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Preface

 

In recent decades, the “big” science, the science that has generated thousands of
specialized publications and occupied the front pages of newspapers, has been the
science of 

 

life

 

. The discoveries of molecular biology and of the Human Genome
Project have been made under the watchful eyes of everyone. Whereas genetics and,
in general, modern biology were developed on a strong quantitative basis (just
remember the research of the father of genetics, Mendel), sometime in the 1970s,
the life sciences started to rely more and more on simply qualitative approaches,
and quantitative methods all but disappeared from the curricula of investigators.
However, in recent years, investigators in biomedical research have recognized that
the amount of data being generated, particularly with newer genomics technologies,
cannot be easily managed, and further progress will be possible only if a strong
quantitative (computational) dimension is added to the area. This is the essence of
the so-called 

 

bioinformatics revolution

 

.
The science of quantitative structure–activity relationships (QSARs), at the

interface between chemistry and biology, is an exception; it is one of the few fields
of biomedical research where a systematic quantitative character has been maintained
since its beginnings in the 1960s. QSAR was initiated by the pioneering work of
Corwin Hansch and other researchers, who found the way to combine two areas that
seemed to be far apart: physical chemistry and biology. The tool that permitted such
an operation was mathematical modeling: “By science is meant mathematical
descriptions using a relatively small number of well tested parameters and graphics
to make the connections” (C. Hansch).

QSAR analysis, permitting the quantitative study of the interaction between
chemicals and life, has been applied with success in many different areas. The use
of QSARs has become very popular in the field of rational design of drugs and
pesticides because it supports faster and more efficient design. Many books have
presented the principles of QSARs and applications primarily to rational drug design.
This is the first book devoted, in a comprehensive way, to QSAR studies on chemical
mutagens and carcinogens. Mutagenicity and carcinogenicity are chronic toxic
effects of primary importance to human health. Cancer is the second leading cause
of mortality in the Western countries, after cardiovascular diseases. Mutations are
involved in the causation of many cancers and are at the origin of heritable diseases
as well. A considerable amount of cancer and mutation is provoked by chemicals
(e.g., environmental pollutants, professional exposure, food constituents, tobacco
smoking). QSAR methods can contribute to elucidation of mechanisms, identifica-
tion of toxic chemicals solely on the basis of the chemical structure, design of safer
chemicals, and reduction of animal studies.

This book provides information for both the newcomer and the expert and is
intended to be useful to both biologists and chemists. The book provides background



 

information on the principles of QSAR modeling, as well as on the biological
mechanisms of action of toxic chemicals, and includes extensive surveys of existing
QSAR models focusing on individual classes of chemical mutagens and carcinogens.
It also provides information on web-based resources of carcinogenicity and mutage-
nicity data and issues pertaining to the use of these data in QSAR study. A number
of well-characterized QSAR applications are presented in specific chapters. To offer
a wider perspective, a comparison is made between QSAR models for mutagenicity
and carcinogenicity and those for the environmental toxicity of the chemicals.
Finally, the potential and limitations of QSAR models as supporting tools for risk
assessment are treated extensively.
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Abstract

 

One of the salient characteristics of the scientific life in recent years has been the
explosion of the so-called 

 

bioinformatics revolution

 

. Investigators in biomedical
research have recognized that further progress will be possible only if a strong
quantitative dimension is added. The science of quantitative structure–activity rela-
tionships (QSARs), at the interface between chemistry and biology, has been one
of the few fields of biomedical research where a systematic quantitative character
has been present for decades. A number of books have presented its principles and
applications to the design of pharmaceutical drugs and pesticides. This is the first
book devoted, in a comprehensive way, to QSAR studies on chemical mutagens
and carcinogens. 

Mutagenicity and carcinogenicity are chronic toxic effects of primary importance
to human health. QSAR methods can contribute to elucidation of mechanisms, iden-
tification of toxic chemicals solely on the basis of chemical structure, design of safer
chemicals, and reduction of animal studies. This book provides information for the
newcomer and the expert and is intended to be useful to biologists and chemists. It
provides background information on the principles of QSAR modeling, as well as
on the biological mechanisms of action of toxic chemicals. The book includes exten-
sive surveys of existing QSAR models focusing on individual classes of chemical
mutagens and carcinogens. It also provides information on web-based resources of
carcinogenicity and mutagenicity data and issues pertaining to the use of these data
in QSAR study. A number of well-characterized QSAR approaches are presented in
specific chapters. To offer a wider perspective, a comparison is made between QSAR
models for mutagenicity and carcinogenicity and those for the environmental toxicity
of chemicals. Finally, the potential and limitations of the QSAR models as supporting
tools for risk assessment are treated extensively.
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1.1 INTRODUCTION

 

Classical chemometric QSAR methods for the analysis of quantitative struc-
ture–activity relationships (QSARs) are sometimes regarded to be out of fashion
when compared with the rapid development of molecular modeling, structure-based
design, and protein crystallography. In addition, an equation is more difficult to
understand than a colored three-dimensional picture generated by computer graphics.
However, classical QSAR methods still play an important role and will continue to
be a useful tool in modern drug design.

 

1–3

 

 They have contributed greatly to the
development of science in medicinal chemistry (QSAR “know how”), and thousands
of documented QSARs and success stories of QSAR predictions and QSAR-guided

1
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drug design attest to their versatility. In particular, the quantitative description of
pharmacokinetic processes remains the domain of classical QSAR techniques. This
aspect and QSAR-based concepts such as “drug likeness” are gaining in importance
in connection with high throughput screening (HTS) for hit to lead decisions in
order to avoid the selection of compounds with unfavorable adsorption/distribu-
tion/metabolism/excretion (ADME) properties. Another important issue is the design
of safe and selective compounds and a better understanding of toxic, carcinogenic,
or mutagenic effects.

This chapter presents a condensed introduction to the most important classical
QSAR methods with the main emphasis on Free–Wilson and Hansch analyses. Only
references absolutely essential for the understanding of the text will be presented
with no attempt for completeness in the sense of a review. For a follow-up, the
reader is referred to a number of monographs

 

2–21

 

 on various aspects of the QSAR
field, to the proceedings of the European QSAR conferences (see References 22 to
25 for the last four meetings), and to the journal 

 

Quantitative Structure–Activity
Relationships

 

, which provides an excellent and exhaustive abstract service.

 

1.2 SOME BASIC PRINCIPLES

 

Probably the first general formulation of a quantitative structure–activity relationship
was presented by Crum-Brown and Fraser in 1868 who assumed that biological
activity is a function of chemical structure (“constitution”):

(1.1)

From this general formulation to the development of true QSARs was still a long
way to go because it was necessary to define proper measures of 

 

F

 

, suitable math-
ematical formalisms for the function 

 

f

 

, and methods to quantitatively describe chem-
ical structure 

 

C

 

. Modern QSAR technology started in 1964 with publications by
Hansch and Fujita

 

26

 

 and Free and Wilson.

 

27

 

 The first publication led to development
of the well-known 

 

Hansch analysis

 

, the most widely-used QSAR method also known
as the 

 

extrathermodynamic

 

 or 

 

linear free-energy-related

 

 approach. The second paper
resulted in development of the so-called Free–Wilson analysis, which supplements
Hansch analysis and has turned out to be a very useful method for certain types of
structural modifications. Both methods use multiple regression analysis as the math-
ematical method (

 

f 

 

in Equation (1.1)) but differ in the description of chemical
properties. In Hansch analysis, substituent constants and other physicochemical
descriptors are used, while Free–Wilson analysis is based on chemical fragments
directly derived from the two-dimensional structure of compounds.

Today, a large variety of mathematical methods is available to express the 

 

f

 

 in
Equation (1.1). To name just a few, the most frequently used methods are multiple
regression analysis, principal component and factor analysis, principal component
regression analysis, partial least squares (PLS), discriminant analysis and other
classification methods, and neuronal nets. The variety of mathematical methods is
accompanied by a huge number of chemical descriptors to characterize chemical
structure; an impressive encyclopedic guide to such descriptors has been presented

Φ = ( )f C
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by Todeschini and Consonni in their 

 

Handbook of Molecular Descriptors

 

.

 

28

 

 Not all
of these descriptors have proven to be useful. Broadly speaking, they may be
categorized as experimental quantities, such as log 

 

P

 

, pKa (these quantities can also
be computed; see below), and spectroscopic data; substituent constants (electronic,
hydrophobic, and steric); parameters derived from molecular modeling and quantum
chemical computations; graph theoretical indices; and variables describing the pres-
ence or the number of occurrences of certain substructures.

Typical measures of biological activity are the molar concentration 

 

C

 

 of a
compound producing a certain effect derived from a dose–response curve (e.g., ED

 

50

 

or IC

 

50

 

); binding, association, or inhibition constants; and rate constants. In order
to obtain larger values for more active compounds, reciprocal values are usually
considered for dissociation constants and the molar-concentration-based quantities.
Based on thermodynamic or kinetic reasoning, such parameters can be turned into
free-energy-related quantities by logarithmic transformation, which is required for
the formalism of Hansch analysis (for a detailed discussion, see Franke

 

7

 

). Thus,
typical expressions for 

 

F

 

 in Equation (1.1) are p

 

C

 

 = –log 

 

C

 

 = log 1/

 

C

 

 (examples:
pED

 

50

 

 or pIC

 

50

 

), log 

 

K

 

 (where 

 

K

 

 is a binding, inhibition, or rate constant), and
log 1/

 

K

 

d

 

 (where 

 

K

 

d

 

 is a dissociation constant). By convention, the logarithmic trans-
formation of biological measurement is used not only in Hansch analysis (or other
methods based on linear free energy relationships) but in all QSAR approaches
applied to quantitative (continuous) biological measurements. One of the reasons is
that the results are better comparable. Sometimes, biological measurements result
in %effect data measured at a single dose. Strictly speaking, such data are not suitable
for Hansch-type and related QSAR approaches. Experience has shown, however,
that such data can still lead to meaningful QSARs after logarithmic transformation,
provided that the entire range from a few percent values to values close to 100% is
covered. A good alternative for such values is a logit transformation according to:

(1.2)

Another alternative is to translate %effect data into a classification scheme that
can then be analyzed by classification methods. Such methods are also necessary if
biological measurements only allow a scoring of biological potency. In the following
text, the logarithmically transformed activity values will be designated as log 

 

BR

 

(BR = biological response).

 

1.3 FREE–WILSON ANALYSIS

 

The Free–Wilson analysis can be applied to series of compounds where the com-
pounds consist of a common (constant) parent structure and variable fragments
(usually substituents) (see Figure 1.1). The basic assumptions of Free–Wilson anal-
ysis are:

• The parent structure and each variable fragment contribute an additive
increment to the logarithm of biological response.

Φ = −( )( )log %effect %effect100
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• The increment of a given fragment is constant and independent from struc-
tural variations in other positions (no interaction between the fragments).

