionamide (Fig. 1; 5b) [19],

viomycin (Fig. 1; 6a) [20], kanamycin (Fig. 1; 1b-d) [21], and pyrazinamide (PZA,

Fig. 1; 7a) [22]. At the time of their discovery, these drugs were thought to be inferior

to INH, PAS, and STR and were used only in patients with disease refractory to

standard therapy [23].
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In the 1960s, care shifted from sanatoria or hospitals to the home after a

landmark study in Madras, India, which showed that care in the home was equally

efficacious to treatment in a sanatorium or hospital [24]. Other TB drugs introduced

during the 1960s include thiacetazone (Fig. 2; 3b) [25], capreomycin (Fig. 2; 6b–e)

[26], and clofazimine (CFM, Fig. 2; 8a)[27]. These early studies highlight one of

the key problems with second-line agents that persists today: tolerability. In the

words of one set of authors of these trials “. . .the patients considered the cure worse
than the disease” [23]. This aspect complicated systematic clinical trials to devise

an optimal regimen or to establish the relative efficacy of many of these new agents.

Notably, these same agents are used in second-line therapy today, where clinicians

confront the same issue. Ethambutol (EMB, Fig. 2; 9a) supplanted PAS in the

standard drug regimen since this drug was better tolerated than PAS and also

allowed the treatment regimen to be shortened to 18 months [28, 29].

Rifampicin (RIF, Fig. 2; 10a), one of the last drugs to be introduced into clinical

practice, revolutionized TB therapy [30]. Landmark clinical trials in the 1970s in

East Africa and Hong Kong showed that addition of RIF to the standard INH/EMB/

STR or INH/STR drug regimens allowed the duration of treatment to be decreased

from 18 to 9 months without increasing the relapse rate [31, 32]. Renewed interest

in PZA was sparked by reports that PZA was more effective than STR in reducing

organ burdens in MTb-infected mice when combined with INH [33, 34]. Clinical

trials at the end of the 1970s and in the 1980s investigated the use of PZA in various

combinations and treatment durations with STR, INH, RIF, EMB, and thiacetazone.

PZA was instrumental in allowing shortening of TB chemotherapy to 6 months

[35–37]. Although thiacetazone was initially used in chemotherapy instead of

RIF due to the high cost of RIF, it was later omitted because of life-threatening
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Stevens–Johnson syndrome in those with HIV coinfection. STR was also largely

replaced by EMB to avoid the requirement of intravenous administration of STR.

The culmination of these studies was the introduction of modern “short-course”

chemotherapy for drug susceptible TB where PZA forms part of the drug regimen

for the first 2 months (the “intensive phase”) in combination with INH, EMB, and

RIF, but then is not included in a subsequent continuation phase of 4 months of

additional treatment with INH and RIF (sometimes in combination with EMB) to

obtain a cure rate greater than 95% [31]. With a new, highly effective treatment

regimen, the world celebrated the end of the “White Plague” and quickly turned its

attention elsewhere.

One could argue, with some justification, that the resulting collapse of research

efforts into developing new antitubercular agents in the 1970s and 1980s happened

too soon. We still have little idea why the substitution of EMB for PAS allowed the

regimen to be shortened from 24 to 18 months, a poor understanding of why adding

RIF allowed the regimen to be shortened to 9 months, and no information at all as to

why adding PZA allowed treatment to be further truncated to 6 months. Perhaps

more importantly, the consequences of widespread global programs of drug treat-

ment in less-controlled environments than the clinical trials supervised by the

BMRC were poorly understood. In retrospect, the trial conclusions in the developed

world have been borne out; widespread TB epidemics are a thing of the past, and

small outbreaks in the USA or Europe are the subjects of alarmed news headlines.

Meanwhile, in the developing world, the rise of drug resistance through improper

drug usage, poor compliance, and lack of government commitment to eradication

programs began in earnest.

1.3 The Emergence of Drug-Resistant TB

As the history of clinical development of TB drugs shows, to limit the risk of

developing resistance developing to every new agent, extensive combination thera-

pies were prescribed. The World Health Organization developed strategies to try to

avoid the acquisition of resistance, primarily in the form of the “directly observed

therapy, short course” (DOTS) which involved implementing a system to monitor

patients’ ingestion of pills and recording compliance and treatment completion

[38, 39]. Central to the DOTS strategy is government commitment to TB control

programs, diagnosis of smear-positive TB cases, observed treatment, ensured drug

supply, and standardized reporting. While DOTS can be effective and is recom-

mended by the World Health Organization, it is programmatically difficult and

expensive. The natural sequence of events then, despite the introduction of both

short-course chemotherapy and DOTS, was that treatment became marked by high

relapse rates, and the 1990s marked a period of increasingly resistant TB ranging

from mono- to multidrug-resistant tuberculosis (MDR-TB). The phrase “MDR-TB”

was coined in the 1990s to refer specifically to isolates that had developed resis-

tance to INH and RIF (according to conventional wisdom the two most important
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drugs in determining outcome). MDR-TB developed initially by acquisition of

resistance during standard treatment as a result of poor compliance or improper

chemotherapy with subsequent amplification of resistant populations in treated

patients. The development of MDR-TB-infected patients ultimately led to trans-

mission of drug-resistant MTb, first within institutions and hospitals and later in the

community [40–43].

Treatment of MDR-TB and higher degrees of resistance has required reintroduc-

tion of second-line drugs with unproven efficacy in untested combinations as well as

the use of broad-spectrum agents developed for other indications such as fluoroqui-

nolones that have incidental activity against MTb. The treatment of MDR-TB relies

upon a backbone of an injectable agent (kanamycin, capreomycin, or amikacin; see

Sect. 2.8) [21, 26] and a fluoroquinolone (see Sect. 3.4) [44–48]. The choice of

injectable agent and fluoroquinolone for patient treatment is based on drug-sensitivity

results from the sputum-borne strain of the patient in question and prior treatment

history. Drugs from the first-line agents (EMB, PZA, INH, RIF, and STR) are

administered if the strain is sensitive to any of these and combined with second-line

drugs (amikacin, kanamycin, capreomycin, viomycin, enviomycin, fluoroquinolones,

ethionamide, prothionamide, cycloserine, PAS) with a goal of having five active

drugs based on drug-sensitivity results. In cases where extensive resistance does not

allow five drugs to be selected from the first- and second-line agents, agents can be

selected from non-WHO approved lists of third-line agents (rifabutin, macrolides

such as clarithromycin, augmentin, imipenem, clofazimine, linezolid, thioacetazone,

and thioridazine have all been reported for such cases). There is minimal data to

support the use of the third-line agents [49, 50] with the exception of linezolid (see

Sect. 3.3 for further discussion of oxazolidinones) where its use is limited by toxicity

and expense [51, 52]. Even in the case of linezolid, the available data are anecdotal

and not prospectively collected, but ongoing clinical studies are likely to provide data

supporting its use [53, 54]. The duration of treatment for MDR-TB is based on data

from the 1950s where 1–2 years of treatment was best at preventing relapse [55].

Treatment is divided into a 6–9-month intensive phase that includes the injectable

agent followed by a continuation phase of up to 18months for a total of 24–30months

of treatment. The injectable agent is stopped to reduce the potential for nephro- and

ototoxicity associated with these agents. In the case of uncomplicated MDR-TB, cure

rates of greater than 80% have been reported [56].

Following the turn of the century, treatment of MDR-TB with poorly active

second- and third-line agents inevitably gave rise to the emergence of extensively

drug-resistant tuberculosis (XDR-TB) which has been defined based on the loss of the

two components of the MDR treatment backbone perceived to be most important, the

fluoroquinolones and the injectable agents [57]. For patients with XDR-TB lucky

enough to have access to drug-susceptibility testing and the full suite of second- and

third line agents, cure rates now range from 30 to 75% [58–62]. Evenmore disturbing,

there are now reports of totally drug-resistant TB (TDR-TB) for which no chemo-

therapeutic options remain [63, 64]. The end result of the widespread use of drugs to

treat ever-increasingly resistant strains of the organism has been the looming threat of

a return to the pre-chemotherapy era. As these strains have evolved, natural selection
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will restore whatever fitness costs they incur by acquiring drug resistance, and,

ultimately, these strains will emerge in the developed world again. The pace of our

discovery efforts has been too slow; we are now approaching a situation where we

will have lost all of the achievements of the past. We will need to develop entirely

new regimens, and we urgently need to consider the mistakes that were made 40 years

ago and devise a strategy to avoid repeating them.

1.4 Special Challenges in TB Drug Development

There are four widely accepted primary objectives for improving TB therapy: (1)

shortening and simplifying the treatment for active, drug-sensitive TB, (2) improv-

ing treatment efficacy, safety, and duration for drug-resistant disease, (3) improving

the safety of co-therapy for TB patients coinfected with HIV, and (4) establishing

an effective therapy for latent, persistent TB. The solutions achieving each of these

goals will have different features, but there are some overarching issues that

complicate each area of concern.

One of the most pressing issues in improving TB chemotherapy involves the use

of RIF (see Sect. 2.1 for further discussion of development of RIF as a chemother-

apeutic agent), the most effective drug in reducing patient bacillary burdens in the

first-line regimen for drug-susceptible TB. Recent studies indicate that treatment

outcomes worsen with reduced durations and intermittent use of RIF [65]. Reduc-

ing RIF treatment to 1–2 months results in increased rates of relapse and acquired

resistance compared to established regimens using RIF for a 6-month period.

Additionally, intermittent weekly or twice weekly administrations may promote

relapse and acquired resistance. Although RIF is an essential drug in first-line

therapy for establishing a positive treatment outcome, use of RIF in combination

with various drugs is problematic because of drug–drug interactions as a conse-

quence of RIF’s powerful induction of many cytochrome P450 (Cyp) enzymes.

These enzymes metabolically inactivate other drugs thereby reducing effective

serum concentrations and exposure. RIF particularly induces cytochrome P450

(CYP) 3A4, the most abundant enzyme found in the liver and the gut, which

metabolizes drugs and toxins [66]. RIF is also associated with upregulation of

membrane transporters (P-glycoproteins) that regulate transport of substances

across membranes, which often function as cellular efflux pumps thereby limiting

bioavailability of drugs [67]. HIV-coinfected patients receiving antiretrovirals

whose serum levels are known to be affected by RIF induction of CYP3A4 are

sometimes provided rifabutin as a substitute for RIF. Rifabutin has reduced

CYP3A4 induction and thus simplifies co-therapy; however, current clinical evalu-

ation does not fully support substitution of RIF with rifabutin [68]. Therefore, any

new agent introduced for drug-susceptible disease will likely have to be introduced

in combination with RIF and against a background of strong induction of CYP 3A4.

A further complication in TB drug metabolism is malabsorption [69]. Patients

presenting with TB are often malnourished; weight loss is a hallmark of the disease.
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Sometimes this is linked to advanced HIV disease where patients are malnourished

or have diarrhea, but it is also a common complication for patients with diabetes

mellitus (DM), another frequent comorbidity of TB patients [69–71].

A particular challenge in the development of new TB drugs is the heterogeneity

of TB pathology [2]. TB shows not only the differences in clinical manifestation but

also the underlying host and pathogen physiology, which poses particular chal-

lenges to antitubercular drug development. Human TB patients harbor a variety of

granulomas resulting in different microenvironments to which the resident MTb is

exposed. Thus, the metabolism of MTb in each lesion is likely to be different. The

presence of discrete populations of MTb in the human host possessing different

susceptibilities to antitubercular drugs might explain the combined activity of

frontline chemotherapy [72]. One theory (supported by virtually no hard evidence)

proposes that rapidly growing bacilli are cleared by drugs such as INH, while

sporadically replicating intracellular organisms are killed more efficiently by

drugs such as RIF and the more slowly dividing bacteria within acidic environments

are selectively sensitive to PZA [72]. Furthermore, it is the eradication of the slowly

growing and non-replicating bacilli which requires such an extended duration of

chemotherapy. PZA is often put forward as a paradigm for a drug that has the

highest capacity to reduce treatment duration. Importantly though, PZA has little or

no in vitro activity (except under conditions where the bacteria is acid-stressed),

and the precise mechanism of action of this drug remains unclear [72]. The

antitubercular activity of PZA was discovered only because it was applied directly

to infected mice, an impractical strategy for evaluating large numbers of com-

pounds. Strictly in vitro, a variety of different growth conditions have been shown

to result in alterations in the susceptibility of MTb to different drugs; for example,

stationary phase [73, 74], anoxia [75], and nutrient deprivation [76, 77] all provide

models of treatment-refractory disease, yet none of these has been validated as

meaningful in predicting clinical efficacy.

Finally, although serum pharmacokinetic data are widely available for many TB

drugs in use and development, TB is not a systemic bacteremia and tissue concentra-

tion studies are scarce. Drug penetration is likely to be limited due to tissue damage

from disease and the loss of vasculature making primary sites of infection difficult to

saturate [78]. A truly effective compound must not only be able to penetrate the

bacterial cell wall, but also be able to reach the bacteria within a fibrous, necrotic, or

cavitary lesion that may harbor the persistent organisms [78, 79].

2 The Development of Commonly Used First-Line

and Second-Line Agents for TB Therapy

2.1 Rifamycins

The rifamycin antibacterials represent one of the most effective and widely used

classes of therapeutic compounds used in modern TB treatment. The first of the

rifamycins, rifampicin (RIF, Fig. 3; 10a), was introduced into TB chemotherapy in
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the 1960s after extensive structure–activity relationship (SAR) studies performed

on rifamycin B, the natural product produced by Amycolatopsis mediterranei, from
which the rifamycins were derived [80]. This isolated natural product was only

active when delivered intravenously, and attaining oral bioavailability of rifampicin

required a considerable effort because of the complex chemistry of this scaffold.

Shortly thereafter, other rifamycin derivatives, rifabutin (Fig. 3; 10b) and rifapen-

tine (Fig. 3; 10c), were developed and currently serve as alternatives to RIF. The

rifamycin-derived antituberculous agents all share a general structure characterized

by a naphthalene core that is spanned by a 19-atom polyketide bridge. SAR studies

have established the role of the aliphatic bridge in stabilizing the overall conforma-

tion of the molecule and positioning the C(1) and C(8) phenols and the C(21) and

C(23) hydroxyl groups for interaction with their bacterial target, RNA polymerase

[81]. As such, modification of the phenol or hydroxyl groups in these positions

abolishes antibacterial activity of the molecule. Conversely, modifications made at

the C(3) and C(4) positions have been the focus of many efforts to improve the oral

bioavailability of the rifamycins, since the C(3) appendages do not appear to

interfere with rifamycin-RNA polymerase binding [82].

The primary mode of action of the rifamycins involves disruption of RNA

transcription through binding of the drug to bacterial DNA-dependent RNA poly-

merase [83]. Accordingly, resistance to the rifamycins occurs primarily through

point mutations acquired in the RNA polymerase b-subunit gene, rpoB [83].

Resistance may also occur through ADP-ribosylation of the alcohol at position

C(21) [84].

The most common adverse effects associated with rifamycin therapy are mild

influenza-like symptoms, hepatotoxicity, and altered liver function. Additionally,

due to the furanonapthoquinone chromophore within the rifamycin structure, bodily

fluids (e.g., sweat, tears, or urine) may take on an orange-red color. As discussed in

Sect. 1.4, rifamycins may also have adverse interactions with other coadministered

drugs, in particular antiretroviral drugs (ARDs). Of the three aforementioned

rifamycins, RIF is the most potent inducer of CYP3A and rifabutin is the least

[85], making it the preferred rifamycin derivate for treating HIV-TB coinfected

patients [86].
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2.2 Isoniazid

INH (Fig. 4; 3a) is an analog developed from the antitubercular drug thiacetazone

(Fig. 4; 3b) which had been used effectively in TB patients in the 1940s but was

associated with toxic side effects [87]. In an attempt to improve thiacetazone (3b),

the phenyl ring was replaced with a pyridine ring based on the observation that

nicotinamide (Fig. 4; 3c) had a growth inhibitory effect on MTb. The isonicotinal-

dehyde thiosemicarbazone (Fig. 4; 3d) proved to be more active than thiacetazone,

which inspired evaluation of other intermediates in the synthesis, leading to the

discovery of isonicotinic acid hydrazide (INH, 3a) the best antitubercular agent

developed to date.

Hundreds of derivatives of INH have been synthesized since its original discov-

ery, but none improved on the activity of INH. N-acetyl-INH, an INH metabolite

produced in humans, is inactive, although N-alkyl derivatives such as iproniazid

(Fig. 4; 3e) and hydrazones such as verazide (Fig. 4; 3f) show in vivo efficacy

although the active metabolite in MTb is INH which is released by in vivo hydro-

lysis [88–91].

The minimum inhibitory concentration (MIC) of INH is 0.2 mM against rapidly

growing MTb, with lower activity against slowly growing MTb and practically no

in vitro activity against anaerobically adapted bacteria [92]. INH is a prodrug that

is activated by the KatG catalase to an isonicotinoyl radical that reacts with

nicotinamide-containing molecules such as NAD(P) to yield acyclic isonicoti-

noyl-NAD(P) adducts and their cyclic hemiamidals. The INH-NAD adduct is a

potent inhibitor of the NADH-dependent enoyl-ACP reductase, InhA, involved in

mycolic acid biosynthesis [93–95]. Mutations in katG or inhA confer the majority

of resistance, but other resistant isolates show mutations at targets that use

pyrimidine nucleotides (which are structurally similar to adducts formed during

INH activation) [96]. Isoniazid is well tolerated although side effects as a result of

hepatic enzyme abnormalities resulting in hepatitis occur (especially in older

patients). Also, peripheral neuritis can occur but is easily prevented by pyridoxine

administration.
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2.3 Thioisonicotinamides and Thiosemicarbazones

The thioisonicotinamides, ethionamide (Fig. 5; 5a) and prothionamide (5b) were

discovered during efforts to improve on the MTb inhibitory activity of nicotin-

amide. Thioisonicotinamide (Fig. 5; 5c) showed better in vivo efficacy than in vitro

efficacy [97] which prompted further SAR studies on this series resulting in the

observation that 2-alkyl derivatives were more active than the parent nicotinamide

with 2-ethyl and 2-propyl derivatives showing the best activity. Ethionamide (5a)

is a prodrug that is activated by S-oxidation by a monoxygenase (EtaA) to a

4-pyridylmethane radical intermediate that, similar to the active radical produced

from INH by KatG (discussed in Sect. 2.2), reacts with NAD(P) to form a tight-

binding inhibitor of InhA [98, 99]. The sulfoxide, the major metabolite produced in

humans, is also active against MTb. The thioisonicotinamides have unpleasant

gastrointestinal side effects.

Thiacetazone (Fig. 5; 3b) was discovered to have antitubercular activity in the

1940s and was used as an antitubercular agent despite its toxic side effects [100,

101]. Thiacetazone, similar to the thioisonicotinamides, is activated by EthA

resulting in a reactive intermediate that inhibits mycolic acid oxygenation as well

as cyclopropanation [102, 103]. Thiacetazone causes gastrointestinal disturbances

and, particularly in HIV-infected patients, can cause severe life-threatening skin

reactions known as Stevens–Johnson syndrome [104].

2.4 Pyrazinamide

PZA (Fig. 6; 7a) was developed based on reports describing the antitubercular

activity of vitamin B3 (niacin) [105]. It is unlikely that PZA would be discovered

in modern drug discovery programs since it has no activity against MTb under

normal in vitro growth conditions although it has good activity in infected animals

[106, 107].

Initial SAR studies [106–109] were performed by in vivo assays of derivatives of

nicotinamide (3c) and PZA in infected mice. The presence of a pyrazine heterocy-

cle with a carboxamide at the C(2) position was essential for activity. Modification

of the carboxamide to tetrazole, nitrile, hydrazide, or carboxylic acid (Fig. 6; 7b–e)

leads to completely inactive compounds in vivo. Substitutions on the amide nitro-

gen with either a methyl (Fig. 6; 7f) or an acetyl group (Fig. 6; 7g) were detrimental
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to activity. Pyrazinoic acid (7e) is considered to be the active metabolite from PZA;

hence, various ester derivatives (e.g., 7h) were synthesized and found to be active

in vitro but inactive in vivo probably due to premature hydrolysis or poor solubility.

However, more stable aminomethylene prodrugs (7i and 7j) did not show improve-

ment in activity presumably because they were not substrates for the amidase.

The thioamide (7k), pyrimidine nucleus (7l), and the pyridazine nucleus (7m,n)

were inactive or weakly active. Thus, PZA is the minimum pharmacophore; further

substitutions on the amide or changes to the pyrazine ring are detrimental to

activity.

Pyrazinamide likely kills MTb by intracellular acidification following hydroly-

sis by MTb nicotinamidase/pyrazinamidase [110], although inhibition of fatty acid

synthase has also been proposed as a mechanism [111–113]. PZA increases serum

uric acid concentrations thereby causing nongouty arthralgia and, when used in

combination with INH and/or RIF, often causes some hepatotoxicity.

2.5 Cycloserine

D-cycloserine (Fig. 7; 4a) is an antibiotic produced by Streptomyces sp. that is

currently used in second-line TB therapy [114]. The isoxazolidinone is the phar-

macophore of D-cycloserine, and attempts to modify it with additional substituents

have been unsuccessful since N-substitution prevents the tautomerization which

is necessary for its activity, and replacement of the heteroatoms on the isoxazoli-

dinone ring leads to dramatic loss of activity [115, 116]. In addition, the stereo-

chemistry is essential since the L-isomer is inactive [116].

D-cycloserine prevents D-alanine incorporation into the bacterial cell wall pepti-

doglycan by forming an irreversible isoxazole-pyridoxal adduct in the enzyme
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alanine racemase, which converts L-alanine to D-alanine [117]. Although the major

target in MTb is alanine racemase, D-cycloserine also inhibits the D-alanine–D-

alanine ligase involved in synthesis of the terminal D-alanine–D-alanine of the

peptidoglycan UDP-N-acetylmuramyl-pentapeptide [118]. The MIC of this antibi-

otic against MTb is about 100 mM. Because of the side effects observed with D-

cycloserine (CNS effects and hypersensitivity), it is often given at more frequent

but lower doses in TB patients as second-line therapy.

2.6 Para-Aminosalicylic Acid

The success of early clinical trials of PAS (Fig. 8; 2a) in TB patients [119]

prompted synthesis of analogs to enhance the activity of the parent compound.

These analogs showed that PAS exhibits very specific SAR [120].

The mechanism of action of PAS is not fully understood, although folate biosyn-

thesis has been proposed as the target, since inactivation of thymidylate synthase

confers resistance [121]. PAS is generally poorly tolerated in patients due to gastro-

intestinal disturbances often leading to discontinuation of PAS administration.

2.7 Capreomycin

Capreomycin is synthesized by Saccharothrix mutabilis subsp. capreolusa as a

mixture of four related cyclic pentapeptides, capreomycins IA (Fig. 9; 6b), IB

(Fig. 9; 6c), IIA (6d), and IIB (6e). The peptide backbone is made up of 15 unnatural
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amino acids and either L-serine or L-alanine, known as Capreomycin A and B,

respectively.

A few limited SAR studies [122, 123] have shown that both alanine and serine

at position 1 have antitubercular activity, that small ureido modifications such as

N-methyl groups (but not N,N-dimethyl) are acceptable, whereas N-aryl ureido sub-

stitution increases general antibacterial activity. Capreomycin inhibits protein synthe-

sis by binding at the interface between helix 44 of the 30S subunit and helix 69 of the

50S subunit of the bacterial ribosome [124]. Like the aminoglycosides with which it is

often confused, capreomycin has both nephro- and ototoxic side effects.

2.8 Aminoglycosides

Streptomycin (STR, Fig. 10; 1a), kanamycin (KM, Fig. 10; 1b–d), and amikacin (AK,

Fig. 10; 1e) (Fig. 8) comprise the main aminoglycosides used in TB chemotherapy.

As discussed in Sect. 1.2, the aminoglycosides are still widely used in modern TB

drug regimens although mainly as second-line agents. The general structure of the

aminoglycosides is characterized by an aminocyclitol ring connected to one or more

amino sugars by a glycosidic linkage. The second generation aminoglycosides KM

and AK were largely developed to circumvent resistance mechanisms in other

bacteria, not specifically for MTb; hence, their SAR will not be discussed.

This class of antitubercular compounds primarily acts by binding to the 16S

rRNA of the bacterial 30S ribosomal subunit, which interferes with protein synthe-

sis and ultimately leads to cell death [125]. As such, resistance mechanisms

observed in clinical isolates have principally been the acquisitions of mutations in

the 16S rRNA gene (rrs) and in genes that encode for proteins that interact with the
16S rRNA in the region where the drug binds [125–129]. Alternative resistance

mechanisms that have been reported include drug efflux and inactivation by

aminoglycoside-modifying enzymes, but there is little evidence to suggest these

are clinically relevant [130–132]. Common adverse effects associated with amino-

glycoside therapy include nephro- and ototoxicity [133, 134].
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3 Classes of Compounds in Clinical Development

3.1 Nitroimidazoles

3.1.1 History

Nitroimidazoles are a class of compounds with growing importance in the field of

tuberculosis chemotherapy. Nitroimidazoles show better activity against obligate

anaerobes than aerobic organisms because their bactericidal activity requires a

bioreduction of the aromatic nitro group whose reduction potential lies beyond

the reach of eukaryotic aerobic redox systems [135, 136]. 2-Nitroimidazole deri-

vatives modified at the 1- and 5-positions were among the first series (Fig. 11) of

this class reported to display antimycobacterial activity [137].

Further improvement in antimicrobial activity was gained by lowering the

reduction potential by changing from 2-nitro- to 5-nitroimidazole derivatives.

A notable example in this class is metronidazole (Fig. 12; 11a), which was the

lead compound from a screen of over 200 derivatives of azomycin (2-nitroimida-

zole) for antitrichomonal activity at the French pharmaceutical company Rhône-

Poulenc in the mid-1950s [136, 138]. Metronidazole (11a), which is bactericidal

against anaerobic non-replicating Mtb in vitro and in hypoxic granulomas in vivo

(as well as other anaerobic bacteria and protozoa) [79, 136], has been in clinical use

for four decades and is listed in the essential drug list by the WHO [139]. In 1989,

Ciba Geigy India was the first to report antitubercular activity from a series of

bicyclic 4- and 5-nitroimidazole [2, 1-b]oxazoles. Their lead compound CGI-17341
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(Fig. 12; 11b) was active against drug susceptible and MDR-TB (MIC of 3.3 mM)

[140] and showed dose dependency in a mouse model but was not further developed

due to its mutagenicity in the bacterial Ames assay.

The bicyclic 5-nitroimidazole [2,1-b]oxazole series showed much lower activity

than its 4-nitro counterpart [141]. A decade later, PA-824 (Fig. 12; 11c), the lead

compound from a series of more than 300 nitroimidazooxazine derivatives [142],

and OPC-67683 (Fig. 12; 12a), the lead compound from a series of nitroimidazoox-

azole derivatives [143], were discovered by PathoGenesis (now Novartis) and

Otsuka Pharmaceutical Co. Ltd, respectively. Both compounds showed increased

activity against MTb with potential to decrease the current treatment duration.

Most recently, two nitroimidazo-chloroquine derivatives NLCQ-1 (Fig. 12; 13a)

and NLCQ-2 (Fig. 12; 13b), which are also prodrugs requiring bioreductive activa-

tion, have been reported to show a twofold increase in bactericidal activity against

non-replicating MTb compared to PA-824 [144].