For each molecule of the series, the following relation is then valid:

(1.3)

 

BR

 

i

 

 = biological response of the 

 

i

 

th molecule

 

m

 

 = activity contribution of the parent structure

 

z

 

jk

 

 = activity contribution of the 

 

j

 

th substituent in the 

 

k

 

th position of substi-
tution

 

b

 

ijk

 

 = indicates the occurrence of substituents in each compound
= 1 for compound 

 

i

 

, if the 

 

j

 

th substituent in the 

 

k

 

th position of substitution 
occurs in this compound

The 

 

z

 

jk

 

 are derived by multiple regression analysis. Input is the so-called Free–Wilson
matrix:

•

 

Rows:

 

 compounds
•

 

Columns:

 

 biological potency and variable fragments
•

 

Elements:

 

 

 

b

 

ijk

 

Free and Wilson

 

27

 

 considered the compounds shown in Figure 1.2, and the
Free–Wilson matrix is presented in Table 1.1. Each row represents one molecule
according to (terms in brackets represent the activity contributions of the respective
constituents):

[

 

R

 

–H] + [

 

X

 

–NO

 

2

 

] + [

 

Y

 

–NO

 

2

 

] + 

 

m

 

 = 1.78

[

 

R

 

–H] + [

 

X

 

–Cl] + [

 

Y

 

–NO

 

2

 

] + 

 

m

 

 = 1.32

 

�

 

[

 

R

 

–Me] + [

 

X

 

–Br] + [

 

Y

 

–MeCONH] + 

 

m

 

 = 1.88

 

FIGURE 1.1

 

Schematic presentation of the parent structure according to the original
Free–Wilson formalism and in the Fujita–Ban variant of Free–Wilson analysis.

log BR b zi ijk jk= +µ Σ
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Thus, a system of linear equations is obtained from which the activity contributions
of the parent structure and of the substituents can be computed by regression analysis;
however, the equations are linearly dependent so this problem is not solvable. Two
approaches overcome this difficulty:

1.

 

Introduction of so-called symmetry conditions.

 

 The sum of activity con-
tributions for each position of substitution is set equal to zero (original
Free–Wilson analysis).

2.

 

Fujita–Ban variant of Free–Wilson analysis.

 

 A standard substituent is
defined for each position of substitution, and the activity contributions of
these standards are set equal to zero. The parent structure is now defined
as basic skeleton + standard substituents (see Figure 1.1), and all activity
contributions of the nonstandard substituents are computed relative to
those of the standards.

Today, the Fujita–Ban variant of Free–Wilson analysis is used because it is much
simpler. In addition, the activity contributions from this form of Free–Wilson analysis

 

FIGURE 1.2

 

Compounds considered by Free and Wilson.

 

TABLE 1.1
Free–Wilson Matrix for the Compounds in Figure 1.2

 

i

 

b

 

ijk

 

R

 

–H

 

R

 

–Me

 

X

 

–NO

 

2

 

X

 

–Cl

 

X

 

–Br

 

Y

 

–NO

 

2

 

Y

 

–NH

 

2

 

Y

 

–MeCONH log 1/

 

C

 

1 1 0 1 0 0 1 0 0 1.78
2 1 0 0 1 0 1 0 0 1.32
3 1 0 0 0 1 1 0 0 1.18
4 1 0 0 1 0 0 1 0 2.72
5 1 0 0 0 1 0 1 0 2.51
6 1 0 1 0 0 0 1 0 2.44
7 0 1 1 0 0 0 1 0 2.20
8 0 1 1 0 0 0 0 1 1.18
9 0 1 0 0 1 0 1 0 2.15

10 0 1 0 0 1 0 0 1 1.88
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are directly related to substituent constants terms in Hansch analysis which allows
both approaches to be mixed (see below). If, in the above example, the substituents

 

R

 

 = H, 

 

X

 

 = NO

 

2

 

, and 

 

Y

 

 = NO

 

2

 

 are selected as standards, the corresponding columns
have to be removed from the Free–Wilson matrix, resulting in a modified system of
equations. In these equations, the activity contributions of the standard substituents
no longer occur as they are zero by definition. The following activity contributions
are then obtained:

 

m

 

 = 1.40
[

 

R

 

–H] = 0 (per definition)
[

 

R

 

–Me] = –0.36
[

 

X

 

–NO

 

2

 

] = 0 (per definition)
[

 

X

 

–Cl] = 0.06
[

 

X

 

–Br] = 0.03
[

 

Y

 

–NO

 

2

 

] = 0 (per definition)
[

 

Y

 

–NH

 

2

 

] = 1.13
[

 

Y

 

–MeCONH] = 0.48

It can be seen that variation of substituents in 

 

Y

 

 has the strongest effects on
biological potency with an outstanding positive activity contribution for 

 

Y

 

–NH

 

2

 

.
This example was selected for historical reasons. Statistically, the result is signif-
icant only at P = 90%.

With the help of the activity contributions, the potency of new analogs (new
combinations of substituents) can be estimated. If, in the series considered, 

 

N

 

 mol-
ecules are present where 

 

n

 

1

 

 – 

 

n

 

4

 

 substituents are varied in positions 1 to 4, the number
of combinatorially possible molecules equals 

 

N

 

total

 

 = 

 

n1 ¥ n2 ¥ n3 ¥ n4 so that the
number of possible predictions amounts to Nprediction = Ntotal – N. Predictions can only
be valid as long as the new substituent combinations are compatible with the model
assumptions of Free–Wilson analysis (no interactions between substituents).

In many cases not all substituents make significant contributions to log BR. Such
substituents should be removed from the analysis. A real problem are substituents
that occur only once (unique substituents). Activity contributions for such substitu-
ents will contain the full error of measurement of the respective compounds. In
addition, unique substituents tend to improve statistics in an unrealistic way as they
will always be fit exactly to the regression line. Sometimes, certain substituents
always occur together. This will make the corresponding columns in the Free–Wilson
matrix linearly dependent. The only possibility in such a case is either to delete
columns (which implies that compounds are eliminated) or to combine the substit-
uents in question into a new fictitious substituent that then represents the sum of the
activity contributions of the individual substituents.

Intramolecular interactions between variable fragments violate the basic assump-
tion of Free–Wilson analysis; the activity contributions are no longer constant and
independent from the presence or absence of other fragments. In such cases,
Free–Wilson analysis may still be applied if proper corrections or modifications are
introduced. The most commonly used approaches are:
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1. Introduction of cross-products to account for interactions (e.g.,
Bocek–Kopecky model; see Franke7)

2. Interacting substituents are combined into a fictitious new fragment
3. Hypotheses about interactions are translated into artificial fragments

If applicable, Free–Wilson analysis usually is a good first move. It can effectively
aid decision making in experimental work and may also help to develop starting
hypotheses for subsequent molecular modeling or other drug-design studies. It is
simple (for not too large or complex datasets) and does not require physicochemical
descriptors. In cases where a small number of substituents are varied in many
positions, Free–Wilson analysis is the method of choice; Hansch analysis and related
methods are not applicable in such cases. Experience has shown that the concept of
Free–Wilson analysis is not restricted to series where substituents are varied at a
constant chemical skeleton. The concept of parent structure and variable fragments
with additive and constitutive contributions to biological potency can be stretched
fairly far. Thus, variable fragments may include, for example, the exchange of carbon
against various heteroatoms in rings or different bridges between certain chemical
entities. The most important limitations of Free–Wilson analysis are that predictions
can be made only for new combinations of the substituents already present in the
series investigated and that mechanistic interpretability is very limited.

1.4 HANSCH ANALYSIS

1.4.1 BASIC ASSUMPTIONS

Hansch analysis is based on the following assumptions:

1. The logarithm of a suitable biological response parameter (BR) can be
considered to be related to the free energy of binding to the biological
target and can thus be described by the same formalisms used in physical
organic chemistry to describe equilibrium or rate constants.

2. In congeneric series, substituents make additive and independent contri-
butions to log BR (same assumption as in Free–Wilson analysis).

3. These contributions can be factored into hydrophobic, electronic, and
steric components that can be described by a linear combination of hydro-
phobic (xh), electronic (xe), and steric (xs) parameters derived from well-
defined chemical standard reactions or from theoretical computations (ah,
ae, and as . . coefficients):

log BR = ahxh + aexe + asxs + const. (1.4)

4. If transport processes to the site of action are involved, these can be
described by a bilinear or parabolic function of log P (where P is the
partition coefficient in the system n-octanol/water; but see below). With
the parabolic function, the following general expression results:
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log BR = ahxh + aexe + asxs – a1(log P)2 + a2log P + const. (1.5)

5. The concrete form of a Hansch equation for a given problem depends on
the drug-biosystem interactions. If the hypothetical case of drug–receptor
interactions shown in Figure 1.3 is considered, Equation (1.5) would take
the following general form (including transport):

log BR = ahxh(R2) – as xs(R3) + ae[xe(R1) + xe(R2) + xe(R3)]
– a1(log P)2 + a2log P + const. (1.6)

In this equation, xh(R2) characterizes the hydrophobicity of substituents in
R2; xs(R3) measures steric properties (e.g., size) of substituents in R3; and
electronic properties of substituents in R1, R2, and R3 are expressed by
xe(R1), xe(R2), xe(R3). Clearly, once a Hansch equation is known, an inter-
pretation is possible, allowing conclusions as to the mechanism of action.

1.4.2 PARAMETERS

The huge and ever-increasing number of parameters used in QSAR work during the
last decades renders any attempt at a complete discussion an impossible task within
this brief QSAR introduction (for an exhaustive review, see Todeschini and
Consonni28). Thus, only the most commonly used parameters will be presented.

1.4.2.1 Electronic Parameters

The most important relationship to express electronic effects in Hansch type QSARs
is the famous Hammett equation which describes the electronic influence of meta-
and para-substituents on reactions occurring at a functional group in substituted
benzene derivatives (see Figure 1.4):

log k(X) = rs + log k(H) = rs + const. (1.7)

FIGURE 1.3 Hypothetical case of drug–receptor interactions.

R1 (No Interaction: Sticks Out)

R2 (Hydrophobic Interactions)

All Substituents: Electronic Effect on Y

Functional Group

Y Parent Structure

R3 (Unfavorable Steric
Interactions)
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log K(X) = rs + log K(H) = rs + const. (1.8)

In these equations, k(X) and K(X) are the rate and the equilibrium constants, respec-
tively, for a side-chain reaction (Figure 1.4) in a benzene derivative with substituent
X, and k(H) and K(H) are the corresponding constants for the unsubstituted com-
pound (X = H). Called the electronic substituent constant or Hammett constant, the
quantity s is characteristic of the electronic properties of substituent X independent
from the type of reaction considered: strongly electron-attracting substituents have
high positive values, high negative values indicate electron release, and substituents
with small electronic effect have values close to zero. The susceptibility of a given
reaction to electronic substituent effects is reflected by the so-called reaction constant
r, which is independent from substituent properties and characteristic of the reaction
considered. Positive (negative) values of r indicate that the reaction is enhanced by
electron-attracting (electron-releasing) substituents. The scale of r values was deter-
mined by the dissociation of benzoic acids at 25°C as the reference reaction, where
r is set equal to unity by definition.