3.1.2 SAR of Nitroimidazooxazines

PA-824 shows bactericidal activity against drug susceptible (MIC range

0.04-0.8 mM) and resistant (MIC range 0.08–1.5 mM) MTb strains [142]. SAR

studies show that the key features responsible for aerobic activity are the nitro

group at the 4-position of the imidazole ring (Table 1, Entry 1), the conformationally

rigid bicyclic system (Table 1, Entry 3) and the lipophilic tail at the 6-position of the

oxazine ring (Table 1, Entries 4 and 5) [145–147]. Antitubercular activity was seen

with a biaryl linker (para > meta > ortho), but these compounds exhibited poor

solubility in most cases [146]. Heterobiaryl analogs improved solubility over biaryl

linkers, and varying lengths of hydrophobic regions at the 6-position of the oxazine

Table 1 SAR of PA-824 [145–147]

Entry Compound name Structure MIC against H37Rv (mM)

1 11d N

ON

O

OCF3

>160

2 11e N

ON

OCH3

O2N >125

3 11f N

OCH3N

O

OCF3

O2N
6.25

4 11g
N

ON

O
O2N

OCF3

0.04

5 11h N

ON

O N

O2N
OCF3

N 0.05
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ring were well tolerated [148] indicating the presence of a large hydrophobic pocket

in the active site of Rv3547 (see below for further discussion of mode of action).

The oxygen at 2-position of the nitroimidazole ring could be substituted with

nitrogen or sulfur with equipotent aerobic activity, but acylation of the nitrogen,

oxidation of sulfur, or replacement of oxygen by a methylene lead to decreased

activity (Table 2) [148]. The S-enantiomer is more than 100-fold more active than

the R-enantiomer. Replacement of the benzylic ether at the 6-position with an

amine marginally increased activity and improved water solubility [148]. Overall

SARs for PA-824 are summarized in Fig. 13.

3.1.3 Biology of Nitroimidazooxazines

Deazaflavin (F420 cofactor)-dependent nitroreductase (Ddn) Rv3547 is responsible

for the reductive activation of the pro-drug PA-824 (11c), generating a reactive

nitrogen species (likely ·NO), production of which correlates with the cidal activity

toward anaerobic non-replicating MTb [149, 150]. PA-824 has been shown

to inhibit cell wall lipid and protein biosynthesis in a dose-dependent manner

Table 2 SAR on heteroatoms of oxazine ring [148, 149]

N

XN

Y

OCF3

O2N

Entry Compound name X Y MIC against H37Rv (mM)

1 PA-824 (11c) O O 0.80

2 11i CH2 O 25

3 11j NH O 0.8

4 11k NAc O 6.25

5 11l S O 0.8

6 11m SO2 O >100

7 11n O NH 0.31

8 11o O NHCO2 0.05

9 11p O NH(CH2)2 0.08

10 11q O NH(CH2)4 0.08
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conformation

required

 meta and ortho substitution 
decreases activity

Large lipophilic groups favored; 
biaryls, small slightly electronegative 

groups retain activity

Linker can be  
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[142, 151]. There is poor correlation between aerobic and anaerobic activity, and

transcriptional profiling analysis suggests that both respiratory inhibition and inhi-

bition of cell wall biosynthesis are related to the activity of PA-824 [152]. Studies in

mice found the daily minimal effective dose and minimal bactericidal dose of PA-

824 to be 12.5 mg/kg and 100 mg/kg, respectively, and it exhibited potent bacteri-

cidal activity in both the initial and continuation phases of treatment [153]. A

combination of PA-824, moxifloxacin, and PZA was shown to cure mice more

rapidly than standard regimen of RIF/INH/PZA [154].

3.1.4 Clinical Use of Nitroimidazooxazines

PA-824 has oral bioavailability (subdose proportional) and a relatively long half-

life (16–20 h in humans) consistent with once a day regimen [155]. Clinical studies

showed that even though PA-824 inhibits excretion of creatinine at high dosage, it

did not affect the glomerular filtration rate, thereby limiting concerns about neph-

rotoxicity [156]. It is non-mutagenic, shows no cross-resistance with current drugs,

and can be coadministered with antiretroviral agents. Phase IIa clinical studies on

patients with newly diagnosed, uncomplicated, smear-positive, pulmonary tuber-

culosis[157] ascertained PA-824 to be safe and well tolerated for 2 weeks with daily

dosing varying from 200 to 1,200 mg/day in which time-frame decrease of bacillary

burdens in sputum was observed [158].

3.1.5 SAR of Nitroimidazooxazoles

OPC-67683 (Fig. 12; 12a) shows potent antitubercular activity against both repli-

cating and non-replicating bacteria and is equipotent against drug-resistant MTb

[143, 159]. Derivatives of these 6-nitro-2,3-dihydroimidazo [2,1-b]oxazoles were
not mutagenic in contrast to the structurally similar CGI-17341 (Fig. 12; 11b), with

heteroatoms at the side chain of 2-position contributing to the absence of mutage-

nicity. Addition of a methyl group at the 2-position was found to improve activity,

and the absolute stereochemistry was found to be critical with the R-enantiomer

(MIC of 180 nM) being 60-fold more active than the S-enantiomer (Table 3).

Subsequent development of R-enantiomers of 6-nitro-2,3-dihydroimidazo [2,1-b]
oxazole culminated in identification of lead compound OPC-67683 [159]. Figure 13

compares the SAR for both the oxazine and the oxazole series of antitubercular

nitroimidazoles.

3.1.6 Biology of Nitroimidazooxazoles

OPC-67683 has an MIC of 20 nM, which is more potent than any other nitroimi-

dazole and does not show cross-resistance with currently used antitubercular drugs.

It is active against intracellular MTb in a dose-dependent fashion with OPC-67683

being superior to INH and as effective as RIF [160]. In MTb-infected mice,
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a combination of OPC-67683 (2.5 mg/kg) with RIF and PZA showed faster rate of

MTb clearance from organs than a standard regimen of RIF, PZA, ETB, and INH

[143]. OPC-67683 is a prodrug that is likely activated by the same nitroreductase as

PA-824 (Ddn/F420 reductase) [141, 143]. Similar to PA-824, it is an inhibitor of

methoxy- and keto-mycolic acid synthesis, which is essential for biosynthesis of the

cell wall [161].

3.1.7 Clinical Use of Nitroimidazooxazoles

OPC-67683 shows a half-life in mouse plasma of 7.6 h with a Cmax of 0.55 mM (6 h,

2.5 mg/kg) [143]. OPC-67683 is not metabolized by liver microsome enzymes,

Table 3 SAR of OPC-67683 [159]

N

N

O

R1O2N

R2

R1 R2 Configuration MIC (mM)

H OPh Racemic 2.98

CH3 OPh (R) 0.18

CH3 OPh (S) 11.37

N

N

O

CH3O2N

O

R3

R3 MIC against MTb strains (mM)

H37Rv H37Rv INH resistant H37Rv RIF resistant

H 0.18 0.18 0.18

Cl 0.08 0.04 0.02

CF3 0.58 0.58 0.29

OCF3 0.56 1.09 0.56

N 2.18 1.09 1.09

N O 2.16 1.08 1.08

N S 2.07 1.04 0.53

N

N
O

CH3

O2N

O N O

R4

R4 MIC against MTb strains (mM)

H37Rv H37Rv INH resistant H37Rv RIF resistant

H 0.87 0.87 0.44

p-Cl 0.10 0.10 0.05

p-F 0.83 0.83 0.43

p-OCF3 0.01 0.01 0.01

o-OCF3 0.73 0.73 0.37

m-OCF3 0.04 0.04 0.04
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making it suitable for coadministration with drugs that induce cytochrome P450

enzymes. It is absorbed better with a high fat diet and up to 400 mg/day can be

tolerated safely without adverse side effects by healthy volunteers [162]. OPC-67683

is less effective than PA-824 in reducing sputum-borne acid-fast bacilli in the first

4 days of treatment in patients with pulmonary TB. This drug is under development

and is currently in the phase II clinical trials for use against MDR-TB [163].

3.2 Diarylquinolines

3.2.1 History

The diarylquinoline TMC207 (Fig. 14; 14a), first reported in 2005, is the first

known antitubercular compound in the diarylquinoline class [164] (for additional

details, see [165, 166]). Tibotec, a subsidiary of Johnson and Johnson, has reported

the vast majority of research and development on TMC207, although recent efforts

by Chattopadhyaya and coworkers have contributed new related compounds [167,

168]. TMC207 was one of the lead compounds discovered in a high-throughput

screen for compounds with activity againstMycobacterium smegmatis (a nonpatho-
genic rapid-growing mycobacterium), which were subsequently evaluated against

MTb [164].

3.2.2 SAR of TMC207

Correct absolute and relative configuration of the two stereocenters of TMC207

(Fig. 14; 14a), which have been assigned by NMR and X-ray crystallographic

analysis [169, 170], are required for activity [171, 172]. Sterically undemanding

functional groups can be substituted for the bromine on the quinoline ring without

significant loss of activity, although a bromine atom appears to be preferred. The

naphthyl substituent can be replaced with other electron-poor aryl groups and still

maintain good activity against MTb. Based on initial reports, the dimethyl-

substituted tertiary amine appears to be required for activity, with the replacement

of one methyl substituent with a proton or ethyl substituent resulting in a decrease in

activity [171]. However, more recent reports suggest that the N-monodesmethyl

NH3CO

Br
OH

N(CH3)2

(S)

(R)

Electron-deficient 
aromatic preferred

Hydrophobe 
preferred

Relative and absolute 
stereochemistry essential at 

both stereocenters
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metabolite of TMC207 produced by oxidation by CYP3A4, a cytochrome P450 that

is potently induced by RIF, maintains significant antitubercular activity [173].

3.2.3 Biology

TMC207 is highly specific for mycobacteria [172]. Both H37Rv and clinical

isolates show MICs in the range of 54–217 nM. TMC207 targets the c subunit of

ATP synthase (atpE gene), a mechanism of action distinct from fluoroquinolones

and other quinoline derivatives [164, 174, 175]. Docking studies have suggested the

tertiary amine of TMC207 serves as an arginine mimic, allowing the compound to

disrupt the proton transport chain of ATP synthase [168, 176]. Point mutations in

atpE confer resistance; these mutations occur at a rate of one in 107 to 108, similar

to the bacterial mutant frequency of rifampicin resistance [164].

Initial in vivo studies showed encouraging results. Treatment of MTb-infected

mice exclusively with TMC207 at 25 mg/kg was as effective as triple combination

therapy of RIF/INH/PZA [164]. Also in mice, the addition of TMC207 to standard

MDR-TB regimens showed an improved cure rate over the standard regimen alone

[177]. TMC207 acts synergistically with PZA in mice [178]. In guinea pigs,

treatment with TMC207 for 6 weeks resulted in almost complete eradication of

MTb bacilli from lesions [179]. Furthermore, TMC207 has also been shown to be

bactericidal in vitro against non-replicating MTb, suggesting that TMC207 might

prove therapeutically effective against latent tuberculosis [180].

Also, a once-weekly schedule of administration of TMC207/rifapentine/PZA

tested in mice was more active than the standard regimen of RIF/INH/PZA given

daily [181]. Because TMC207 has a long half-life in humans (44–64 h in plasma)

[164], once-weekly tuberculosis treatments might one day be possible. However,

metabolism of TMC207 is enhanced by the presence of RIF, suggesting that

coadministration of these drugs might not be straightforward [182].

3.2.4 Clinical Use

In humans, Cmax is reached in 4–5 h [164, 173, 183], and a daily dose of 400 mg

administered daily for 7 days results in a Cmax of 10 mM [183]. A steady-state

concentration of 1 mM, which appears to be required for bactericidal activity [183],

can be maintained with a dosing schedule of 400 mg daily for 2 weeks followed by

reduced doses of 200 mg three times weekly [173]. Adverse events occurred at a

low rate and side effects were considered mild to moderate [164, 173, 183].

In preliminary clinical trials, TMC207 showed significant bactericidal activity

after 4 days of a 7-day trial treating previously untreated TB patients, although

onset of bactericidal activity was delayed in comparison to RIF and INH [173]. In

2009, the first stage of a phase II trial testing TMC207 in combination with a

standard, five-drug, second-line antituberculosis regimen in MDR patients showed

that after 8 weeks of treatment, 48% of study participants receiving the TMC207

regimen converted to negative sputum culture, compared with 9% of those on the
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standard regimen [183–185]. Additional trials are ongoing in MDR patients [185],

and TMC207 is undergoing further development for drug-susceptible TB [186].

3.3 Oxazolidinones

3.3.1 History

Oxazolidinones are a new structural class of synthetic antibacterial drugs. Reports

of structurally novel anti-infectives by DuPont (Fig. 15; 15a,b) in the mid-1980s

[187] drew the interest of researchers at the former Pharmacia and Upjohn Inc.

(now Pfizer) [188–190]. Two lead compounds, eperezolid (Fig. 15; 15c) and line-

zolid (LZD, Fig. 15; 15d) [191], proved to be exceedingly effective wide-spectrum

drugs, although LZD was better tolerated in clinical trials. Further development of

the oxazolidinone scaffold has yielded PNU-100480 (15e) [191], a linezolid analog

currently in phase II clinical trials [192, 193], as well as DA-7218 (Fig. 15; 15g) and

its metabolite DA-7157 (Fig. 15; 15h), which are in preclinical development

(Dong-A Pharmaceuticals, Ltd.) [194]. Ranbaxy Laboratories Limited (acquired

in 2008 by Daiichi Sankyo Company) has also made contributions in the form of

RBx-7644 (15i) and its more potent analog RBx-8700 (15j) [195], which are in

preclinical development. Additionally, AstraZeneca has developed two oxazolidi-

nones, AZD2563 (15k) [196] (discontinued at preclinical stage) and AZD5847

(structure not yet available) which is starting phase II clinical trials [197, 198].

3.3.2 Structure–Activity Relationship

Because the oxazolidinones were not developed specifically to treat TB, their SARs

have been developed mostly against a number of Gram-positive and Gram-negative

bacteria, and little is known about TB-specific SAR. DuPont was the first to publish
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their conclusions about the structural motifs required for antibacterial activity

(Fig. 16) [199–201]. These relationships were further refined during the develop-

ment of eperezolid and LZD [202]. Finally, the development of the RBx and DA

compounds has expanded the limits of the functional groups that display antituber-

cular activity [203].

Activities of the oxazolidinones against TB are shown in Table 4. LZD (Fig 15;

15d) has an MIC against first-line susceptible TB strains of 1.55 mM [204]. For the

DA class of compounds, which contain a triazole as the basic side chain, DA-7867

(Fig 15; 15f) proved to be poorly water soluble; hence, a water-soluble prodrug

DA-7128 (Fig 15; 15g, which is metabolized to DA-7157, Fig 15; 15h) was

developed. Interestingly, against MTb, prodrug DA-7128 performed similar to its

(usually more active) metabolite against MTb, giving an MIC of 0.25 mM [207].

3.3.3 Biology

The oxazolidinones inhibit bacterial protein synthesis by binding to the bacterial 23S

rRNA of the 50S subunit, [208, 209] which blocks the interaction between charged

tRNAs at the P site and the A site (Fig. 16) [210]. Specifically, LZD disrupts initiation

of protein synthesis by inhibiting peptide bond formation between the carboxyl

terminus of the N-formylmethionine–tRNA complex residue bound at the P site
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Table 4 MIC of various oxazolidinone candidates against TB

Drug candidate MIC against

H37Rv (mM)

[Ref.]

MIC against RIF or INH-

resistant clinical isolates (mM)

[Ref.]

MIC against RIF and

INH-resistant clinical

isolates (mM) [Ref.]

Linezolid (15d) 0.74 [204];

17 [205]

1.40 [204]; 13 [205] 1.24 [204]; 2 [205]

DA-7867 (15f) – 0.15 [206] 0.15 [206]

DA-7157 (15h) – – 0.25 [207]

DA-7218 (15g) – – 0.25–1 [207]

RBx-8700 (15j) – 0.09 [205] 0.34
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and the amino terminus of the amino acid-tRNA bound at the A site [210]. Crystal

structures show LZD bound near the A site of the 50S ribosomal subunit at the 23S

rRNA in such a way that peptide bond formation should be inhibited [211].

LZD-resistant tuberculosis has been observed in both following in vitro selection

[212] and clinical strains (occurring only rarely) [213] and may arise through an

active efflux system [214]. Many reports have shown that LZD is effective against

MDR-TB both in vitro [215, 216] (MIC < 24 mM) and in vivo [51, 217, 218].

3.3.4 Clinical Use

For DA-7867 (15f), oral bioavailability in rats is 70.8%, with 8.3% not absorbed

and 21.8% eliminated by intestinal first-pass metabolism [194]. LZD (15d) has

nearly 100% bioavailability (regardless of whether or not it is taken with food

[219]), and its half-life of 5.40 � 2.06 h [220] allows for a 12-h dosing schedule

[221]. In healthy human subjects, steady-state plasma concentrations of 63 � 17

mM are obtained at Tmax of 1.03 � 0.62 h [220]. LZD’s major metabolites (Fig. 17;

15l, 15m) are formed via oxidation alpha to the morpholine ring heteroatoms

followed by ring opening [220]. It is metabolized through hepatic oxidation (and

thus should not affect drugs metabolized by cytochrome P450 enzymes); hence,

doses do not have to be altered for patients with renal or hepatic impairment [221].

LZD does not show suppressed antibiotic activity when coadministered with other

antibiotics [221] and even shows synergistic activity with fluoroquinolones and RIF

[222]. PNU-100480 was studied in healthy volunteers (phase I clinical trials)[192,

193] and appeared to be well tolerated at doses of 1,000 mg/day [216]. Addition-

ally, a whole blood assay against MTb showed PNU-100480 to be more effective
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than LZD, although doses of PNU-100480 used were higher (300 mg linezolid vs

1,000 mg PNU-100480 dosed daily until steady-state plasma concentrations were

achieved) [216]. PNU-100480 forms metabolites by the oxidation of the sulfur

atom (Fig. 17; 15n,o).

Side effects reported during phase III clinical trials of linezolid were generally

not severe (however, the duration of exposure in such trials has been notably shorter

than those used in MTb chemotherapy) [221]. More than half of the patients ex-

perienced digestive side effects (including constipation, diarrhea, vomiting, nausea),

rash, headache, insomnia, or dizziness [221]. Hematological side effects including

thrombocytopenia, anemia, leucopenia, or pancytopenia [221], although rare, war-

rant monitoring for longer treatment durations [223]. LZD can cause peripheral and

optic neuropathy [221], and lactic acidosis has been reported in patients on longer

treatment courses [221].

The largest (184 patients) retrospective analysis of patients empirically treated

using LZD in a multidrug regimen for MDR- and XDR-TB patients in a multidrug

regimen showed an overall 59% cure rate for the entire cohort, with an 87% cure

rate in cases with definitive outcomes [224]. The use of LZD was also associated

with a favorable outcome in a retrospective analysis of 176 XDR-TB-infected

patients [62]. No prospective controlled data are available at this point although

two trials are currently underway [53, 54].

3.4 Fluoroquinolones

3.4.1 History

The fluoroquinolones are a synthetic class of antibacterial drugs discovered by the

Sterling-Winthrop Institute in 1962 as an impurity during synthesis of the antima-

larial compound chloroquine [225]. This byproduct, nalidixic acid (Fig. 18; 16a),

was approved by the FDA in 1963 to treat Gram-negative urinary tract infections.
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However, despite its good bioavailability and straightforward synthesis, nalidixic

acid has had limited clinical use due to a poor pharmacokinetic profile and narrow

antibacterial spectrum [226]. Interest in the quinolones was renewed in 1980 with

the discovery of the first reported antibacterial fluoroquinolone, norfloxacin

(Fig. 18; 16b), by the Dainippon Pharmaceutical Company [227]. Norfloxacin

showed broad spectrum antibacterial activity 1,000-fold greater than nalidixic

acid [228, 229] as well as improved pharmacokinetic properties, with a longer

half-life and improved solubility [228–230]. Norfloxacin and several other second-

generation fluoroquinolones such as ciprofloxacin (Fig. 18; 16c) (first reported in

1982 by Bayer [231]), ofloxacin (Fig. 18; 16d) (first reported in 1983 by Daiichi

Pharmaceutical Co., Ltd., now Daiichi Sankyo Co., Ltd. [232]), and levofloxacin

(Fig. 18; 16e), which is the isolated S-isomer of racemic mixture ofloxacin (also

developed by Daiichi Pharmaceutical Co., Ltd. [232]), have proven relatively safe

and remain among the most frequently prescribed drugs [226].

Following the discovery of norfloxacin (16b), SARs for the fluoroquinolone core

were studied in detail. This led to the development of a number of analogs with

broader antibacterial activity, better solubility, and longer serum half-lives [226,

229]. Among the third and fourth generations of fluoroquinolones, moxifloxacin

(Fig. 18; 16f) (developed in 1991 by Bayer [233]), which has a bulky hydrophobic

modification at C(7), has been the most successful. Unfortunately, several third and

fourth generation agents have been restricted or withdrawn due to severe adverse

effects (Fig. 19) including temafloxacin (16g), grepafloxacin (16h), trovafloxacin

(16i), and clinafloxacin (16j) [226, 234, 235].

Many new fluoroquinolones are in development such as gemifloxacin (Fig. 20;

16n), patented in 1998 by LG Life Sciences Ltd. [236], and sitafloxacin (Fig. 20; 16o)

(first reported in 1994 by Daiichi Seiyaku Co. [237]) which show activity against a

panel of respiratory pathogens [229]. Sitafloxacin is currently in clinical development;
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gemifloxacin is a clinically prescribed drug. Recently, novel bacterial topoisomerase

inhibitors (NBTIs) with modes of action similar to the fluoroquinolones have been

reported, including GSK 299423 (Fig. 20; 16p) [238], NXL101 (Fig. 20; 16q) [239],

and a series of tetrahydroindazole compounds [240, 241]. While these new com-

pounds have shown good in vitro activity against a spectrum of both Gram-positive

and Gram-negative microbes including strains resistant to fluoroquinolones, it

remains to be seen whether they will also exhibit activity toward MTb.

3.4.2 Structure–Activity Relationships

While the SAR of the fluoroquinolones has not been analyzed specifically for

mycobacteria, it is reasonable to assume that many of the relationships found in

other types of bacteria will be applicable to MTb (Fig. 21). Modifications at N(1)

control potency, with electron-poor and sterically strained cyclopropyl being opti-

mal, followed by 2,4-difluorophenyl and t-butyl [242]. This substituent also con-

trols Gram-negative and Gram-positive activities, and a 2,4-difluorophenyl group

increases activity against anaerobes. The C(2) position is near the DNA gyrase-

binding site, and thus a sterically undemanding hydrogen atom at R2 is optimal

[244]. The dicarbonyl moiety is required for binding to DNA gyrase and thus is

critical for activity. Modifications at C(5) control in vitro potency with the most
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active groups being small electron-rich groups such as -NH2, -OH, and -CH3 [242].

Additionally, C(5) modifications affect activity against both Gram-negative and

Gram-positive organisms. The fluorine atom at C(6) (for which the class is named)

enhances DNA gyrase inhibition [226, 244] and can increase the MIC of the com-

pound 100-fold over that of other substitutions [242]. The most active substituents at

C(7) have been five- and six-membered nitrogen heterocycles, with pyrrolidines

increasing activity against Gram-negative bacteria and piperazines affecting potency

against Gram-positive organisms. The C(8) position controls absorption and half-life,

and optimal modifications for in vivo efficacy include groups that create an electron-

deficient pi system, i.e., N, CF, and CCl [245]. Several modifications that create a N(1)

to C(8) bridge have also been successful, i.e., ofloxacin (Fig. 18; 16d) and levofloxacin

(Fig. 18; 16e), which both display significant gyrase inhibition [244].

3.4.3 Biology

The fluoroquinolones alter DNA topology and block replication by inhibiting two

essential bacterial enzymes, DNA gyrase (topoisomerase II) and topoisomerase IV.

DNA gyrase, encoded by gyrA and gyrB, maintains the levels of supercoiled DNA

required for efficient replication and is the primary target for the fluoroquinolones in

most Gram-negative bacteria [246]. Topoisomerase IV, encoded by parC and parE, is
responsible for decatenation ofDNA following replication and is themajor target of the

fluoroquinolones in many Gram-positive bacteria [229, 247]. Mycobacteria are unique

in that genome sequence analyses have failed to identify DNA topoisomerase IV [229].

Thus, gyrA and gyrB are likely the only targets of the fluoroquinolones in MTb.
The MIC for numerous fluoroquinolones has been determined for both wild

type (H37Rv) and clinical isolates of MTb. The MIC values against H37Rv

for the clinically relevant fluoroquinolones are displayed in Table 5 and range

from 0.1 to 5 mM.

3.4.4 Clinical Use

The fluoroquinolones have several pharmacokinetic features that have proven

valuable in treating tuberculosis. For example, the oral bioavailability for many

of the fluoroquinolones is good, ranging anywhere from 70 to 100%, with levels in

Table 5 MIC data for fluoroquinolones commonly used in treatment of MTb

Fluoroquinolone MIC (mM) References

Ciprofloxacin (16c) 1.51 [248]

Gatifloxacin (16k) 1.25 [249]

Levofloxacin (16e) 1.25 [249]

Lomefloxacin (16l) 5 [249]

Moxifloxacin (16f) 0.16 [249]

Ofloxacin (16d) 2.5 [249]

Sparfloxacin (16m) 0.08 [249]
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the blood peaking soon after administration [248, 250–253]. Moreover, the fluor-

oquinolones are cell permeable and widely distributed throughout the body, which

is important for killing intracellular bacteria and treating disseminated disease

[250]. For the most part, the later generation fluoroquinolones have longer serum

half-lives, but these vary extensively, from 5.37 h for ciprofloxacin to 18.3 h for

sparfloxacin [245]. Finally, most fluoroquinolones are cleared via the kidneys, but

liver metabolism and elimination by a combination of routes do occur for several of

the compounds [250].

Generally, the fluoroquinolones are well tolerated, causing mild side effects that

tend to be self-limiting and rarely require discontinuation or regimen changes [235,

250] (Fig. 22, Table 6). The most frequent adverse events reported include gastro-

intestinal upset, disturbances of the CNS, and skin reactions [226, 234]. A number

of more serious side effects have been documented with fluoroquinolones use as

well. In particular, the fluoroquinolones have been associated with tendonitis and

tendon rupture due to collagen damage, which in 2008 prompted a black box

warning for all currently available drugs within this class [234]. Phototoxicity

due to the generation of reactive oxygen species and inflammatory responses to

sunlight is also commonly reported [226].