Tabulated values of s are available for many substituents (e.g., see Hansch and
Leo10 and Hansch et al.29). It has been shown that electronic substituent constants
can be applied not only to side-chain reactions in benzene derivatives but also to
higher condensed aromatic systems, heterocyclic compounds, for the exchange of
carbon for heteroatoms in aromatic rings and even for unsaturated aliphatic com-
pounds. In many cases, they can also describe electronic substituent effects on several
physical properties such as, for example, ultraviolet, infrared, and nuclear magnetic
resonance spectra; polarographic half-wave potentials; ionization potentials; dipole
moments; and group dipole moments.

The electronic effects of substituents consist of at least two components: the
inductive effect (I-effect), which is due to successive polarizations of bonds and
electrical through-space effects, and the mesomeric effect (M-effect), which results
in a change in the overlap of the pz-orbitals of the electronic system (resonance
effect). The relative strength of these components is different in the meta- and para-
positions. In the meta-position, the mesomeric effect is small (the I-effect dominates),
while a pronounced mesomeric effect operates in the para-position. For this reason,
smeta and spara do not have the same value. Ideally, smeta and spara are additive so
that in the case of multisubstitution Equations (1.7) and (1.8) become:

log k(X) = rSs + const. (1.9)

FIGURE 1.4 Structures to which the Hammett equation applies: electronic substituent effects
influence the transformation of some functional group Y into Y¢ (or vice versa).

Xm,pXm,p

Y Y′
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log K(X) = rSs + const. (1.10)

In the context of Hansch analysis, s values describe substituent effects on the
electron density at centers in the molecule that are involved in drug biosystem
interactions; they provide a measure of the electron-attracting power of substituents
relative to hydrogen. Thus, one possibility to express xe in Equations (1.4) and (1.5)
is s or Ss. As compared to the total number of known QSARs, there are relatively
few cases where biological potency depends only on electronic substituent effects.
One example is the inhibition of p-hydroxybenzoat hydrolase by para-substituted
benzoic acids: 30

log 1/C = –1.47(±0.43)spara + 4.30 (1.11)
n = 6, r = 0.978, and s not given*

Equation (1.11) simply means that enzyme inhibitory potency increases with the
electron-releasing power of the substituents.

In complex molecules, a position dependence of the electronic effect may occur
requiring different values of r for different positions of substitutions. This is par-
ticularly true for ortho-substituents, where the electronic effect is influenced by steric
factors. Several attempts have been made to overcome this problem, including the
definition of special constants for ortho-substituents, but with only limited success.
A common practice in QSAR work is to use spara values for ortho-substituents,
allowing for a different regression coefficient (r value different from the value for
meta- and para-substituents).

The simple Hammett constant is only valid if, in the series considered, the
relative weight of the inductive and mesomeric effects is constant. For this and some
other reasons, many modifications of the Hammett equations have been made,
resulting in more than 40 different scales of electronic substituent constants. A
detailed discussion is far outside the scope of this brief introduction; for an overview
in the context of QSAR work and references referring to the evaluation of electronic
substituent constants, see, for example, Franke,7 Hansch and Leo,10 and Todeschini
and Consonni.28 

In an attempt to simplify this very complicated situation, Swain and Lupton (see
Hansch and Leo10) introduced two new constants where one, the field constant ¡,
is supposed to reflect the inductive substituent effect, while the other, the resonance
constant ¬, was attributed to the resonance effect. According to Swain and Lupton,
a linear combination of ¡ and ¬ can reproduce any s scale. Although some of the
assumptions underlying the concept of ¡ and ¬ have been criticized, these values
have found wide application in the QSAR field; mostly, a modified version according
to Hansch and Leo10 is used. The ¡ scale can be regarded as well established: ¡
equals the so-called inductive substituent constant sI which can be estimated from
the dissociation of 4-substituted bicyclo[2.2.2]octane-1-carboxylic acids (various

* In this and following equations, n is the number of compounds in the series, r is the correlation
coefficient (measure of goodness), and s is the standard deviation (also measure of goodness); for more
information, see Section 1.4.3.



General Introduction to QSAR 11

other definitions of the inductive constant also exist). ¡ and ¬ are related to sm and
sp (Hansch and Leo10):

¡ ∫ sI = 1.297sm – 0.385sp + 0.033 (1.12)

¬ = sp – 0.921 (1.13)

The ¬ scale, however, is not of universal validity as it is not independent of the
reaction center. This is of particular importance in compounds where direct reso-
nance interactions between substituents and the reaction center can occur (through
resonance). This is possible when (1) an electron-donating substituent (e.g., NH2),
is present in the para-position, while the reaction center carries a positive charge or
has an electron deficiency (positive resonance); or (2) an electron-attracting substit-
uent in the para-position (e.g., NO2) has an electron-donating reaction center as its
counterpart (negative resonance). For these situations, the so-called enhanced sub-
stituent constants were introduced: s+ (positive resonance; defined by the solvolysis
of t-cumyl chlorides) and s– (negative resonance; defined by the ionization of phenols
or anilines in water). With these quantities, enhanced values of ¬ can be defined as:

(1.14)

(1.15)

For aliphatic compounds, the polar substituent constant s* according to Taft can
be used. This constant is derived from the acid- and base-catalyzed hydrolysis of
aliphatic esters XCOOR, with X = CH3 as the standard substituent (s*(CH3) = 0).
An alternative is Charton’s inductive substituent constant sI, which is based on the
dissociation of substituted acetic acids in water.

Instead of electronic substituent constants, experimental quantities such as, for
example, pKa values, spectroscopic data, or polarographic half-wave potentials can
also be used to express electronic properties in Hansch analysis. The disadvantage
is that such values are usually only available for those compounds already synthe-
sized (software for the calculation of pKa values is available).

Another alternative is the use of quantum-chemical parameters. From among
the large variety of such parameters, the following have most widely been used in
the framework of Hansch analysis:

• Energy of the highest occupied and the lowest unoccupied molecular
orbital (EHOMO and ELUMO)

• Charges at selected atoms
• Dipol moments

1.4.2.2 Hydrophobic Parameters

Hydrophobicity (also called lipophilicity) is of central importance for biological
potency as it plays a role not only in the interaction of drugs with many targets but

ℜ = − ℑ+ +σ p

ℜ = − ℑ− −σ p
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also in pharmacokinetic processes (for an excellent review, see, for example,
Taylor31). Hydrophobicity characterizes the tendency of molecules (or parts of mol-
ecules) to escape contact with water and to move into a lipophilic environment. In
QSAR work, the basic quantity to measure hydrophobicity is the logarithm of the
partition coefficient in the system n-octanol/water, log P, which was introduced by
Hansch. Its use is based on the Collander equation relating partition coefficients
from different solvent/water systems with the tacit assumption that lipophilic
biophases behave like organic solvents (where PI is the partition coefficient in the
system solvent I/water, and PII is the partition coefficient in the system solvent
II/water):

log PII = a log PI + b (1.16)

This seems to be true in many cases, as hundreds of examples of Collander-type
relationships between biological data and n-octanol/water partition coefficients can
be found in the literature. An example is the partitioning between red cell ghosts
and water of alcohols, phenols, and ethyl carbamate (taken from Hansch and Leo10):

log PGhosts = 0.83(±0.10) log P – 0.34(±0.26) (1.17)
n = 11, r = 0.987, and s = 0.175

The Collander equation is only valid as long as the solute–solvent interactions
in the two solvents are sufficiently similar. Principal component analysis has shown32

that log P is mainly determined by two solute properties: bulk with a polarity
component and hydrogen bonding. If, for example, hydrogen bonding in two organic
solvents is different, the Collander equation will break down unless a correction for
hydrogen bonding is introduced. This can be difficult if the difference is large and
the compounds considered have a very strong capability to form hydrogen bonds.
A case in point is penetration of the blood–brain barrier by a set of very polar H2-
antihistaminic drugs possessing several hydrogen-bond acceptor and donor sites. No
correlation with log P could be found, but a strong dependence on hydrogen bonding
as expressed by Seiler’s Dlog P values was observed:33

log (Cbrain/Cblood) = –0.48(±0.16) Dlog P + 0.89(±0.50) (1.18)
n = 20, r = 0.83, and s = 0.44

The hydrogen-bonding ability, Dlog P, according to Seiler,24 is defined as the
difference between cyclohexane/water and n-octanol/water partition coefficients:

Dlog P = log Poct – log Pcyclohexane = SIH – 0.16 (1.19)

The IH values characterize the hydrogen-bonding ability of different functional groups.
Even though log P (or quantities derived from log P; see below) have been shown

to be valid hydrophobicity descriptors in the majority of cases, examples such as
that presented in Equation (1.18) and the awareness of the complexity of drug–
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membrane interactions35 have led to intensive investigations of the properties of
log P and its use in QSAR work (for reviews, see Pliska et al.,17 Testa et al.,21 and
Taylor31), and alternative approaches to describe hydrophobicity in QSAR work have
been suggested. Leahy and co-workers36 proposed that partition coefficients from
four solvent/water systems with different hydrogen-bonding behavior of the solvents
are required in order to describe the properties of biological membranes. Another
strategy is to dissect log P into its components and to describe hydrophobicity by a
linear combination of bulk/polarity and hydrogen-bonding parameters. An example
is Equation (1.20) for blood–brain permeation derived by Abraham and Chadha37

based on the theory of linear solvation energy relationships:

log(Cbrain/Cblood) = 1.03(±0.10)Vx – 0.54(±0.10)p2
H – 0.61(±0.13)Sa2

H

– 0.71(±0.11)Sb2
H  – 0.08(±0.06) (1.20)

n = 57, r = 0.948, and s = 0.202

In this equation, Vx is the McGowan characteristic volume, p2
H is the so-called

solute dipolarity/polarizability, and Sa2
H and Sb2

H are the solute overall hydrogen-
bond acidity and overall hydrogen-bond basicity, respectively. The problem with
this type of approach is that values of the descriptors p2

H, Sa2
H, and Sb2

H are not easily
available. A similar approach also using hydrogen-bond-donor and -acceptor descrip-
tors computed from a collection of thermodynamic data has been used by Raevsky.38

Hydrogen-bonding capability may also be expressed by the polar surface area, a
quantity used in several recent ADME studies (see, for example, van de Water-
beemd39 and Stenberg et al.40). Unfortunately, a general scale for hydrogen-bonding
strength does not exist. If the biophase differs from a model solvent in its ability to
accommodate a solute (bulk effect) or with respect to the formation of hydrogen
bonding, combinations of bulk or hydrogen-bonding parameters with log P are also
possible (for some examples, see Hansch and Leo,10 Österberg and Norinder,41 and
Feher et al.42).