While all fluoroquinolones may cause photosensitivity, there is considerable varia-

tion within the class due to structural differences [234]. For example, the presence of

halogen atoms at C(5) or C(8) and a bulky side chain or methyl group at C(5) show the

highest potential for this effect [226, 242]. Moreover, fluoroquinolones can cause QTc

interval prolongation by blocking voltage-gated potassium channels, which has been

Table 6 Notable side effects of selected fluoroquinolones

Fluoroquinolone Adverse effects Implications References

Ciprofloxacin (16c) Tendonitis/tendon rupture Black box warning; 2008 [234]

Clinafloxacin Phototoxicity,

hypoglycemia

Development stopped [243]

Gatifloxacin (16k) Dysglycemia Oral and injectable formulations

no longer available in USA; 2006

[234]

Grepafloxacin (16h) Cardiotoxicity Withdrawn; 1999 [226, 243]

Levofloxacin (16e) Tendonitis/tendon rupture Black box warning; 2008 [234]

Lomefloxacin (16l) Phototoxicity, CNS effects Black box warning; 2008 [234, 243]

Moxifloxacin (16f) QTc interval prolongation,

tendonitis/tendon rupture

Black box warning; 2008 [234]

Ofloxacin (16d) Tendonitis and tendon

rupture

Black box warning; 2008 [234]

Sparfloxacin (16m) Phototoxicity, QTc

interval

prolongation

No longer available in USA [243]

Temafloxacin (16g) Severe hemolytic

reactions,

clotting abnormalities,

renal failure

Withdrawn; 1992 [226, 243]

Trovafloxacin (16i) Hepatotoxicity Withdrawn/limited use; 1999 [226, 234]
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associated with torsades de pointes syndrome, severe arrhythmia, cardiotoxicity, and

death. However, the severity varies according to structural differences and the dose

administered [226, 234]. Other adverse effects attributed to fluoroquinolone use

include: hepatotoxicity, kidney and liver dysfunction, and dysglycemia [226, 235].

As discussed in Sect. 1.3, patients with MDR-TB receive one of several fluor-

oquinolones used as second-line agents in the treatment of TB, namely gatifloxacin,

levofloxacin, moxifloxacin, or ofloxacin [254, 255]. Based on murine model studies

[256–258], the most active fluoroquinolones are: moxifloxacin ¼ gatifloxacin >
levofloxacin > ofloxacin [259]. In addition to the aforementioned fluoroquinolones,

several clinical studies have investigated the efficacy of sparfloxacin and lomeflox-

acin [260]. While sparfloxacin appears efficacious for treating MDR-TB, a role for

lomefloxacin in tuberculosis therapy is unclear [260]. Based on data from the mouse

studies, moxifloxacin and gatifloxacin are currently in phase III clinical trials to

determine whether they can shorten duration of therapy [259, 261, 262]. Thus far,

clinical trials of fluoroquinolones based on extrapolation of murine results of reduced

therapy duration have failed to show similar effects in humans as in mice.

3.5 Ethylenediamines

3.5.1 History

N,N0-diisopropylethylenediamine (Fig. 23; 9b)was the first compound in this series

developed in early 1950s against MTb [263]. Structural modification of the lead

compound led to the discovery of ethambutol (EMB, Fig. 23; 9a) [263–266].

Despite its modest potency, EMB is a first-line drug for the treatment of TB.

3.5.2 Structure–Activity Relationship

Initial studies of structural modifications of EMB concluded that the size and nature of

the alkyl group on the ethylenediamine nitrogens were critical for activity. These

studies confirmed that small a-branched alkyl groups were more effective than alkyl

chains branched at positions other than a and that a longer alkyl chain was detrimental

to activity [264]. Alterations in the linker region of the molecule were deleterious

since any lengthening, incorporation of heteroatoms, or branching of the ethylene
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linker led to reduced activity. In addition, aryldiamines and cycloalkylamineswere far

less effective than the parent compound. These studies confirmed that the ethylene-

diamine unit is the minimum pharmacophore required for antitubercular activity. Any

change in the basicity of either amino group led to decreased antimycobacterial

activity, with the exception of substitution of the amine with an amide that retained

partial activity in some analogs [267]. Due to the lack of crystallographic information

about the membrane-bound arabinosyltransferase enzyme, which is the presumed

target of EMB [268, 269], a thorough study was undertaken to use combinatorial

chemistry to develop a comprehensive SAR.A library of 63,238 asymmetric diamines

was screened against MTb [270] of which 25 were either more effective or had

comparable activity to the parent compound. The most effective compound, SQ-

109 (Fig. 23; 9c), was chosen for development based on its activity and pharmacoki-

netic properties. A summary of the SAR of the ethylenediamines is shown in Fig. 24.

3.5.3 Biology

Although it was initially assumed that SQ-109 (9c) and EMB (9a) would share the

same arabinosyltransferase target, which catalyzes the transfer of arabinosyl resi-

dues to the cell wall arabinogalactan polymer, SQ-109 retained potency against

EMB resistant strains. In addition, transcriptional profiling studies and analyses of
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cell wall-linked sugar residues indicated that MTb responds differently to these

compounds, suggesting that SQ-109 acts on a different target than EMB [271, 272].

3.5.4 Clinical Use

Pharmacokinetic profile of SQ-109 after a single dose administration shows Cmax

after intravenous and oral administration as 1,038 and 135 ng/mL, respectively. The

t1/2 for the drug after i.v. and oral administration were 3.5 and 5.2 h, respectively.

SQ-109 displayed a large volume of distribution into various tissues. SQ-109 levels

in most tissues after a single administration were significantly higher than that in

blood. The highest concentration of SQ-109 was present in lung (>MIC), which

was at least 120-fold (p.o.) and 180-fold (i.v.) higher than that in plasma with the

next ranked tissues being spleen and kidney [273, 274]. SQ-109 is highly unstable

to human microsomes as evidenced by its oxidation, epoxidation, and N-demethyl-

ation and has been shown to have poor oral bioavailability, presumably due to its

poor solubility and first pass metabolism [275]. In a continued effort to enhance

the efficacy of SQ-109, carbamate analogs (Fig. 23; 9d), which act as prodrugs of

the parent compound, have recently been synthesized. Carbamate-based esterase-

sensitive drug conjugates have been used to create prodrugs of both amines and

amidates [276–278]. These carbamates are stable in microsomal assays, but are

substrates for plasma esterases. When administered orally, these prodrugs can

bypass first pass metabolism in the liver. The bioavailability studies of the new

analog 9d, when compared with SQ-109 in a rat model, showed significant

improvement [279]. After oral dosing of 13 mg/kg of SQ-109 or 9d, bioavailability

of free SQ-109 from pro-SQ-109 9d was 91.4% compared to 21.9% from SQ-109

[280]. This study also showed that the concentration of SQ-109 after oral adminis-

tration is higher in lungs than in liver, spleen, and plasma [279], which may be

beneficial for a pathogen predominantly associated with lung disease. SQ-109 has

currently completed phase Ia clinical trials [280].

3.5.5 Other Diamine Derivatives

Another compound, SQ-73 (Fig. 23; 9e), having a moderate MIC at 12.5 mM but a

better therapeutic index (for macrophage toxicity) of 6.4, was studied further as this

compound exhibited better activity in macrophages. In vivo studies with SQ-73

exhibited moderate tissue distribution [271]. A structurally related dipiperidine

class of compounds was also recently reported, with the most effective compound

from this series exhibiting an MIC of 6.25 mM against MTb [281]. After further

optimization and analysis of the dipiperidine library, the compound SQ-609

(Fig. 23; 9f) was selected as the most promising in the class. This compound has

moderate in vitro cytotoxicity in cultured mammalian cells and a suitable therapeu-

tic window. SQ-609 has shown efficacy against intracellular MTb, good aqueous

solubility, and oral bioavailability. In murine studies, SQ-73 (5 mg/kg), SQ-109
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(10 mg/kg), and SQ-609 (10 mg/kg) all exhibited activity similar to INH (25 mg/kg)

after 3 weeks of treatment [281].

4 Series in Preclinical Development

4.1 Benzothiazinones

4.1.1 History

The nitro-benzothiazinone (BTZ) class was originally derived from a series of

sulfur-containing heterocycles to develop antibacterial and antifungal agent [282].

BTZ-043 (Fig. 25; 17a), the most promising compound among the benzothiazi-

nones, shows high antitubercular activity in vitro, in macrophages, and in the

murine model of chronic TB [283].

4.1.2 Structure–Activity Relationship

From SAR studies, the sulfur atom and the nitro group at positions 1 and 8,

respectively, play a critical role in bactericidal activity. When the nitro is replaced

with either an amine or a hydroxylamine at position 8, the resulting analogs show

a 500 to 5,000-fold decreased activity [283]. More than 30 different BTZ deriva-

tives showed MICs of less than 116 nM against MTb. Electron-withdrawing

group such as CN, CF3, and Cl at the R1 position and 1,4-dioxa-8-azaspiro[4.5]

decane groups with methyl substituents at R2 show promising activity against

MTb.

4.1.3 Biology

The BTZ class of compounds is thought to inhibit decaprenylphosphoryl-b-D-ribose
20-epimerase, hereby preventing the conversion of decaprenylphosphoryl ribose

(DPR) into decaprenylphosphoryl arabinose (DPA), which is a substrate for
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the arabinosyltransferases of mycobacterial cell wall synthesis [284]. The MIC of

BTZ-043 against H37Rv is 2.3 nM [283]. Despite the 100-fold better in vitro activity

of BTZ-043 against MTb than frontline agents such as INH, its in vivo effect during

treatment of chronically infected mice was comparable to that of INH and RIF.

In mice, BTZ-043 has a t1/2 greater than 2 h, a Cmax of 2 mg/mL, and an AUC of

4.6 h�mg/mL [283]. It is also relatively stable to degradation by human liver

microsomes and shows less than 20% inhibition of various cytochrome P450

enzymes. BTZ-043 showed high activity against clinical isolates of MTb including

MDR and XDR strains [285]. This compound is in preclinical development and will

soon enter phase I clinical trials.

4.2 Nucleosides

4.2.1 History

Nucleoside analogs are a class of drugs typically used in the treatment of infectious

diseases and cancer. The requirement for drugs that have activity against MDR-TB

and XDR-TB makes the nucleoside analogs particularly attractive, since they have

unique mechanisms of action from currently used antitubercular drugs. Among the

nucleoside analogs currently under investigation, the capuramycin and caprazamy-

cin classes of antibacterial antibiotics have the most potent activity [286]. Capra-

zamycin (Fig. 26; 18a–g) and capuramycin (Fig. 27; 19a) are natural products

originally isolated from the culture broth of Streptomyces griseus 447-S3 [287] and
culture broth of Streptomyces sp. MK730-62F2 [288] and show in vitro activity

against drug-resistant MTb strains.

4.2.2 Structure–Activity Relationship

Capuramycin analog SQ-641 (Fig. 27; 19b) has shown moderate activity against

MTb. From SAR studies, the uridine unit and the protic amide are essential for
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bactericidal activity (Fig. 28) [289]. At the R2 position in Fig. 28, lipophilic groups,

including medium size alkyl chains, phenethyl, and phenyl-type substitutions,

retained moderate activity but benzyl-type substitution showed decreased activity.

When different lipophilic groups were placed at the R1 position, installation of a

decanoate substituent showed the largest increase in whole cell activity compared

to shorter alkanoate chains, likely due to the increased lipophilicity, which (see

Sect. 5.1) increases intracellular uptake into MTb.

CPZEN-45 (Fig. 27; 19f), a caprazamycin analog, is shown in Fig. 27. SAR

studies revealed that the uridine and the aminoribose are crucial for antibacterial

activity [290]. Initially, installation of ester substituents at R1 with R2 alkyl chains

showed that tridecane (C13H27, Fig. 27; 19c) and octadecane (C18H37, Fig. 27; 19d)

esters showed equipotent activity, whereas a 21-carbon chain with unsaturation at

C(18) showed decreased potency. Next, the effect of the amide substituent R2 (19e)

was investigated, which showed that the potency generally increased up to a 21

carbon alkyl chain and exhibited decreased potency with even longer alkyl sub-

stituents. Finally, anilinoamide substituents with n-butyl (CPZEN-45, Fig. 27; 19f),
n-hexyl (Fig. 27; 19g), and hexyloxy (Fig. 27; 19h) showed the most potent activity

against MTb. Highly lipophilic molecules are, of course, not good candidates for

lead optimization programs; thus a considerable amount of work is still required to

discover better candidates from CPZEN-45 (19f) as leads for drug development.
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4.2.3 Biology

Translocase I (encoded by mraY) is an essential enzyme involved in the biosynthe-

sis of peptidoglycans, which makes it an attractive target due to its unique presence

in bacteria. Caprazamycin (Fig. 26; 18a–g) and capuramycin (Fig. 27; 19a) inhibit

Translocase I with an IC50 of 18 nM and 90 nM, respectively [289]. The lead

compounds of the series are SQ-641 (Fig. 27; 19b), which has an MIC of

0.67–1.35 mM against drug-susceptible MTb and 0.081–2.71 mM against MDR-

TB [291], and CPZEN-45 (Fig. 27; 19e), which has an MIC of 2.26 and 9.07 mM
against drug-susceptible and MDR-TB, respectively.

SQ-641 shows promising efficacy in themurinemodel of TB infection and exhibits

strong synergistic effects with EMB, STR, and SQ-109 (see Sect. 2.5) [286]. CPZEN-

45 also exhibits no significant toxicity and a novel mechanism of action making

these nucleoside compounds attractive candidates for TB drug development.

4.3 Macrolides

4.3.1 History

In the early 1950s, the first-generation prototypical macrolide, erythromycin (EM,

Fig. 29; 20a), was discovered. It is a natural antibiotic isolated from Saccharopo-
lyspora erythrea [292, 293]. Erythromycin consists of a 14-membered lactone ring

with two attached sugar groups: L-cladinose at the C(3) position and desosamine at

the C(5) position [292, 293]. EM shows antibacterial activity against Gram-positive

bacteria, but no activity has been observed against MTb [292, 293].

4.3.2 Structure–Activity Relationship

In an effort to increase potency against MTb, a series of EM analogs was synthe-

sized with modifications at the 2, 3, 6, 9, 11, and 12 positions of the 14-membered

lactone ring, as well as at the 40 position of cladinose and the 200 position of
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desosamine [292–294] (Fig. 30). Specific modifications on the lactone ring such as

6-substitution, 11, 12-carbamate, 11, 12-carbazate, and 9-oxime substitutions

enhance potency [294]. Substitution of fluorine at position 2 in ketolides appears

to improve both potency and selectivity (i.e., cytotoxicity vs activity against MTb)

[293, 294]. The C(6) substituent is critical for activity of the ketolides [293], as it

affords acid stability by preventing internal hemiketalization with the 3-keto group

[292]. In general, ketolides are less potent than the corresponding cladinose-con-

taining compounds for all substituents on the 6-position [293]. Among 9-oxime-

substituted ketolides and macrolides, there is a correlation between the lipophilicity

of the substituent on the 9-position (defined as calculated logP) and the potency

[293], with some C(9) oximes showing submicromolar MIC against MTb [294].

The substituent at 11, 12 position appears to significantly affect potency.

A variety of aryl-substituted 11, 12-carbamate and carbazate macrolides and keto-

lides demonstrated low or submicromolar MICs [294]. Also, the aryl substituent

may be involved in determining cytotoxicity [294]. The substituted 11, 12-carba-

zate compounds demonstrated significant dose-dependent inhibition of MTb

growth in mice, with a 10–20-fold reduction of colony forming units (CFUs) in

lung tissue [294].

To further enhance lipophilicity, the 20 and 400-positions on desosamine and

cladinose rings, respectively, have been modified via esterification, which generally

improved potency and sometimes decreased CYP3A4 inhibition (more commonly

in the cladinose-containing macrolides; see Sect. 4.3.3 for discussion of CYP3A4

inhibition) [293], although the substituent on the 9-position is generally more

important than modifications on 20 and 400 positions [293].

4.3.3 Biology

Macrolides bind reversibly to the 50S subunit of 70S bacterial ribosomes, which

inhibits protein synthesis [293, 295]. Although macrolides are effective for other

bacterial infections, including some mycobacteria, they have not demonstrated

significant efficacy against MTb [293, 294]. Ribosome methylation is the most
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widespread mechanism involved with macrolide resistance in MTb, and the gene

ermMT plays an essential role [294–296]. Therefore, the current development goal

for macrolides has been primarily to overcome bacterial resistances resulting from

methylation of the rRNA and drug efflux [294, 295]. Furthermore, since macrolides

are well-known inhibitors of CYP3A4, a cytochrome P450 enzyme, developing

compounds with decreased inhibition against CYP3A4 is critical.

In addition to low efficacy against MTb, the pharmacokinetics of EM are

somewhat unsatisfactory, as it is unstable to gastric acid and displays a short

serum half-life (~1.4 h) [292, 293]. The second-generation macrolides such as

clarithromycin and roxithromycin improved both properties [293], but clarithro-

mycin showed only weak activity against MTb either in vitro or in vivo (200 mg/kg

dose for low-dose aerosol infection mouse models), suggesting that second genera-

tion macrolides cannot be expected to offer significant antimicrobial clinical ben-

efits for TB [293, 294]. Further improvements focused on replacement of the

L-cladinose substituent, as it is associated with both drug efflux (one mechanism

for development of macrolide resistance) and metabolic instability of the macro-

lides [293]. This third generation of macrolides replaced the cladinose ring with a

ketone moiety (ketolides), leading to more metabolically stable drugs [292–294].

However, it appears that C(3) cladinose is important for antitubercular potency of

macrolides, which remain more potent than either ketolides or other substituents

such as 3-OH and 3-carbamoyloxy groups [293, 294]. Telithromycin (Fig. 29; 20b),

the first clinically approved ketolide, has been developed for use against respiratory

pathogens but is not active against MTb [292–294].

Currently, there have been some improvements in in vitro activity with macro-

lides against MTb, but to date no promising drug candidate has emerged. Preclinical

work in this area is ongoing.

4.4 b-Lactams

4.4.1 History

Since the discovery of 6-amino penicillanic acid (penicillin) in 1929 [297], b-lactams

have been one of the most successfully used classes of antibiotics. They are

irreversible inhibitors of peptidoglycan-cross-linking enzymes, D, D-transpeptidases

and D, D-carboxypeptidases [298]. b-lactams are rarely used in chemotherapy of

TB, however, because of the limited permeability of the mycobacterial cell enve-

lope, expression of inactivating enzymes (b-lactamases), and involvement of

b-lactam-insensitive targets in peptidoglycan transpeptidation.

4.4.2 Structure–Activity Relationship

The pharmacophore of the b-lactams is a highly reactive four-membered azetidi-

none ring which is generally fused to a five- or six-membered ring (Table 7). There
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is an absolute requirement for the b-lactam ring and a carboxylic acid on the fused

ring (or an electron withdrawing moiety such as the sulfonyl as in monobactams).

An amide a to the b-lactam ring is preferred. Conformationally, this core resembles

the acyl-D-alanyl-D-alanine moiety of the natural substrate. The serine nucleophile

in the enzyme active site attacks the electrophilic carbonyl of the b-lactam amide

leading to ring opening and irreversible acylation of the enzyme.

4.4.3 Biology

b-lactams are commonly used in combination with b-lactamase inhibitors such as

clavulanic acid (CA), sulbactam, and tazobactam which themselves are b-lactams.

A variety of b-lactams have been tested for in vitro efficacy against MTb (see

Table 8 for examples). However, despite activity of some b-lactams against MTb

in vitro, especially in the presence of b-lactamase inhibitors, none have to date

shown good efficacy in vivo. Amoxicillin (Table 8; 21a)/CA was found to be

ineffective in mice [302], and imipenem (Table 8; 21f) showed only a 16-fold

reduction in bacterial burden in lungs of infected mice over 4 weeks of treatment

[50]. Furthermore, only a modest decrease in viable numbers was seen in sputum

of patients receiving amoxicillin(Table 8; 21a)/CA or ampicillin(Table 8; 21b)/

sulbactam monotherapy [303]. The poor in vivo efficacy may be due to the

intracellular environment of MTb, making it difficult for drugs to penetrate the

phagosomal compartment. Additionally, the bacterial physiology in vivo may

Table 7 Basic structures of clinically relevant b-lactams and their pharmacologic properties

b-lactam
class

Pharmacophore Spectrum of

activity

Inactivation Adverse effects

Penams

N

S

CH3

CH3

H
N

R

O

O

O
OH

Gram-positives Classical

b-lactamases,

carbapenemases

Diarrhea,

hypersensitivity,

anaphylaxis,

pseudomembranous

colitis, yeast

infections

Cephems

N

S
H
N

R1

O

O

O OH

R2

Gram-negatives Extended-

spectrum

b-lactamases,

carbapenemases,

cephalosporinases

Diarrhea,

hypersensitivity,

pseudomembranous

colitis, yeast

infections

Carbapenems

N
H3C

O

O
OH

HO H

SR

Gram-positives,

Gram-negatives,

anaerobes

Renal

dehydropeptidase,

carbapenemases

Diarrhea, anaphylaxis,

pseudomembranous

colitis,

nephrotoxicity,

neurotoxicity

Mono-

bactams

N
O

CH3HN

O
R

S
O

O

OH

Select Gram-

negatives

Extended-

spectrum

b-lactamases,

carbapenemases

Diarrhea,

pseudomembranous

colitis, yeast infections
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be different making it less responsive to b-lactam therapy, although the recent

demonstration of activity of meropenem/CA against non-replicating persistent

MTb has raised the possibility of use of this carbapenem against TB [299, 304].

CP-5484 (a carbapenem with activity against MRSA) [305] is currently in

preclinical development for use against tuberculosis. Additionally, the merope-

nem/CA combination has shown potent activity against strains of MTb [299] and

is currently being investigated for possible clinical use.

Table 8 Biological activity of select b-lactams against MTb H37Rv in the presence or absence of

clavulanic acid [299–301]

Compound Structure MIC (mM)

�CA þCA

Amoxicillin (21a)

N

S

CH3

CH3

H
N

O

O

O
OH

NH2

HO

>250 0.5–3

Ampicillin (21b)

N

S

CH3

CH3

H
N

O

O

O
OH

NH2 >25 13

Ceftriaxone (21c)

N
O

H
N

O

N

H3CO

N

S NH2

S

OHO

S

N

N

CH3

O

OH

>230 7–28

Cephalothin (21d)

N

S
H
N

O

O

O OH

O CH3

O

S
>40 25

Meropenem (21e)

N
H3C

O

O
OH

HO H

S

H CH3

N
H N

O

CH3
H3C

6.5 0.8

Imipenem (21f)

N
H3C

O

O
OH

HO H

S

H HN
H

NH
4 0.5

Aztreonam (21g)

N
O

CH3HN

ON
O

N

S

H3C
H3C

O
OH

NH2

S
O

O

OH

>147 >147

The Medicinal Chemistry of Tuberculosis Chemotherapy 87



4.5 Rhiminophenazines

4.5.1 History

Clofazimine (CFM, Fig. 31; 8a), a member of the riminophenazine class of

compounds, was originally developed as an antitubercular drug in 1950s, but

inconsistent outcomes in animal studies (effective in mouse models but less activity

against in monkeys and guinea pigs) halted development [306]. Recently, CFM was

reinvestigated, and several analogs of CFM that are active against MDR-TB were

reported [307].

4.5.2 Structure–Activity Relationship

It has been shown that the imino group is essential for activity. Substitution with

electron-withdrawing groups such as -Cl or -CF3 at the R1 and R2 positions results

in higher antituberculosis activity, but increased lipophilicity particularly of R3

substituents can exacerbate the accumulation already observed with CFM in fat

tissues and cells of the reticuloendothelial system [27]. Installation of a tetramethyl-

piperidine in the R3 position showed higher activity than that of ethyl or isopropyl.

4.5.3 Biology

B-4157 (Fig. 32; 8b) exhibited promising in vitro activity against H37Rv and MDR

strains of MTb with MIC range of �114 nM to 228 nM. Tetramethylpiperidine-

substituted riminophenazines (such as B-4169, Fig. 32; 8c) showed MICs of

42.4–169 nM [308]. A generalized membrane disrupting effect, interference with

potassium transport, and generation of reactive oxygen intermediates have been

suggested as the mechanism of action for riminophenazines [27, 309, 310], but

detailed information is still not clear. The very low mutation frequency suggests

that rhiminophenazines may affect multiple aspects of metabolism [27].

The 2,2,6,6-tetramethylpiperidine-substituted riminophenazines such as B4169

have superior activity to CFM against MTb growing in macrophages and are also

N
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8a R1 = 4-Cl, R2 = 4-Cl, R3 = iPr; Clofazimine (CFM)
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8c R1 = 3,4,5-Cl R2 = 3,4,5-Cl, R3 = 4-(2,2,6,6-tetramethylpiperidine); B4169
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Fig. 31 Antitubercular

rhiminophenazines
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less toxic in animal models [308]. The B-4157 analog has similar activity to CFM in

infected mice, and at a dose of 20 mg/kg was as effective as similar doses of RIF or

INH in long-term monotherapy in infected animals [307]. The in vivo potency may

be due to the long half-life of CFM in tissues (>70 days after repeated dosing of

human patients) [27]. The absoption, distribution, metabolism, and excretion

(ADME) of CFM analogs have not yet been reported. CFM is 45–62% orally

bioavailable in humans, reaches serum concentrations of 0.7–1 mg/mL, and is

metabolized by the liver through dehalogenation or deamination followed by

glucuronidation or by hydroxylation along with glucuronidation [27]. Riminophe-

nazines are currently in the preclinical development state, but their high potency

makes them attractive drug candidates.

4.6 Pyrroles

4.6.1 History

Naturally occurring pyrrolnitrin (Fig. 32; 22a) and its analogs were tested against

MTb, and the most effective exhibited an MIC of 3.9 mM [311]. However, most of

the compounds from this series were cytotoxic, presumably because of the nitro

group. Structural optimization of pyrrolnitrin and other azole analogs led to the

discovery of the more potent pyrrole, BM-212 (Fig. 33; 22b), exhibiting MIC

values of 1.68 mM against MTb [312]. BM-212 (22b) was also found to be effective

against strains resistant to EMB, INH, amikacin, STR, RIF, and rifabutin, as well as

against MTb growing within a human monocyte cell line.
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4.6.2 Structure–Activity Relationship

Using BM-212 (22b) as a lead compound, systematic structural optimization led to

the discovery of improved analogs, with similar or better activity in the range of

0.5–2 mM and an improved therapeutic index (ratio of cytotoxicity to in vitro

activity against MTb) of 16–160 [313–316].

Based on whole cell biological activity, SARs could be deduced, with aromatic

groups at N(1) and C(5) and a methyl group at C(2) as essential features (Fig. 33).

Additionally, methylene-linked thiomorpholine or N-methylpiperazine substituents

at C(3) act as hydrogen bond acceptors to improve activity (Fig. 34; 22b–g) [316,

317]. Thus, a 1,2,3,5-tetrasubstituted pyrrole is the pharmacophore essential for

antitubercular activity (Fig. 32). The 2-methyl group is not involved in any phar-

macophoric interaction but influences the conformation of the substituents at posi-

tions 1 and 3 of the pyrrole ring [316, 317].

4.6.3 Biology

Another pyrrole analog, LL-3858 (Fig. 34; 22h) (first reported by Lupin Limited in

2004), a pyrrole derivative, also complies with this pharmacophore model and is

currently in phase IIa clinical trials in India. This compound has exhibited MIC

values in the range of 0.05–0.1 mM, against MTb. LL-3858 (22h) has been reported

to sterilize the lungs and spleen of infected mice after 12 weeks of treatment, none

of which relapsed after 2 months of therapy termination [318].

4.7 Deazapteridines

4.7.1 History

Tetrahydrofolate (reduced dihydrofolate) is a key cofactor for the synthesis of many

biomolecules, and inhibition of dihydrofolate reductase (DHFR) leads to cell death

[319]. Bacterial DHFR is sufficiently different from human DHFR to serve as a

novel drug target [320]. To this end, the deazapteridines were designed as inhibitors

of mycobacterial DHFR by researchers at the Southern Research Institute [321].