In spite of the limitations that log P obviously has in certain situations, it is still
the most widely used hydrophobicity parameter. For ionizable compounds, the
distribution coefficient must be considered in many cases instead of the partition
coefficient, or suitable corrections for the degree of ionization must be introduced.2,4,7

By 2002, the QSAR database of the Pomona College30,43–45 contained more than
5400 examples of QSARs involving log P or p (see below). One advantage of log P
is its straightforward computation from chemical structure. To this end, a variety of
different methods have been developed and are available as commercial software
(for overviews, see, for example, Leo46 and Duban et al.47). The most widely used
method is the Clog P algorithm48 (Biobyte Corp., Claremont, CA), which is based
on the hydrophobic fragmental constant of Leo and Hansch derived from very
accurate measurement of log P values of simple compounds (constructionist
approach). The fragmental method of calculating log P from structure was originally
introduced by Rekker,49 who derived hydrophobic fragmental constants from a large
number of available log P values via regression analysis (reductionist approach).
Rekker’s system is used in the PrologP software (CompuDrug International, Inc.,
San Francisco, CA).
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The quantity log P characterizes whole molecules. In the QSAR context, this is
sufficient for many unspecific endpoints or processes where transport to the site of
action or concentration in a certain tissue is the critical factor. If, however, interac-
tions with a receptor or an enzyme are to be analyzed, position dependence comes
into play (see Figure 1.3). In such cases, it is necessary to describe the hydrophobicity
of the variable parts of the molecules (usually substituents) separately. The most
widely used quantity for this purpose is the hydrophobic substituent constant (tab-
ulation in Hansch and Leo10), defined for aromatic substituents as:

pX = log PX – log PH (1.21)

where PX is the partition coefficient of a derivative with substituent X, and PH is
that of the unsubstituted parent compound in the system n-octanol/water. The sub-
stituent constant p represents the hydrophobic analog of the electronic Hammett
constant and characterizes the hydrophobicity of substituent X relative to hydrogen.
It has become common practice to use p values derived from mono-substituted
benzenes. This, however, is not correct, as functional groups may influence p values
of substituents via electronic interactions. Thus, p values from different series with
different functional groups are interrelated via electronic corrections which become
more important as the respective functional groups differ more in their electronic
properties. An example is Equation (1.22) relating p values of a set of substituents
derived from mono-substituted benzenes to the corresponding values derived from
benzoic acids: 50

pX(benzene) = 1.05(±0.07)pX(benzoic acid) – 0.18(±0.15)sX

– 0.12(±0.06) (1.22)
n = 27, r = 0.986, and s = 0.105

As a consequence, the use of p values from the benzene system can produce
electronic terms in QSARs that are solely electronic corrections for p and not
indicative of electronic interactions with the biological target.

1.4.2.3 Steric Parameters

Steric effects are not easy to describe; for a review covering the following parameters
and original references for their definition, see, for example, Franke,7 Hansch and
Leo,10 and Todeschini and Consonni,28 as well as the tabulations in Hansch and Leo.10

The first steric parameter used in QSAR work is the steric substituent constant
ES due to Taft defined by the acid-catalyzed hydrolysis of RCOOR¢ in relation to
the methyl substituted parent, CH3COOR¢. ES characterizes substituent width and is
highly correlated with the van der Waals radius of substituents. Originally designed
to characterize intermolecular steric effects, it also turned out to be helpful for
intramolecular steric interactions; today, this parameter (which also has some mod-
ifications) is no longer much used in QSAR investigations. A quantity highly cor-
related with ES is Charton’s n-value defined as:

nX = rv,X – rv,H = rv,X – 1.20 (1.23)
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where rrx is the minimum van der Waals radius of a substituent x. A frequently used
steric parameter in QSAR work is molar refractivity (MR), usually scaled by the
factor 10–1. MR is related to molar volume (V) and the refractive index (n) according to

MR = [(n2 – 1)/(n2 + 2)]V (1.24)

Molar refractivity is, in the first place, a measure of bulk due to its relation with
molar volume, but it also contains a polarizability component expressed by the
refractive index terms. Because MR is an additive and constitutive quantity, its
calculation from chemical structure is straightforward on the basis of available
fragment values for both whole molecules as well as substituents. Other bulk param-
eters occasionally used are the molar volume, the parachor, and the molecular weight
in connection with diffusion controlled processes.

The above-mentioned parameters have the disadvantage that they do not take
into account molecular shape or, in other words, the directionality of steric interac-
tions typical of the binding of drug molecules to specific biological targets. This led
Verloop51 to introduce his STERIMOL parameters. Originally, five parameters were
suggested to describe steric properties of a substituent, but it then turned out that
three parameters are sufficient: B1, B5, and L. L is a measure of substituent length,
B1 is the smallest substituent width, and B5 is the largest width orthogonal to L (a
measure of the effective substituent volume).

A very large group of parameters are topological indices (see Todeschini and
Consonni28) based on graph theoretical considerations. They can directly be com-
puted from the two-dimensional structure of any compound, as, for example, the
Kier–Hall connectivity index c. The use of such indices in QSAR work has been
extensively investigated by Kier and Hall (for reviews and computational procedures,
see Kier and Hall52,53). They are related to many physicochemical properties, includ-
ing hydrophobicity, and, thus, are no pure steric quantities. As a consequence, the
interpretation of QSARs containing such parameters is very difficult if not impos-
sible. In addition, the many different topological indices calculable from chemical
structure are usually highly interrelated. Therefore, an uncritical combination of such
indices into one QSAR model exposes the danger of chance correlations and will
lead to severe colinearity problems (see below). For these reasons, the use of such
indices in typical Hansch analysis problems is to be considered with caution. If,
however, large sets of structurally diverse compounds are to be investigated with
the primary purpose of data description, then such indices can be very helpful.

In series of sufficiently similar compounds, steric descriptors are frequently
correlated with hydrophobicity parameters, creating a problem for interpretation
(see below). Their relation with biological potency can be linear (positive slope,
favorable steric interactions; negative slope, steric hindrance) or parabolic (optimum
for steric fit).

1.4.2.4 Indicator Variables

Indicator variables can be used to combine QSARs for subgroups of compounds
belonging to the same series but differing in a certain feature into one common
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equation. Usually, an indicator variable is assigned a value of one for compounds
possessing this feature, and a value of zero is assigned to the other compounds.
Consider, for example, the structures presented in Figure 1.5 and let us assume that
for the two subgroups A and B the following QSARs for some biological responses
are valid:

log BRA = 0.5p + 1.5 (1.25)

log BRB = 0.5p + 3.0 (1.26)

The two subgroups show the same dependence on p and differ only with respect to
the constant term in a plot of log BR vs. p. This difference must be due to the
different substitution of the amino group which can be accounted for by introducing
an indicator variable I with I = 1 for compounds of subgroup B and I = 0 for
compounds of subgroup A (the definition can, of course, also be reversed). Intro-
duction of this indicator as an additional variable into an analysis for the subgroups
A and B combined will give:

log BRA+B = 0.5p + 1.5I + 1.5 (1.27)

The regression coefficient for the indicator variable is fitted by regression analysis
to give the difference in the intercepts. According to the definition of I, this difference
is then added to all points belonging to subgroup B so that the two lines are united.
This principle is, of course, also applicable to n-dimensional spaces (equations with
n variables), and it is also possible to combine, through indicator variables, more
than two subgroups. A case in point is Equation (1.28) which describes the antibac-
terial potency of lyncomycin derivatives against Salmonella lutea:54

log BR = –0.24(±0.02)p2 + 1.39(±0.12)p + 0.23(±0.07)I1

– 0.20(±0.07)I2 – 0.43 (1.28)
n = 25, r = 0.960, and s = 0.162

The indicator variables I1 and I2 distinguish, respectively, between trans-substituted
(I1 = 1) and cis-substituted (I1 = 0) and between N-ethyl (I2 = 1) and N-methyl (I2

= 0) derivatives. Equation (1.28) shows that trans-substitution leads to more active
compounds, while N-ethyl derivatives are less potent than their N-methyl analogs.

FIGURE 1.5 Structures A and B (see Equations (1.25) to (1.27)).

X XA B

NHMe NHEt
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Indicator variables have been used extensively in QSAR work to account for a
variety of structural and other features such as hydrogen bonding (intra- and inter-
molecular), ortho effects, different test organisms, different parent skeletons, etc.
Even though they have turned out to be very useful, some care is necessary as the
physical meaning of such variables is not always clear in the context of Hansch
analysis.

A special case arises if, in a series of compounds with multiple substitution,
many substituents are varied at some sites but only a few at other sites. In such
cases, substitution at the sites with many substituents can be described by Hansch-
type expressions while substituent effects at the other sites can be characterized by
a Free–Wilson description (a set of indicator variables that correspond to the bijk in
Equation (1.3)). This amounts to a mixed Hansch/Free–Wilson analysis which is
possible, as these two methods are formally equivalent.2,7 The examples presented
above are already simple cases of such a mixed approach.

Sometimes, indicator variables also have to be introduced in the form of cross-
products with the other descriptor variables. In the two-dimensional case presented
in Figure 1.5 this would then be necessary if the two lines would not only differ in
intercept but also in slope. An example is shown in Equation (4.8) in Chapter 4.

1.4.3 BUILDING AND EVALUATING HANSCH EQUATIONS

At the beginning of an investigation, one has, for a set of compounds (usually called
training series or also learning set), values for an observed biological potency and
the structures of the compounds. In a first step, a set of molecule parameters, xi,
describing chemical structure is selected from tabulations or computed. The basic
assumption of Hansch analysis is that log BR can be described by a weighted linear
combination of the xi:

log BR = a0 + a1x1
n1 + … + aixi

ni + … + anxn
nn (1.29)

where the exponents ni can be 1 (linear term) or 2 (quadratic term). At the start of
an analysis it is not known whether a relationship according to Equation (1.29) exists
for the problem under investigation, which of the xi are related to log BR (which of
the regression coefficients ai are significantly different from zero), and what the
precise form of Equation (1.29) is (e.g., occurrence of squared terms). In addition,
there may be more than one solution (e.g., if some of the xi are correlated; usually
such variables are termed colinear). As a consequence, many possible combinations
of the xi have to be screened, and the resulting equations have to be validated and
evaluated to select the “best” equation.

The regression coefficients ai are computed by multiple regression analysis55

and checked for their statistical significance. Only such terms are allowed that are
significantly different from zero at a statistical probability of 95%. Usually, the
following statistical criteria are presented together with a regression equation:

• The correlation coefficient, r, which is a relative measure of the quality
of fit (r = 0, no correlation; r = 1, perfect correlation). Its squared value
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(r2) measures the percentage of variance of the dependent variable
(log BR) explained by the equation.

• The standard deviation, s, is another measure for the quality of fit. Its
value should be as small as possible but never smaller than the error of
the biological experiment (overprediction).

• Fisher’s F value, which is a measure of the statistical significance of the
regression model.

• Confidence intervals for the regression coefficients at a statistical level of
significance of 95%. These intervals overlap the true values of the regres-
sion coefficients at a statistical probability of 95%.

• Number of degrees of freedom usually presented as number of observa-
tions, n.