4.7.2 Structure–Activity Relationship

MIC assays against MTb and cytotoxicity assays using Vero cells were used to

compare selectivity for mycobacterial DHFR. Based on the limited number of

structures reported, it appears that a smaller R1 group is better tolerated (com-

pounds SRI-8117 vs SRI-8922 or SRI-8229 vs SRI-8911; Table 9), and either a

secondary or tertiary amine is tolerated (compounds SRI-8710 vs SRI-8117 and

SRI-8687 vs SRI-8686) [321]. 2,5-substituted electron-rich aromatics are preferred

(data not shown). Modeling studies of these small molecules binding to MTb DHFR

90 G.A. Marriner et al.



suggest that the 2-ethoxy or 2-methoxy group acts as a hydrogen bond donor [322,

323]. Additionally, modeling shows that for human DHFR, the cleft to which the

deazapteridines bind is lined with hydrophobic residues, whereas the analogous

MTb DHFR cleft is larger and more accessible to solvent [322, 323].

4.7.3 Biology

Subsequent publications refined the pharmacophore using members of the Myco-
bacterium avium complex (MAC), which established that SRI-8686 had the highest

IC50 ratio for MAC DHFR vs human DHFR (0.84 nM vs 2,300 nM, a 2,700-fold

selectivity). SRI-8117 showed similar selectivity (1.1 nM vs 1,000 nM, 900-fold

selectivity) [324]. Other MTb DHFR inhibitors are in early stages of development

[325]. Although the MIC assays suggest that this series may be worth developing,

the on-target effect of these compounds in MTb still needs to be verified.

5 Critical Issues in TB Drug Development

5.1 Cell Penetration

The complex, lipid-rich envelope of MTb acts as a permeation barrier to a broad

range of therapeutic agents and has likely contributed to both the fitness and

the success of the pathogen (Fig. 33). The plasma membrane (PM) forms the

innermost region of the cell envelope and is a typical lipid bilayer, structurally

and functionally similar to the PM of other eubacteria. External to the PM is the

peptidoglycan sacculus. This contains repeating units of N-acetylglucosamine and

Table 9 MIC vs MTb and IC50 vs Vero cells [321]

Compound name R1 R2 R3 MIC vs

H37Rv (mM)

IC50 vs Vero

cells (mM)

SRI-8117 (23a) CH3 2,5-(CH3O)2Ph H 37 2,106

SRI-8922 (23b) CH2CH3 2,5-(CH3O)2Ph H >35 ND

SRI-8710 (23c) CH3 2,5-(CH3O)2Ph CH3 8.8 200

SRI-8686 (23d) CH3 2,5-(CH3CH2O)2Ph H >34 ND

SRI-8687 (23e) CH3 2,5-(CH3CH2O)2Ph CH3 >32 ND

SRI-8202 (23f) CH3 2-CH3-5-CH3OPh H 19 1,421

SRI-8229 (23g) CH3 2-CH3O-5-CH3Ph H 19 231

SRI-8911 (23h) CH2CH3 2-CH3O-5-CH3Ph H >37 ND

SRI-8228 (23i) CH3 2-CH3O-5-CF3OPh H 4.0 2.6
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N-glycolymuramic acid with stem peptides joined mostly through 3–3 cross-links

rather than the 4–3 linkages commonly found in other bacteria [326, 327].

Peptidoglycan serves as a scaffold for arabinogalactan, a polymer of D-arabinose

and D-galactose, which are covalently attached by b-1,5 linkages [328]. The arabi-

nogalactan chain bridges between peptidoglycan and a thick layer of mycolic acids

where the galactose portion of the polymer is connected to peptidoglycan by a

unique glycosyl–phosphoryl bridge, and the arabinose moieties are ester-linked to

four mycolic acid residues [329, 330]. The mycolic acids that are largely responsi-

ble for the impermeability of the mycobacterial cell wall consist of branched

2-alkyl-3-hydroxy fatty acids 70–90 carbon atoms in length [330]. In contrast to

other bacteria, the MTb membrane also contains a number of lipids with unusual

structures including: phosphatidylinositol mannosides, lipomannans and lipoarabi-

nomannans, trehalose-6,60-dimycolate, sulfolipids, phthicerol dimycocerosates,

and phenolic glycolipids [331]. A loosely attached capsule defines the outermost

layer of MTb and is composed primarily of glucans, arabinomannans, and mannans,

with a small number of lipids and proteins decorating the structure as well.

Historically, the intrinsic resistance of mycobacteria to antibiotics has been

attributed to the low permeability of the cell wall. For example, perturbations in

the cell envelope caused by detergents, mutations, or through inhibition of cell wall

polymer biosynthesis increases the susceptibility of mycobacteria to various classes

of antibiotics, including aminoglycosides, EMB, and RIF [332–335]. Moreover,

data indicate that the outer membrane ofMycobacterium chelonei is 1,000-fold less

Fig. 34 Schematic of the mycobacterial cell envelope

92 G.A. Marriner et al.



permeable to hydrophilic molecules than Escherichia coli and tenfold less perme-

able than the notoriously impermeable Pseudomonas aeruginosa [331, 336, 337].

Instead, hydrophilic molecules such as the cephalosporins likely penetrate the

envelope using water-filled porins located on the outer leaflet of the cell wall

[338]. While typical lipid bilayers are highly permeable to lipophilic molecules,

permeability is inversely correlated with membrane fluidity [331]. When a cell wall

is erected from lipids containing long, hydrocarbon chains with few double bonds

or cyclopropane groups, the result is membrane rigidity [331, 339]. The mycolic

acids within the MTb cell wall are unique in this regard, and accordingly, the inner

leaflet displays extremely low fluidity [340]. In addition, lipids with more than one

fatty acid chain attached to a single head group, similar to the mycolyl-arabinoga-

lactan found in the cell wall of MTb, decrease membrane fluidity further [331].

Data predict that the lipophilic antibiotics such as fluoroquinolones, macrolides,

rifamycins, and tetracyclines do penetrate the bacteria, but this likely occurs via the

lipid bilayer rather than the inefficient porins found on the outer leaflet [331]. In

support of this model, the more hydrophobic agents within an antibacterial class

tend to be more effective against mycobacteria [331].

5.2 Animal Models for Evaluation

As most vertebrates can be infected with a mycobacterial pathogen, it is no surprise

that there are a wide range of TB animal models that to different extents recapitulate

the characteristics of human disease. A summary of some of the current experi-

mental animal models of TB chemotherapy, their typical uses, and the comparative

compound requirement for use in drug efficacy studies are shown in Table 10 and

briefly summarized here.

Zebrafish infected with Mycobacterium marinum are gaining popularity as a

model of TB as the costs and space requirements are quite modest and experimental

work with infected fish or their embryos does not require the biological safely

laboratory level 3 containment of any work with virulent strains of the MTb

complex (M. africanum, M. bovis, M. tuberculosis, and M. caprae). M. marinum
is a natural pathogen of fish that causes necrotizing lesions within a nearly trans-

parent host where the progress of infection can be imaged with high resolution

microscopy [341] allowing real-time data collection. This model is contributing to

our understanding of TB pathogenesis and may become useful for drug screening in

the near future [342, 343, 361].

The inbred mouse has been used most extensively in TB studies and can be

infected by a variety of routes including i.v., intranasal inoculation, and by aerosol

exposure. Many strains of mice, each with different genetic backgrounds for

investigating certain immunological parameters, can be reliably maintained for

many months in a state of chronic infection, and used for a variety of different

readouts (Table 10). While the mouse model is often used in studies of MTb strains
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to define the contribution of various mycobacterial genes to virulence or in studies

of immunological responses to MTb infection, it does not reproduce the lung

pathology observed in the human [290, 344]. However, the poor sterilizing activity

of INH and the treatment-shortening effect of treating with INH, RIF, and PZA

containing regimens in the mouse model are superficially similar to their efficacy in

human studies; hence, it is argued that the mouse model is predictive of human

relapse rates [345]. Since the mouse does not develop the latent disease that

characterizes the spectrum of human TB but rather develops a chronic disease

marked by very high bacterial burdens and progressive destruction of lung tissue, it

has been argued that this animal model is unsuitable for testing drugs under

development for latent disease [362]. The development of the gamma interferon

gene-disrupted C57BL6 mouse has shortened initial in vivo drug evaluation to

about 2 weeks, but may only reflect drug bioavailability as the host immune system

is crippled and unable to control bacterial replication, resulting in fulminant

disseminated infection [363]. The discovery of the sst1 susceptibility locus in the

C3HeB/FeJ mouse has provided an immune competent mouse model (C3H.B6-sst1
mice) with lesions demonstrating central necrosis which more closely resemble

those observed in diseased human lungs [346]. Experiments to benchmark standard

tuberculosis chemotherapy studies to determine relapse rates in this model are

underway [364]. The “Cornell” model, where chemotherapy is used to completely

sterilize mouse tissues of MTb bacilli, or studies where a combination of BCG

vaccination and drug treatment are used to sterilize tissues require extended dura-

tions of chemotherapy (>8 months) and have been argued to reflect the length and

sterilizing activity of TB drug regimens in humans [365–367]. Results of these

studies have been used to determine optimal drug combinations and drug exposures

in human clinical trials to identify treatment-shortening regimens for human clini-

cal trials [368–370].

Actual data substantiating the predictive ability of the mouse model to determine

the length of treatment are very sparse. Anatomically, one major predictor of

relapse in patients is the presence of cavities, a pathologic feature not represented

in any mouse model [371]. Recent trials of shorter therapies based on substituting

moxifloxacin for various components of the standard frontline regimen have failed

to recapitulate the therapy-shortening observed in mice models [372]. Unfortu-

nately, this evidence seems to be widely disregarded in the rush to introduce new

regimens based exclusively on their comparative efficacy in mice.

A larger rodent, the Wistar or Sprague Drawley rat, is often used in medical

research and is widely accepted as a model for toxicology studies. The rat model

allows dual comparison of toxicology and efficacy in the same animal and, as a

result, has been used in several TB drug development studies. In one of these studies,

RIF was reported to give a good dose–response curve for bacillary clearance, but

other TB chemotherapeutics gave less encouraging results, [348] suggesting that this

model may not be a suitable model for evaluation of antitubercular drugs.

The guinea pig, used by Robert Koch in the late 1800s to demonstrate that the

MTb bacillus was the etiological agent of TB, was one of the earliest animal models

in mycobacterial research. Even with very low aerosolized infectious doses, these

The Medicinal Chemistry of Tuberculosis Chemotherapy 95



animals experience rapid progression to granulomatous non-cavitary disease that is

ultimately fatal [350]. Because of its extreme susceptibility to MTb infection, the

guinea pig is used extensively in vaccine studies, but to a lesser extent in drug

efficacy studies because of its relatively large size [352, 353]. Due to its high

susceptibility to MTb infection, it is also gaining popularity for virulence testing

of gene knockout mutants of MTb, since large differences in organ burdens are

generally observed with attenuated strains of MTb in the guinea pig [179, 351].

Recently, the sterilizing activity of a species-specific, human-equivalent dosage of a

INH, RIF, and PZA regimen given in a 2-week intensive phase followed by a 6-

month continuation phase of biweekly dosing (the so-called Denver regimen) was

tested in both the guinea pig and the BALB/c mouse [369]. The guinea pigs were

found to respond to treatment more quickly and have lower relapse rates in the

6 months following treatment as compared to similarly treated mice, although

the guinea pigs experienced gastrointestinal toxicities of unknown origin making

the model more challenging.

The New Zealand White rabbit, a relatively resistant animal to TB infection, has

often been used to study the development of lung pathology including necrotizing

lesions and cavities after either i.v. or aerosol infection with M. bovis, MTb, and

even M. avium strains [354, 357, 373, 374]. It has been used for studies of extra-

pulmonary dissemination and/or growth of MTb especially in studies of pathogen-

esis of the central nervous system as a model of human TB meningitis [355, 375]. It

is also used for testing indwelling venous lines and ports containing drugs which are

technically not feasible on smaller animals such as mice, but less often used for oral

drug efficacy studies due to the large amount of compound needed for efficacy

testing in rabbits (see Table 10) [376]. On the other hand, it is particularly

advantageous that oral dosing and PK/PD blood collection are possible without

anesthesia in this species. It has been reported that latent disease can be achieved

in the rabbit model with certain MTb strains although additional validation is

required [377].

Nonhuman primates (NHP), especially cynomolgus and rhesus macaques, have

a long history in TB research for both vaccine and drug testing, but the advent of

more restrictive laboratory practices and the requirement for BSL-3 housing has

made the model prohibitively expensive and thus less utilized [344, 378]. Like other

species, aerosol infection or direct installation of the bacilli into the lung is the usual

route of infection. These monkeys reproduce the spectrum of disease observed in

humans including pulmonary, extrapulmonary, and latent tuberculosis infection

(LTBI) as well as many of the different types of granulomas observed in human

patients [379]. Low dose infection of the cynomolgus macaque is associated with

the induction of LTBI with roughly 60% of animals showing no signs of disease

after skin test conversion [359]. The genetic similarity between NHP and humans

has allowed use of the same immunological reagents such as TNF-a blockers to

elicit reactivation disease from LTBI and other reagents to query host immune

function for vaccine studies as those that have been used in human clinical trials

[380]. A disadvantage with these relatively large NHPs is the amount of GMP or

minimally GLP compound needed (Table 10) and the requirement for anesthesia
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for most manipulations including dosing to achieve reliable administration in drug

studies. For these and other regulatory reasons, NHP work is usually reserved for

proof of concept studies to establish the link between findings in prior (lower)

animal studies and anticipated outcome in humans or as the final stage in a

preclinical drug development pipeline before seeking approval for investigational

studies in humans.

5.3 Pharmacological Models for Antitubercular Drugs

An evaluation of the pharmacological properties of new TB drugs is essential for

effective treatment and overall cure of disease. Currently, most TB drugs are

evaluated through preclinical animal models to establish appropriate dosing levels

that promote optimal bacterial killing with limited toxicity. In vivo efficacy for TB

drugs is not solely dependent on plasma concentration but more significantly

dependent on tissue concentrations near and within lesions [78]. These concentra-

tions must remain above MIC levels for an effective period of time to eradicate

bacilli (described as Time > MIC). Lower levels are associated with the develop-

ment of resistance and relapse of disease. However, due to the duration of treat-

ment, maintaining high levels of drugs in combination often poses severe issues of

toxicities and tolerabilities for the patient [381]. Thus, pharmacological evaluations

for TB drugs depend on optimizing treatment to an often narrowly constrained

therapeutic window.

Effective therapy with any drug is dependent on the relationship between

pharmacokinetic and pharmacodynamics (PK/PD) parameters [382, 383]. Pharma-

cokinetics (PK) defines the ADME properties of the compound, while pharmaco-

dynamics (PD) reveals the correlation between the serum concentration and the

biological effect, efficacy or toxicity. For most drugs, the primary measurement

under evaluation is plasma concentration. However, it is more relevant to assess

drug levels within the infected lesion. Many efforts have attempted to define key

parameters for TB drugs such as Cmax/MIC (ratio of peak serum drug levels to

MIC), AUC > MIC (overall drug exposure over the dosing interval must be greater

than MIC), and Time > MIC (time period at which the drug remains in the blood

must be greater than MIC per dosing interval) which are all established from plasma

concentrations [78, 384]. Typically, high Cmax/MIC ratios can offer sterilizing

activity as well as limit adaptive resistance or the selection of resistant subpopula-

tions whereas for TB, AUC > MIC and T > MIC are thought to be most relevant

for both to maintain long-term exposure above MIC with limited dosing. These

parameters are typically measured from blood, yet it is presumed that the primary

driving factor for efficacy in TB therapy involves lesion penetration at effective

concentrations [78, 290]. It is this factor that will eradicate persistent bacilli and

circumvent the development of resistance.
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There are several confounding factors that play a role in antitubercular drug

efficacy in vivo. As with most drugs, stability and bioavailability with limited

metabolism are important. Delivery to the site of infection at active concentrations

increases the overall efficacy of any drug. However, active pulmonary tuberculosis

is a chronic complex disease with a diverse spectrum of lesions within the lung.

Predominantly caseous lesions are central to the “life cycle” of a pulmonary TB

infection, as they eventually erode into air passages to allow bacilli to reach blood

vessels and permit dissemination. These granulomas are generally poorly vascular-

ized, hypoxic, lipid-rich, and often fortified with fibrous tissue forming an impene-

trable fortress for the TB bacilli [290]. The ability of a drug to penetrate these

lesions and kill bacilli is most critical to eradicate the bacteria and prevent

disseminated or extensive disease.

Currently, there are various models designed to assess the pharmacological

activity of TB drugs. Traditional models focus on determining drug levels in the

blood from preclinical and clinical animal and human evaluation [385]. These

studies are used to optimize dosing and evaluate tolerance. Dose fractionation

models in animals can determine relevant PK indices with a strong correlation

with PD effects. This type of experiment can elucidate important information for

clinical development and optimal dosing strategies to prioritize compounds through

drug development [258, 386, 387]. Recent in vitro models have been designed to

mimic human PK (half-lives and dosing schedules) to assess the development of

resistance [388]. The data obtained from these models help to identify drug-

exposure breakpoints required for maximal bactericidal activity and the suppres-

sion of drug resistance. Current lesion penetration studies involving tissues from

animals and human resections are providing important information in regard to

drug levels found in the various lesion types enabling a better understanding to drug

efficacy and therapeutic response [290].

Finally, the use of therapeutic drug monitoring (TDM) has been a useful tool for

assessing drug levels during treatment in the clinical setting [71]. The use of TDM

in tuberculosis treatment can allow physicians the ability to adjust dosing to provide

an efficacious therapeutic concentration throughout the extensive duration of treat-

ment [71]. Patients who most benefit are those with complications which may alter

drug exposure, such as those on co-therapy for HIV for which there are known

drug–drug interactions, those with diabetes mellitus with typical delayed absorption

or malabsorption concerns, those with renal failure undergoing dialysis, and those

experiencing hepatic dysfunction (see Sect. 1.4) [69]. TDM in combination with

bacteriological and clinical data can be a useful tool to assess treatment and ensure

as successful outcome [71].

Understanding pharmacological activities of TB drugs is essential not only for

addressing drug levels for effective sterilizing activity and optimizing dosing

strategies, but more importantly, they are also useful in limiting the development

of acquired resistance. PK/PD for TB agents is relevant to understanding important

phenomena associated with TB. Efforts are ongoing to develop PK/PD analyses

which will effectively predict success or failure of new antituberculosis drugs and

combination regimens.
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5.4 Clinical Development Methodologies

The goal of TB chemotherapy is to cure clinical symptoms, prevent the develop-

ment of resistance, and to prevent relapse. Since TB treatment entails 6–24 months

of chemotherapy depending on drug susceptibility patterns, early markers that

predict durable cure would greatly facilitate and speed the evaluation of new

drugs. Currently, it requires 2 years of follow-up after termination of chemotherapy

to capture more than 90% of relapses, thus necessitating trials lasting up to 4 years

during evaluation of new therapies. The FDA recognizes the need to develop new

drugs for TB and the associated need to look for early predictors of durable cure,

making regulatory approval processes for such trials logistically easier.

Biomarkers that predict durable cure could include pathogen-specific measure-

ments, determination of host responses to the pathogen or nonspecific disease-

associated responses, and imaging. Unfortunately, no biomarker of any nature has

been validated as of this time. Microbiologic markers traditionally used to evaluate

TB chemotherapy include: 2-month culture conversion (in which sputum samples

taken at regular intervals during chemotherapy are evaluated for eradication of

culturable MTb at two months posttreatment), days to positivity (the time required

to obtain mycobacterial growth from sputum in liquid culture), and serial counts of

CFUs of MTb from sputum samples on agar combined with scoring acid-fast bacilli

in sputum during treatment. Two-month culture positivity as surrogate marker for

relapse was first recognized and used as a surrogate endpoint to predict treatment

efficacy during the BMRC studies where culture negativity at 2 months was

associated with cure and lack of subsequent relapse and is widely used for current

evaluation of TB chemotherapeutic trials [389–392].

While other culture-dependent methods show promise, they do not always

predict 2-month culture conversion and there is no data to correlate findings with

risk of relapse [390, 393]. In a large ongoing clinical trial (REMoxTB), where

moxifloxacin is evaluated as a replacement for INH or EMB, various culture-

dependent and -independent methods will be assessed against the primary endpoint

of relapse within 2 years of treatment termination, which may give some insight

into the utility of other biomarkers [394].

Culture-dependent methods suffer from their long turnaround time, often several

weeks, due to the slow growth of mycobacteria such as MTb. Potential culture-

independent pathogen-derived biomarkers include detection of MTb DNA [395],

lipoarabinomannan [396, 397] in urine, MTb mRNA in sputum [393], MTb char-

acteristic volatile organic compounds in breath [398], and several other pathogen-

derived biomarkers currently under evaluation.

Host biomarkers of disease include interferon-gamma release assays in

response to MTb antigens [399, 400], measurements of non-MTb-specific host

responses such as C-reactive protein, serum interleukin-2, neopterin and procal-

citonin which still require a definitive TB diagnosis by other means [401–403].

These may especially be useful as clinical trial endpoints in smear-negative,
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paucibacillary, extra-pulmonary, and pediatric TB where microbiologic culture

is less reliable.

Imaging biomarkers such as high resolution computed tomography (HRCT)

have been shown to be helpful in diagnosing active TB and distinguishing it from

latent disease [404], and may be useful in detecting the early stages of disease in TB

contacts [405, 406] but is also used to evaluate treatment response. Positron

emission tomography (PET) using 2-fluorodeoxyglucose has been used to visualize

inflammatory regions in pulmonary mycobacteriosis caused by MTb and M. avium
but is even less discriminating than HRCT in distinguishing between TB and

nontuberculous mycobacterial infections [407].

Traditionally, clinical trials for new TB drugs include a 7–14-day assessment of

early bactericidal activity (EBA) of a drug given as monotherapy (often at different

doses). Daily sputum microbiology is performed and bacterial counts quantified.

Unfortunately, reproducibility of such microbiological assays is questionable, and

EBA rarely gives a definitive answer. In most cases, ambiguous EBA results are

ignored and a longer study (2 months or more depending on the available safety and

toxicity data) of the new drug or placebo in combination with current TB drugs

followed by completion of chemotherapy with regular extended phase regimens.

These studies are followed up with expensive phase III trials that give the new drug

as part of combined therapy (6–24 months) with prolonged follow-up after treat-

ment completion [369]. The caveat to using EBA as a predictor of successful

treatment is that drugs such as RIF and PZA, which have a poor EBA but have

good activity against MTb populations in certain lesions, would score as poor drugs

[408]. PZA is the essential drug that allowed the shortening of treatment of drug-

sensitive TB from 9 to 6 months [409], indicating that EBA studies may not be a

good way to cull ineffective drugs.

Phase II trials typically evaluate sputum conversion at 2 months as a predictor of

durable cure (cure without relapse), but the utility of 2-month culture conversion as

a biomarker was derived from studies of drug-sensitive TB and may not apply to

MDR-TB. In addition, evaluation of new drugs is typically compared to the

standard of care, which can achieve a 95% cure rate in clinical settings. Thus, the

sample size of such a trial must be large to detect either non-inferiority or superior-

ity of new agents. With MDR- and XDR-TB, the cure rates are much lower, which

may make it easier to detect the effect of the investigational drug, but such study

populations are much more heterogeneous due to different degrees and spectra of

drug susceptibility results, different background drug regimens, and a wide range

of disease severity and treatment history all of which may confound results. Some

of these problems can be dealt with by randomized stratification of strong covari-

ates, for example by stratifying for fluoroquinolone sensitivity [259].

In summary, EBA studies, while having the advantage of seeing the effect of a

single drug on MTb in lesions that are the source of sputum-borne bacilli, are

clearly not a useful predictor of drug efficacy. Studies of combination therapy using

2-month culture conversion as an end point have the advantage of a partially

validated end point with a weak correlation for drug-sensitive disease but should

be interpreted with caution in drug-resistant disease. Imaging modalities such as
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HRCT and PET are attractive endpoints that do not require culture and evaluated

disease at the relevant site of infection but, like host-derived biomarkers, require

validation for predicting treatment efficacy.

6 Concluding Remarks

TB drug discovery remains a challenging enterprise at every level. There is an

urgent need to validate criteria for lead compounds with promise to reduce treat-

ment duration, treat drug-resistant disease, and provide utility for prophylaxis of

subclinical disease. Poorly validated in vitro assays, poorly validated in vivo assays,

and a severe lack of predictive animal models all compromise efforts to improve the

quality of the TB drug pipeline. Existing SAR around series explored in the 1950s

and 1960s provides some starting points, but the chemistry of most of these series is

either intractable or linked to enzymatic activation of prodrug and is therefore

difficult to optimize systematically. As in most anti-infectives, target-based strate-

gies have failed to lead to viable candidates, and in most cases the reason for this

failure has been unexplained. In the current climate, it is no surprise that the

momentum is toward improving whole cell screening and attempting to identify

leads with novel targets. Biological studies working toward more predictive assays

are in progress and very promising. For example, the promising use of titratable

promoter elements to systematically knock down genes and mimic the pharmaco-

logical action of a drug can truly validate drug action and directly address “target

vulnerability” by quantitating how much a target needs to be inhibited to affect cell

death [410]. Current efforts to understand the “systems biology” of MTb also have

the potential to reshape the landscape and improve our ability to select targets.

The nitroimidazoles and diarylquinolines, series developed specifically for TB,

provide some reason for optimism and perhaps a sort of loose road map for how to

approach the problems. Both series suffer from critical limitations including

extremely poor water solubility and potential hERG problems. In general, one

serious problem that persists in new drug discovery programs for TB lies in the

lack of broad application of preclinical ADME and toxicology studies in lead

optimization. The academic sector lacks an appreciation of the role of such studies

and lacks resources dedicated to performing them. Both series may well fail

because of these considerations, but at a minimum it has made clinical development

programs for these two new classes considerably more complex than if these issues

had been addressed systematically in lead optimization. Candidate selection in most

cases continues to happen predominantly by MIC and mouse activity, and it is

doubtful that the situation will improve more than incrementally without more

sophistication in lead optimization programs. Nonetheless, there are ongoing phase

II studies with these agents, and it is crucial that clinical development of

these compounds is paired with meaningful attempts to understand the relationship

of the preclinical studies that led to selection of the candidates with the ultimate

clinical properties of these agents. Through such efforts, in vitro and in vivo assays
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(not to mention phase I and II trials) could perhaps be optimized to be more

predictive, and these could be used to guide both backup programs for the existing

agents and optimization efforts for new series not yet in play.

Funding sources for TB drug discovery have also expanded dramatically over

the last 10 years and now include significant efforts from private foundations (such

as the Bill and Melinda Gates’ Foundation through its TB Drug Accelerator

Program) as well as public institutions such as the US National Institutes of Health

and the European Union’s Framework Programmes. Many of the activities being

funded are taking place at the interface of academic laboratories and commercial

pharmaceutical companies using a wide variety of models for cooperation.

Although this is precisely where such programs appear to be best placed, there

has been a rather steep learning curve as these two cultures are brought together

with competing needs. Nonetheless, there is significant cause for excitement at the

number and quality of programs that are currently operating. If we can successfully

leverage the strengths of both academia and industry, there is hope that we will be

able to raise the victory flag in earnest in the long struggle against TB.
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