• Residuals = log BR (observed) – log BR (predicted).

Frequently, the robustness and the potential predictive power of a QSAR are further
checked by a procedure called cross-validation. In cross-validation, each compound
is left out once from the analysis (leave one out, or LOO, technique),* and the model
is then derived from the remaining objects. With the resulting models, the activity
values of the left-out compounds are then predicted. By comparing these predicted
values with the observed values, a squared cross-validated correlation coefficient,
q2, can be computed which is usually lower than the squared correlation coefficient,
r2. Values of q2 can range from 1 to less than zero. A value of one indicates a perfect
prediction, and a value of 0 means that the QSAR derived has no modeling power.
Negative values arise from a situation where the derived QSAR is a poorer descrip-
tion of data than no model at all. For medium-sized or small datasets typical for
Hansch analysis, “cross-validation may incorrectly indicate a lack of validity of the
QSAR model.”2 For large datasets, the situation is different (see below). Another
approach to estimate the potential predictive power of a QSAR model is to divide
the datasets into two parts by means of series design methods (see below) which,
of course, requires a fairly large number of observations. One part is then taken as
a training series to derive the QSAR model, and the other part is used as a so-called
test set for which biological potencies are calculated from the QSAR derived from
the training series. A high predictive power is characterized by a good correlation
between predicted and observed activity values.

Regarding the goodness of description of log BR, a regression model can be
accepted if:

• The F value shows that the overall significance is 95%.
• The confidence intervals are smaller than the regression coefficient (the

regression coefficients are significantly different from zero at a statistical
probability of >95%).

• r ≥ 0.8.
• s is not much larger than the standard deviation of the biological experiment.
• q2 ≥ 0.6.

* There are also cross-validation procedures where groups of compounds are left out.
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The selection of descriptor variables at the beginning of an analysis is a complicated
and time-consuming procedure that always contains subjective and ambiguous
elements. On the one hand, all properties important for the biological activity
considered must be covered, but on the other hand too large a set of descriptors
will make monitoring of the results and interpretation difficult and may lead to so-
called chance correlations where a statistically significant result, as judged by the
usual statistical criteria (see above), is obtained by chance.56 For medium-sized
problems, the best approach probably is to start from a standard set of hydrophobic,
electronic, and steric substituent constants and to consider all reasonable combina-
tions of parameters. Variables that have only a very small spread (near constant
value) are not to be included. Variable combinations from which to start can be
selected, for example, from knowledge about already existing QSARs for similar
or the same compounds or for the same type of biological activity or from hypoth-
eses about the mechanism of action, respectively. Simple plots can be of great help
at this stage. The equations are then improved in an iterative stepwise procedure,
adding more variables, if necessary, until an acceptable result is obtained. At this
stage, plots of residuals vs. such variables can be very helpful. A very reasonable
first move is to break down the training series into subsets to understand positional
dependencies of effects. Subsets can then be reunited by means of indicator vari-
ables. Sometimes, variables have to be modified in order to meet specific aspects
of drug–target interactions. One typical example is so-called ring flipping. Phenyl
rings with substituents in the meta-position can flip to place a hydrophobic sub-
stituent in a hydrophobic environment and a hydrophilic one in the aqueous sur-
rounding. As a consequence, hydrophobic meta-substituents are parameterized with
normal p values, while hydrophilic substituents receive a p value of 0. A case in
point is the following equation describing the Michaelis constant for the hydrolysis
of hippurate esters, X-C6H4OC(=O)CH2NHC(=O)C6H5, by papain:10

log 1/Km = 0.57(±0.20)s + 1.03(±0.25)p3¢

+ 0.61(±0.29)MR4 + 3.80(±0.17) (1.30)

n = 25, r = 0.907, and s = 0.208

In this equation, p3¢ refers to the more hydrophobic of the two possible meta-
substituents; the more hydrophilic meta-substituent is supposed to project into the
aqueous phase. The coefficient of the p3¢ term is close to unity, indicating binding
in a hydrophobic pocket (see Franke7). The positive coefficient of MR4 indicates an
increase in binding with substituent size which requires enough space or flexibility
of the corresponding part in the binding site. Another interesting aspect about the
MR4 term is that, because the compounds with the substituents 4-CH3, 4-C2H5, and
4-C3H7 have essentially the same log 1/Km values, it was assumed that they do not
make significant contact with the enzyme; therefore, a MR4 value of 0 was assigned
to these substituents. The positive s term, finally, reveals that electron-withdrawing
substituents support the formation of the enzyme–substrate complex. All these con-
clusions have subsequently been verified by computer graphics based on x-ray
crystallographic structures. This and many additional examples where conclusions
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from Hansch analysis have later been verified by x-ray crystallography57 clearly show
that the interpretation of QSARs can lead to valid information on the mode of binding.

As already mentioned, molecule parameters in a Hansch equation may occur in
linear terms or in a parabolic fashion involving squared terms. Squared hydrophobic
terms may occur for both hydrophobic binding as well as pharmacokinetic processes,
indicating an optimal value of hydrophobicity (the squared term usually has a
negative sign which means that the parabola is curved downward).* In the case of
hydrophobic binding, a parabolic relationship with hydrophobicity parameters (see
Figure 1.6a) indicates that the hydrophobic binding region at the biological target
is limited (see Franke7), and for pharmacokinetic processes such relationships reflect
an optimum hydrophobicity for the transport to the site of action:

log BR = alog P – blog P2 + c (1.31)

The value of log P at the optimum can be computed from:

log PO = a/2b (1.32)

The parabolic function has the disadvantage that the data are forced into a
symmetrical relationship while experience has shown that such relationships are not
perfectly symmetrical in many cases. A better alternative is the so-called bilinear
model according to Kubinyi:2

log BR = alog P – blog (bP + 1) + c (1.33)

with the optimum at

log PO = log (a/b (b – a)) (1.34)

If the hydrophobicity parameter is already in the logarithmic scale (log P, p), Equa-
tion (1.33) transforms into:

FIGURE 1.6 (left) Shape of a parabola according to Equation (1.31), and (right) shape of a
bilinear curve according to Equation (1.33) or Equation (1.35).

* In some very special cases, a parabola curved upward has also been found.
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log BR = alog P – blog (b10log P + 1) + c (1.35)

Equations (1.33) and (1.35) describe a curve with linear ascending and descend-
ing sides (see Figure 1.6b) which can have different slopes (a for the ascending and
a – b for the descending part). A further advantage of this relationship is that the
slopes of the linear parts can be compared with the slopes of linear relationships
between log BR and hydrophobicity parameters (in such relationships, the variation
of hydrophobicity in the compounds of the training series does not cover the region
of the optimum). Disadvantages are that more data points are necessary, as one
additional adjustable parameter (b) has to be estimated, and computation of the
equation requires nonlinear regression analysis. In addition, the slopes are sensitive
to the spread in log P or p. Examples of the two types of relationships are presented
by Equations (1.36) and (1.37) for the antielectric shock activity in mice of miscel-
laneous compounds (where m is the dipole moment):10

log 1/C = 1.15log P – 0.22log P2 – 0.37m + 2.99 (1.36)
n = 18, r = 0.922, s = 0.24, and log PO = 2.59; confidence intervals not given

log 1/C = 0.86(±0.20)log P – 1.68(±0.42)log (b10log P + 1)
– 0.42(±0.14)m + 3.19(±0.20) (1.37)

n = 18, r = 0.938, s = 0.221, and log PO = 2.43; value of b not given

As the bilinear curve according to Equation (1.37) is fairly symmetrical, the fit
with the bilinear model is not much better than with the simple parabola according to
Equation (1.36). There is good agreement between the estimates of the optimal value
of log P which is usually the case if parabolas and bilinear models are compared. The
optimal lipophilicity (log PO) is an important design criterion that can lead to enhancing
a desired potency or to decreasing unwanted side effects of drugs. It should be noted
that in the case of hydrophobic binding to a target, positional dependencies can occur
so that, for example, for substituents in one substitution site a linear relationship exists
between log BR and p, while in some other site this relationship is parabolic.

Regarding squared terms, the situation with steric parameters is completely anal-
ogous to the behavior of hydrophobic parameters in QSAR equations. Squared terms
describing a parabola (see Equation (1.31)) are needed when steric hindrance of
binding occurs if substituents exceed a certain size. Frequently, such effects are also
better described by relationships corresponding to Equations (1.33) and (1.35). An
example is Equation (1.38) describing the rate constant for the inhibition of chymot-
rypsin by thiophosphonates O = P(SR1)(OR2)(CH3) (I = 1 if a charge occurs in S R1):10

log k = 1.47(±0.10)MR(OR2) – 3.43log (b10MR(OR2) + 1)
+ 0.34(±0.09)MR(SR1) + 1.25(±0.19)s*(R1)

– 1.06(±0.31)I – 5.26(±0.38) (1.38)
n = 53, r = 0.985, s = 0.243, and MR(OR2)O = 3.71; value of b not given
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Equation (1.38) demonstrates a position-dependent steric effect. For substitution
at the sulfur, there is a linear increase of inhibition with bulk, while for substitution
at the oxygen, a steric optimum exists. The s*(R3) term indicates that electron-
attracting substituents in R1 are favorable, and the indicator variable, finally, shows
that charge in the SR1 region slows the reaction down.

For electronic terms, quadratic relationships are the exception; however, in some
special cases squared s or pKa terms are required.

Sometimes a squared term is supported by only one or two compounds. In such
cases, two results should be presented: the parabolic relationship and the linear one
resulting after eliminating these compounds. It can then be decided whether it is
worthwhile to synthesize additional analogs in order to define the possible optimum.

A severe problem arises from colinearities between variables (r ≥ 0.7). If such
colinearities appear between variables telling very much the same story, such as,
for example, between MR and V (see Equation (1.24)), this situation can simply
be handled by omitting that variable that shows the lower correlation with biolog-
ical potency. If, however, colinearities occur between variables with different
physicochemical meaning, alternative equations will result, leading to different
interpretations of drug–biosystem interactions with no possibility to decide which
is the correct one. Very typical are colinearities between hydrophobic and steric
parameters. An example is provided by Equations (1.39) and (1.40) describing the
growth inhibition of Chlorella vulgaris by piperidinoacetanilides substituted in the
phenyl ring:58

log 1/C = 1.26so,m,p + 0.48pm + 0.66pp – 1.02MRo + 2.50 (1.39)
n = 27, r = 0.933, and s = 0.252; confidence intervals not given

log 1/C = 1.34so,m,p + 0.51 pm + 0.85MRp – 1.13MRo + 2.70 (1.40)
n = 27, r = 0.927, and s = 0.253; confidence intervals not given

Obviously, pp and MRp can be freely interchanged without changing anything
else. This is due to a high colinearity between pp and MRp (r = 0.843). As the
statistical quality of both equations is the same, it is not possible to decide whether
a hydrophobic or a steric effect operates in the para-position. In addition to simple
colinearities, multicolinearities may exist where one variable is related to a linear
combination of two or more other variables (see Franke7). The only real possibility
to solve such problems is to consider all alternative equations (provided that they
are of comparable statistical quality) and then to break down the disturbing colin-
earities by adding some well-selected additional analogs to the training series in
order to understand what features are important for biological potency. Sometimes,
comparison with already existing QSARs for the same type of biological activity
can also be helpful to make a decision. A strategy of including only one from pairs
of related variables in the derivation of the equations is not helpful as the colinearity
continues to exist; this is, of course, not true for variables leading to the same or a
similar interpretation as for the already-mentioned example of MR and V.

Another problem in QSAR analyses are compounds that cannot be explained
by the derived QSAR model. Such compounds are called outliers and are usually
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omitted from the corresponding analysis. There are several reasons for a compound
to become an outlier as, for example, incorrect biological measurement, incorrect
parameter value(s), metabolic inactivation/activation, different mechanism of action,
or because it has a unique property not described by the QSAR model. One should
always try to rationalize why a compound is an outlier. If this is not possible, the
elimination of outliers is a difficult and not unambiguous decision. In any case, it
is not an acceptable practice to remove compounds from an analysis until a good
fit is obtained. On the other hand, outliers can provide valuable information; for this
reason, Hansch has called them “a blessing in disguise.”

The selection of the best equation (more than one equation in the case of collinear,
not naturally related variables) can be difficult and is very much a matter of personal
experience and judgment using statistical, practical, and chemical criteria. From a
statistical point of view, the best equation is usually the one with the best fit, provided
that the statistical criteria mentioned above are fulfilled. The correlation coefficient
is not a good measure here, as it tends to select as many variables as possible. Better
criteria are the lowest standard deviation, s, and the highest overall F value. Unfor-
tunately, these two criteria may not lead to the same solution, as the F value some-
times has the highest value for too few variables, while s tends to include too many
variables. In this context, an additional criterion may be helpful: Given several
equations with high descriptive power, the simplest model should be accepted. In
any case, one should have a sufficient number of observations per variable. The value
recommended in the literature is a ratio of about 5:1 for medium-sized problems.
For small series, however, a ratio of 3:1 may also be acceptable to get a first
orientation, and for large datasets, higher ratios are recommended.

A very important point is that the resulting model must be interpretable and
consistent with general experience from physical organic chemistry and QSAR work.
This aspect is at least as important as statistical criteria. For example, equations with
unrealistic regression coefficients must be rejected even if the statistics seem to be
acceptable. A process called lateral validation by Hansch10,30,43–45 is a very helpful
step to assess the validity of a QSAR equation. In this process, the equation is
systematically compared with known QSARs obtained for the same (or a similar)
biological target and with known linear free-energy relationships for chemical reac-
tions, if such reactions are suspected to be involved in the biological mechanism of
action. As Hansch has put it, “Statistics alone … cannot prove a model … the best
test of a model is — does it make sense with our current knowledge of QSARs in
chemistry and biology?”10 Another criterion is that the final equations must be stable
in subsets of the training series.

In commercial programs for regression analysis, automated algorithms for deriv-
ing an equation from a set of variables are usually included where variables are
added and removed in a stepwise procedure guided by statistical criteria. This is not
a method to be recommended (particularly when colinearities occur between the
variables), as the result often is ambiguous.

We are always faced with the temptation to use available software packages to
compute all kinds of parameters that these packages can provide (including, for
example, topological indices and a variety of quantum chemical parameters) without
much thought about interpretation and selection of the best equation. This is a practice
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not to be recommended for Hansch analysis. The number of parameters could exceed
the number of observations, and many colinearities between parameters will exist.
Sometimes and for certain purposes such a situation cannot be avoided (large and
diverse datasets) but in such cases methods other than simple multiple regression
analysis are required (see next section). If Hansch analysis is still to be used, the
derivation and evaluation of equations are almost entirely based on statistical criteria
and approaches as almost no chemical judgment can be introduced; this is a big
disadvantage. In order to make such problems manageable, variable selection pro-
cedures, for example, cluster significance analysis59 and genetic60 and evolutionary61

algorithms, have been used to find the best (in a statistical sense) equations automat-
ically. The interpretability of the results from such analyses is, at best, very limited.

Hansch analysis is strictly limited to congeneric series of compounds. In such
series, the compounds are supposed to be sufficiently similar to be described and
compared by the usual hydrophobic, electronic, and steric descriptors within the
context of the parameters selected and to have the same biological mechanism of
action. Experience has shown that the concept of congenericity can be stretched
very far. An example is a QSAR analysis of antimalarials where a large and diverse
set of over 600 compounds containing 60 different aromatic/heterocyclic ring sys-
tems substituted with a variety of substituents could successfully be described by a
relatively simple Hansch equation.62 The problem is that congenericity very much
depends on the biological activity considered and the type of descriptor variables
involved. For unspecific biological effects, potency frequently depends only on
hydrophobicity, and compounds may behave as congenerics which are not similar
at all from a chemical point of view. On the other hand, a family of structurally
similar compounds is not necessarily congeneric. A case in point is provided by
various phenols acting as growth inhibitors in leukemia cells.44 Here, two different
QSARs are obtained for compounds with electron-withdrawing substituents (Equa-
tion (1.41)) and electron-releasing substituents (Equation (1.42)):

log 1/C = 0.62(±0.16)log P + 2.35(±0.31) (1.41)
n = 15, r = 0.919, and s = 0.232

log 1/C = –1.58(±0.26)s+ + 0.21(±0.06)log P + 3.10(±0.24) (1.42)
n = 23, r = 0.948, and s = 0.191

The result was rationalized by assuming that the phenols act via two different
mechanisms. Electron-releasing substituents support the abstraction of H-radicals
which is supposed to be the key step for compounds described by Equation (1.42)
(relationships with the enhanced substituent constant s+ are typical of radical reac-
tions). This process is blocked by electron-withdrawing substituents so that the s+

term disappears (Equation (1.41)), resulting in a nonspecific toxic effect character-
ized by log P.

Hansch equations cannot be taken as causal relationships, but they extract and
systematize information of data resulting in hypotheses that can be put to experi-
mental test. They are, thus, an aid to moving in a promising direction, and they can
also tell when to stop further structural variations if the optimum is already obtained.
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The most important thing is to derive conclusions via interpretation. Unfortunately,
there are many pitfalls in deriving, evaluating, and interpreting Hansch equations
(and other QSARs) so that extensive experience in the field is a decisive factor.
Strictly speaking, the prediction of how new compounds will behave in the biological
system is limited to the parameter space spanned by the training series, but even
this is an enormous benefit in multidimensional space. Some extrapolation, however,
is usually possible. In addition, it must be stressed that QSAR analyses cannot create
new information but can only extract information that is present in the available
data. This requires, for example, sufficient variation in both biological activity and
physicochemical parameters within the training series to be analyzed and biological
activity values evenly distributed in physicochemical parameter space. The best way
to achieve that is to apply series design methods with the objective of obtaining a
maximum of information with a minimum of compounds in the training series (see,
for example, Franke,7 Pleiss and Unger,63 and Austel64).

A special case of QSAR relationships is quantitative activity–activity relation-
ships including structure–selectivity relationships. Such relationships are of growing
importance. Typical cases are the separation of desired and undesired effects or
comparisons of experimental results from different levels of biological integration
(e.g., isolated enzyme/cell/organ/animal) including proper expressions with physic-
ochemical parameters to account for transport processes (see, for example, Kubinyi,2

Franke,7 and Ford et al.16).

1.5 SOME MULTIVARIATE METHODS

1.5.1 PRINCIPAL COMPONENTS AND PLS

It was already mentioned that for diverse and difficult to parameterize compounds,
it may be necessary to collect a large number of chemical descriptor variables. This
is particularly true if, in addition, no hypotheses are available to aid in descriptor
selection. Many colinearities are to be expected, and the number of descriptors can
exceed the number of biological observations. Clearly, multiple regression analysis
cannot be applied in such cases. In order to understand such data in their entirety
and to adequately deal with their mathematical properties, methods of multivariate
statistics such as principal component analysis are required. Their main objectives
are to display multidimensional data in a space of lower dimensionality with a
minimum loss of information and to extract basic features behind the data.

If X is the descriptor matrix with n chemical compounds in the rows and m
descriptor variables in the columns, principal component analysis splits X up into
two new matrices, A and P, so that X is reproduced within residual error (experi-
mental + model error) according to:

(X)n,m = (P)n,k (A)k,m + error (1.43)

with the smallest possible k.
P is called the principal component matrix (or score matrix) and contains all

information about the compounds, while the so-called loading matrix A represents
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all information about the variables. The columns of P are called principal components
(PCs), and the elements of P are the so-called scores. Thus, the principal components
replace the variables in the original data matrix. The elements of the loading matrix
A are called loadings. Each variable has a loading for each component. The loading
aij (i = 1, …, k; j = 1, …, m) is a measure of the contribution of the ith PC to the
jth variable: a high value of aij indicates a high importance of the ith PC for the jth
variable (the jth variable is said to be highly loaded in the ith PC). Variables with
high loadings in the same principal component are similar (correlated).

The principal components are extracted from the correlation matrix of the stan-
dardized variables (in this form, the variables have a mean of zero and unity variance)
by a mathematical standard procedure in a stepwise manner in such a way that the
first component extracts the largest and the last component the smallest part of the
data variance. The number of relevant components, k, can be determined by several
criteria. It should be as small as possible to reproduce the matrix X within experi-
mental error. If colinearities between the variables occur, this number will always
be considerably smaller than the number of columns in X. As a result, a reduction
of dimensionality is obtained (less components than variables), and as the PCs are
derived as orthogonal vectors, the colinearity problem is also eliminated in a math-
ematical sense. The principal components can now be used as variables in QSAR
analyses. They are then called latent variables or principal properties, if a sufficiently
large parameter space has been considered for a representative group of compounds
(e.g., amino acids).

The use of PCs as independent variables in multiple regression analysis is called
principal component regression. Today, the so-called PLS (partial least squares)
method has become much more important than this technique.65–67 PLS is also based
on principal component analysis and has turned out to be a very efficient and robust
method for large datasets. In the most general case, the objective is to describe a
matrix of data from different biological tests (matrix Y with compounds in the rows
and the tests in the columns) in terms of the descriptor matrix X. To this end, PCs
are derived from both matrices in such a way that they yield an optimal description
of X and Y while, at the same time, the PC pairs Pk(Y) (kth PC extracted from Y)
and Pk(X) (kth PC extracted from X) are maximally correlated according to

Pk(Y) = bkPk(X) + hk (1.44)

where bk is the regression coefficient, and hk is a residual.
Special algorithms are available to achieve that goal. Cross-validation (see

above) is used to estimate the number of relevant components and to check for the
validity of the resulting model. In this process, PCs are added step by step until the
statistical cross-validation parameters are optimal. The loadings of the X PCs will
give an impression of which of the original variables are related with which PCs.
If biological potencies for new compounds are to be predicted, the descriptor values
of these compounds are fitted to the PC model of X, leading to new values of the
X PCs and a residual. If this residual is of the same magnitude as, but not greater
than, that of the training series, prediction is possible. New values of the Pk(Y) are
then computed from Equation (1.44), and from these and the PC model of the matrix
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Y, biological activity data are obtained. In contrast to Hansch analysis, predictions
are strictly limited to the parameter space spanned by the training series; no extrap-
olation is possible. PLS can also be applied if, instead of a Y matrix, only results
from one biological test are to be analyzed; in fact, the majority of PLS publications
relate to this situation.

The result is very sensitive against noise in the data; strong relationships with
single descriptor variables of high relevance for biological potency may completely
be obscured by irrelevant variables. For this reason procedures for the elimination
of irrelevant descriptors have been developed, such as, for example, GOLPE.68–71

As is also true for Hansch analysis, PLS works best with a well-designed training
series. Special series design methods based on factorial or D-optimal design in
principal properties have been proposed for this purpose.72–74 Design in principal
properties works well in connection with PLS but cannot be recommended if multiple
regression analysis is to be applied. If one goes back to the individual original
variables, the series designed for aromatic substituents using principal properties
have low information content, and colinearities as well as multicolinearities exist.75

Partial least squares models can be transformed to regression coefficients for the
original variables in the X matrix resulting in relationships looking like a Hansch
equation. Such relationships are, of course, not true regression equations and, in the
typical case of colinear descriptor variables, these coefficients are not independent
and therefore not individually interpretable. Collinear variables will occur together
so that a decision cannot be made regarding what are the true effects on biological
potency. Thus, PLS results are of only limited interpretability. As stated by Hansch,
“The price one pays for this approach is that … the results cannot be related to
mechanistic physical organic or biochemistry as these subjects are now under-
stood.”30 In addition, the results depend on technical details such as, for instance,
scaling of variables, variable selection, type of cross-validation, choice of statistical
criteria for model selection,67 so that different PLS programs may lead to different
results. This renders a lateral validation (systematic comparison of QSARs; see
section on Hansch analysis) of PLS models impossible. For all these reasons, mul-
tiple regression analysis is the method of choice for datasets that are not too large
and do not have too many variables, provided that it is applied with the necessary
care and experience. For large sets of collinear variables as occur, for example, in
comparative molecular field analysis (CoMFA; see below), PLS is the only choice
and has turned out to be a powerful and effective method.

Continuum regression is a method that contains PLS, principal component
regression, and multiple linear regression analysis as limiting cases.76 By selecting
values of an adjustable internal parameter (which can be optimized during calcula-
tion), it is possible to optimally adjust this method to the properties of the data to
be analyzed.

Another aspect of principal components should be mentioned briefly in regard
to the Y matrix. With the help of principal components derived from a matrix of
compounds measured in a set of tests, the basic effects behind the biological tests
may be separated. Such principal components can then replace biological potency
in Hansch analysis leading to QSARs for these effects even though these effects
have not directly been measured. An example is provided by the work of Seydel
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and colleagues77 on the antibacterial effect of sulfones and sulfonamides. Two
principal components were derived from measurements in seven cell-free enzyme
extracts and in two whole-cell systems. For these PCs, the following relationships
were obtained:

PC1 = –7.02(±1.25)Dppm(NH2) + 1.81(±0.42)fi – 0.93(±0.19) (1.45)
n = 17, r = 0.969, and s = 0.264

PC2 = 1.40(±0.52)log k¢ – 3.49(±1.32)log[0.098(±0.173)k¢ + 1]
+ 0.51(±0.73) (1.46)

n = 17, log k¢O = 0.834, r = 0.934, and s = 0.396

The first component obviously reflects intrinsic activity at the active site of the
enzyme and can be related to electronic parameters expressed as the relative chemical
shift (Dppm(NH2)) of the protons of a NH2-group present in the molecules and the
fraction ionized, fi. The second component shows a bilinear dependence on hydro-
phobicity expressed by the high-performance liquid chromatography (HPLC) param-
eter k¢ typical for transport processes. Thus, principal component analysis has led
to simultaneous QSARs for intrinsic activity at the target and for the transport
phenomena occurring at the cell membrane. A similar separation can be reached by
principal component analysis of time series. From a data matrix with measurements
of the analgesic potency of fentanyl derivatives in rats at ten different times, two
significant factors* were obtained78 representing pharmacokinetic processes and
receptor affinity. As expected, the first factor representing pharmacokinetic processes
shows a parabolic relationship with log P typical for adsorption/distribution pro-
cesses, and the second factor, receptor affinity, could be described by a highly
significant Free–Wilson model.

1.5.2 THREE-DIMENSIONAL QSAR

Three-dimensional QSAR is actually outside the scope of this chapter but will be
discussed very briefly because of the increasing importance79 of such methods. The
objective is to derive QSARs for drug–receptor interactions taking into account the
three-dimensional structure of the drugs; pharmacokinetic aspects cannot be con-
sidered. Comparative molecular field analysis (CoMFA)80–83 is the most commonly
used approach in this area. In CoMFA, the molecules of the training series are placed
into a grid following a predefined rule (alignment). This is a critical step especially
for flexible molecules. Properties (probes) are then assigned to the grid points (e.g.,
CH3, H+), and the interaction energy with each grid point is then computed for every
molecule. This results in a X matrix with thousands of columns (one column for
each type of interaction energy in each grid point) which is then analyzed by PLS
(see above). The resulting PLS model can be used to estimate interaction energies

* Factors are similar to PCs. The only difference between principal component and factor analysis is
that in factor analysis only the variance in the so-called common factor space is considered. For highly
correlated variables, PCs and factors are nearly identical.
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for further molecules and to color-code the grid points with respect to the type and
intensity of their interaction with the molecules. Even though the resulting contour
map is not a true receptor map, it can provide valid information of the true structure
of the binding site.84 Comparisons between the results from CoMFA and classical
Hansch analysis have been made by Kim.85 A number of cases are presented for
which Hansch analysis and CoMFA results have led to the same conclusions. The
following example can demonstrate this point. For the catalytic step in the enzymatic
hydrolysis of pyridyl hippurates, the following QSAR models are obtained (no
confidence intervals given):

• Hansch analysis

log kcat = 0.45s + 0.16 (1.47)
n = 13, r = 0.929, and s = 0.093

• CoMFA

log kcat = 0.02Z1(H+) + 0.02Z2(H+) + 0.09Z3(H+) + 1.17 (1.48)
 n = 13, r = 0.960, s = 0.071, and scross-validated = 0.109

Z1(H+), Z2(H+), and Z3(H+) are the first three PLS components with a H+ probe at
the grid points (electrostatic interaction energies). Both models come to the conclu-
sion that electronic properties of substituents play the most important role, but the
Hansch equation is much simpler, more straightforward to interpret, and certainly
computationally much easier to obtain. The same is also true for the other examples
presented in Kim.85 This does not mean, of course, that CoMFA is not necessary,
as CoMFA can handle structural variations that cannot be treated by Hansch analysis,
and considering the three-dimensional structure in CoMFA adds an extremely impor-
tant new quality. What it does mean, however, is that it is always worthwhile to start
with a simple Hansch analysis in a first step whenever this is possible. The results
can then aid in subsequent CoMFA analysis, if necessary, to derive hypotheses on
the type of fields to be considered and how to align the molecules. In this context
it should again be mentioned that conclusions on the mode of binding for a variety
of ligands interacting with several enzymes derived from Hansch equations have
later been verified by x-ray crystallography.57 This not only is an argument for the
validity of the Hansch approach but also supports the suggestion that such equations
(or results from other classical QSAR methods) can be used to aid in the development
of CoMFA models.

The area of three-dimensional QSAR is under steady and rapid development
leading to improvements of the CoMFA technology but also to the development of
alternative methods such as, for example, CoMSIA (comparative molecular similar-
ity analysis) and CoMMA (comparative molecular moment analysis). In CoMSIA,86

three-dimensional structures of the molecules are aligned as in CoMFA, but instead
of the interaction energies at predefined grid-points, similarity indices related to
steric, electrostatic, and hydrophobic potentials are calculated between all pairs of
molecules. The resulting similarity matrix can then be analyzed in a GOLPE/PLS
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procedure. The critical alignment step is possibly avoided in the CoMMA approach,
where descriptors are used that describe shape and charge distribution.87 Neuronal
nets and genetic algorithms have also been used in three-dimensional QSAR.

1.5.3 CLASSIFICATION METHODS

Quite frequently biological properties present themselves in the form of a classifi-
cation with respect to either the strength (biological activity) or the type (e.g.,
agonist/antagonist) of an effect. Classification methods (frequently also referred to
as pattern recognition methods) aim at deriving mathematical expressions (classifi-
ers) in terms of molecule descriptors to describe the distribution of compounds over
the respective classes. The most typical case is a classification with respect to
biological potency, if biological measurements are not precise enough to present
biological potency on a continuous scale. Once a classifier is known, it is possible
to assign new compounds to the classes (classification) which amounts to a prediction
of their biological properties. The most frequently applied classification methods in
QSAR work are non-elementary discriminant analysis7 and the simple classification
analysis (SIMCA) method,88,89 which will be discussed briefly. For the sake of
simplicity, a case with two classes (e.g., biologically active vs. biologically inactive
compounds) will be considered, although, in principle, multiclass problems can be
treated in the same way.

In the first step of discriminant analysis, descriptor variables that are supposed
to be related to the distribution of compounds over the classes are collected. A so-
called discriminant function, w, is then derived which is of the general form:

w = a0 + a1x1
n1 + … + aixi

ni + … + anxn
nn (1.49)

The same variables and functional relationships as in Hansch analysis are used,
and all that has been outlined for Hansch analysis is also true for discriminant
analysis. The coefficients ai are so determined that the separation of classes is
optimal. This is done by solving a special eigenvalue problem. As redundant
variables (variables that do not contribute to the separation of classes) are a dis-
turbing factor, they are eliminated prior to calculation of the discriminant function
by multivariate variance analysis in a stepwise procedure. In a two-class case, the
discriminant function w can be visualized as the axis of a one-dimensional coor-
dinate system with the two classes occupying different regions (see Figure 1.7).
The further these regions are apart, the better is the separation of classes achieved
by the respective discriminant function.

Examples for discriminant functions are Equations (4.10) to (4.13) in Chapter
4. As follows from the discussion presented there, discriminant functions can be
interpreted in much the same way as Hansch equations. The conclusions are, of
course, less precise, as the information content of classified data is smaller than that
of a continuous quantity. When interpreting a discriminant function, the positions
of the classes on the w-axis must be known and are usually expressed in terms of
the class-means of w. In Figure 1.7, w(mean, class 1) is greater than w(mean, class 2). In such
cases, variables with positive coefficients will increase the probability that a com-
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pound belongs to class 1 if the variables have a positive value. If, however,
w(mean, class 1) is smaller than w(mean, class 2), the reverse is true.

Once a discriminant function is known, a compound can be classified by com-
puting the value of w for this compound by inserting the values of the respective
descriptor variables into the discriminant function. If the classes are placed on the
w-axis as in Figure 1.7, then a compound will be assigned to class 1 if the computed
value is greater than a certain threshold (usually, this decision is made by means of
a special F test).

The quality of a discriminant function can be judged by reclassifying all com-
pounds of the training series. For an acceptable discriminant function, the error of
reclassification should be <20% (>80% of the compounds are assigned to the correct
class). If enough measurements are available, the compounds can also be divided
into two sets. One is used to derive the discriminant function (learning set), and the
other one serves as test set, the compounds of which are then classified. The result
characterizes the predictive power of the discriminant function; the error of classi-
fication is usually somewhat higher than the error of reclassification. A final possi-
bility is cross-validation, where compounds are left out from the analysis and are
then classified by the discriminant function derived from the other compounds.
Cross-validated errors of classification are also usually higher than reclassification
errors. As in Hansch analysis, however, cross-validation is not a safe criterion to
reject a discriminant analysis result.

Colinear variables provide the same problems as in Hansch analysis, and similar
strategies to deal with such cases are to be used. In no case should a discriminant
function be derived from a set of variables containing many colinearities, as spurious
results are then to be expected. Discriminant functions can provide insight into the
mechanism of action via interpretation, and they can predict the class membership
of new compounds within spanned substituent space. It is not possible, however, to
tell whether the new compounds will be more (or less) active than those already
belonging to the class considered. If possible, the selection of compounds for the
training series by series design techniques (same methods as for Hansch analysis)
is recommended.

Discriminant analysis can only be applied in the so-called symmetric case where
the classes are clearly separated in the parameter space considered; however, some-
times this is not true. The active class can, for example, be imbedded into a scatter
of points representing the inactive class (asymmetric case: only one class has a clear
structure). This may happen because a compound can be inactive for many different
reasons. Such problems can be handled by simple classification analysis (SIMCA).
SIMCA is based on principal components and is closely related to PLS. In the first
step, parameters as in Hansch or discriminant analysis are collected. Irrelevant

FIGURE 1.7 The discriminant function spans the axis of a one-dimensional coordinate
system.
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parameters can be eliminated by various procedures including GOLPE (see Section
1.5.1). Then, a principal component model is built for each class separately. With
the help of the principal component models, the classes are represented as a kind
of hyperboxes in parameter space. For classification, compounds are fitted to these
hyperboxes and assigned to that box (class) for which the fit is best. In contrast to
discriminant analysis, the principal component models allow estimation of the posi-
tion of individual compounds within the classes. Because of the principal component
analysis step, SIMCA has no problem handling large numbers of collinear variables,
which is not possible with discriminant analysis.

A comparison of discriminant analysis and SIMCA is similar to the comparison
of Hansch analysis and PLS. SIMCA is mathematically more powerful, while results
of discriminant analyses lend themselves to a more straightforward interpretation
and, to a certain extent, lateral validation. For medium-sized datasets with chemical
structures that do not present problems in parameter selection, discriminant analysis
is recommended. For larger datasets and in situations where a larger number of
colinear variables must be considered, SIMCA is to be preferred. For the asymmetric
case, discriminant analysis cannot be applied.

A variety of other classification methods has also been used in QSAR work such
as, for example, adaptive least squares and fuzzy adaptive least squares90 or non-
parametric techniques such as the linear learning machine7 or the kNN-method.7,91

A complete list would be outside the scope of this chapter. Even though classification
methods can handle less precise biological measurements, they are still restricted to
congeneric series, and their “abuse to correlate and predict global toxic, mutagenic,
teratogenic, carcinogenic, and other biological properties must be criticized.”2

1.6 SOME OTHER QSAR-RELATED METHODS

To demonstrate the complexity of the field, some additional QSAR-related methods
will be listed in this section without attempting completeness. Artificial neural net-
works (ANNs) simulate the functioning of human neurons and have found fairly wide
application for several drug design problems. 92 After training with a training set they
can predict properties of new compounds. In comparison with the classical statistical
QSAR methods, they offer advantages and disadvantages (for a critical discussion,
see Manallak and Livingstone 93 and Livingstone and Ford 94). Advantages are that
large numbers of variables, colinearities between them, and nonlinearities do not
present a technical problem. In addition, it is not necessary to specify the functional
form of a relationship. A real disadvantage is that the results are very difficult to
interpret. Some authors have reported that a better statistical fit can be obtained with
ANNs than with multiple linear regression analysis (see references in Lui and
Trinajsti 95), while the reverse has also been reported. 95,96 A good description of data
by ANN models is frequently accompanied by overfitting with low predictive power
as a consequence. It seems that, for problems typical of the classical statistical QSAR
methods, no reason exists to replace these methods by ANNs. ANNs can be useful
for special purposes or if large and diverse datasets are to be analyzed. Examples are
the mapping of molecular surface properties, 97 the analysis of CoMFA fields, 98 and
the prediction of “drug-likeness” of molecules from chemical structure. 99–101 
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Genetic algorithms have already been mentioned. Based on the mechanism of
Darwinian evolution, a genetic algorithm will breed better models or solutions from
an originally random starting sample by random mutation, crossover, and selection
procedures. An introduction and a good review of the application of genetic algo-
rithms in drug design are presented by Devillers.102 Genetic algorithms cannot
replace statistical QSAR methods but can be used as an instrument to support them.
They have been used, for example, for variable selection, for series design, and in
combination with PLS. An important field of application is molecular modeling.
Frequently, genetic algorithms are linked with neural networks. 

Knowledge-based expert systems provide another possibility to rationalize struc-
ture–activity relationships. A powerful method is the CASE program developed by
Klopman103 that was later modified into the improved MULTICASE approach.104

Starting from a learning set of structurally diverse compounds, these approaches
automatically identify substructures that have a high probability of being responsible
for or related with an observed biological activity. Inputs are chemical structures in
KLN code and biological activity in the form of a classification. The substructures
are found as biophores (substructures essential for biological activity) and as mod-
ulators (substructures capable of modifying the effect of biophores). An expert
prediction of the activity of new compounds can then be obtained. This approach
has been applied to various types of activity including, for example, toxicity;105

however, predictions must be made with care as the results depend very much on
the properties of the learning set. They cannot replace experimental values but can
be used to rank and prioritize chemicals for evaluation.

Another method that is supposed to be capable of analyzing large and diverse
datasets also based on substructures is hologram QSAR (HQSAR).106 In this method,
fragments of adjustable length are automatically generated, and a matrix is built
with the fragments in the columns, the compounds in the rows, and the occurrence
number of each fragment for each compound as elements. This matrix is then
submitted to PLS analysis, resulting in activity contributions for the fragments. These
contributions are assumed to behave in an additive manner (similar assumption as
in Free–Wilson analysis) so that the potency of new compounds possessing these
fragments can be estimated. Several successful applications have been reported (see,
for example, Pungpo et al.107); however, the examples considered so far relate to
datasets of fairly limited size and structurally similar compounds. What this method
can achieve for real large and diverse series still remains to be determined.

A number of QSAR approaches start from a parent structure with which the
molecules of the training series are compared. This parent structure can be an artificial
hyperstructure that is so defined that it includes all structural features of the molecules
to be analyzed. In the minimum steric difference (MSD) method, followed by the
minimum topological difference (MTD) method,108,109 the assumption is made that
receptor affinity decreases linearly with steric misfit. Steric misfit is defined as the
receptor cavity volume not occupied by the drug molecules plus the volume of the
molecules falling into the walls of the (rigid) receptor cavity. MSD or MTD values
are taken as measures of this misfit and are derived from superposing all molecules
over an artificial hypermolecule, which, in turn, has been derived by superposition
of all molecules of the series. A fairly complex iterative technique that is not without
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ambiguities is then used to derive the MSD or MTD values. The resulting values
can then be used as steric descriptors in Hansch analysis. 

Philosophically similar but technically much more advanced is molecular shape
analysis,110,111 which takes into account conformational flexibility. Molecules in their
minimum energy conformation are compared with a reference compound, and the
common steric overlap volume is then used as a QSAR descriptor. Resulting QSARs
have shown predictive power. In the methods LOGANA, LOCON, and EVAL,112–115

topological pharmacophores are derived. Starting from an artificial hypermolecule,
a library of substructures (potential centers of interaction) is derived. Each compound
is then superposed over the hyperstructure and described in terms of the presence
or absence of these substructures by means of Free–Wilson type descriptors. The
descriptor variables are then combined into more complex expressions in a stepwise
procedure using logical operations (e.g., and, or, not). Each combination of variables
represents a pattern of substructures that becomes more complex with each step and
is, thus, present in fewer compounds. That means that compounds are eliminated in
each step, and the process is so organized that the (highly) active compounds are
retained. The resulting patterns are thus characteristic of (high) activity and are called
topological pharmacophores. The methods can be applied to very diverse datasets.
Physicochemical parameters can be included after transformation into binary vari-
ables. The selection of meaningful features is crucial. 

Another method also based on special substructural descriptors is the PASS
method.116,117 These descriptors are derived from two-dimensional chemical struc-
tures in a recursive sequence. Trained with 30,000 compounds representing 500
different biological activities, the PASS algorithm aims at predicting pharmacolog-
ical profiles for new structures. 

The last method to be mentioned is the VolSurf approach introduced by Cru-
ciani.118,119 VolSurf is a three-dimensional technique that avoids solving alignment
problems, the most difficult and time-consuming steps in CoMFA and related
approaches. VolSurf compresses the information obtained from the interaction of
molecules with GRID points into simple quantitative descriptors using a holistic
transformation. VolSurf descriptors characterize size, shape, polarity, and hydropho-
bicity and are relatively independent of conformational sampling. They can be used
as variables in statistical QSAR analysis.

1.7 CONCLUDING REMARKS

In this chapter, an attempt was made to outline some important aspects of QSAR
methods with an emphasis on the classical statistical approaches. As the drug dis-
covery process is of a very complex nature, effective drug design requires an entire
spectrum of techniques in which QSAR methods still play an important role. It must
always be realized that drug design models, and QSAR results in particular, do not
represent causal relationships so that a very careful evaluation and interpretation are
absolutely essential. The real power of drug design methods is to extract and sys-
tematize information from data to obtain hypotheses that can be put to experimental
test. No dramatic overnight discoveries of wonder drugs will result, but an increase
in the chance of success due to indications of promising directions is a realistic
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expectation. A very close interaction with experimental work is a key factor. As
stated by Kubinyi,2 “QSAR cannot and will never substitute the creativity and
intuition of an experienced medicinal chemist or biologist.” It can be regarded,
however, as an amplifier of human intelligence. Drug design methods have limita-
tions and pitfalls. Thus, an exact knowledge of applicability and access to the entire
toolbox of methods is a prerequisite to making drug design successful. One of the
achievements of drug design has been to contribute to the development of science
in medicinal chemistry. In this respect, interpretability and the systematic comparison
of QSARs (lateral validation) are of the utmost importance.
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