J. Med. Chem2006,49, 6241-6253 6241

Comparative Binding Energy Analysis Considering Multiple Receptors: A Step toward
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Comparative binding energy analysis, a technique to derive receptor-based three-dimensional quantitative
structure-activity relationships (3D-QSAR), is herein extended to consider both affinity and selectivity in
the derivation of the QSAR model. The extension is based on allowing multiple structurally related receptors
to enter theX-matrix employed in the derivation of the structwia&ctivity model. As a result, a single
model common to all of them is obtained that considers both intra- and inter-receptor affinity differences
for a given congeneric series. We applied the technique to a series of 88 3-amidinophenylalanines, binding
to thrombin, trypsin, and factor Xa (fXa). A single predictive regression model for the three receptors involving
202 complexes, with a leave-one out (LOO) cross-valid@p@df 0.689, was obtained, and selectivity
requirements were investigated. We find that total or partial occupancy of any of the three main pockets in
the binding site (D-site, P-site, and the rim of the S1-site) leads to higher affinity across the family. However,
the fact that thrombin can make stronger interactions in the P-site, as a result of its exclusive 60-loop,
makes of this site a specificity pocket for this thrombin. Occupancy of the D-site leads to more active
inhibitors toward fXa for the same reason, but the model does not highlight strongly the D-box because
inhibitors are too short to fully occupy it. Negative charge density in the neighborhood of position 88 (a
Lys insertion in thrombin) is found to be a determinant for thrombin recognition. These results were consistent
with previous studies on selectivity in the thrombin/trypsin/fXa system.

Introduction forms of free energy calculations, such as those based on MM-
A drug should discriminate its molecular target from other PBSA or MM-GBSA? have been documented to provide some
biomolecules present in the organism. Not only is the affinity €ncouraging results in the study of selectivi#},but they are
for the desired target of relevance, but also the adequate level? MOSt situations too slow to efficiently explore chemical
of cross-reactivity with other proteins, particularly those in the diversity. Recent studies suggest that applying the MM-PBSA
same protein family. Fulfilling selectivity requirements has been €nergy function to a single, relaxed complex structure might
found to be of primary importance in a number of cases, Pe€ afeasible strategy to reduce the computational bufrciée,
including protein kinasebmatrix-metalloproteinases (MMP3), ~ generality of these observations remains to be established.
serine proteasé or nuclear receptofsBecause most proteins When activities of a representative set of chemical variations
in the human genome are organized in families as a result of of the basic scaffold are avalllable,llt is often more beneficial to
the processes of gene duplication and divergence, this situation@Sort to the use of three-dimensional quantitative strueture
is likely to be commonplace with a majority of the new post- activity reIanonshlps (3_D-QSARs) that allow the derivation of
genomic targets. As a result, a paradigm shift in drug discovery "tailored” scoring functions. COMFA? or CoMSIA® are two
to the consideration of gene families as a whole, as opposed toPopular 3D-QSAR methods. Both have been used to analyze
individual targets, is starting to emerge. pairwise sele(_:t|_v_|ty using either the difference or ratio be_tween
Selectivity considerations become particularly prominent in biological activities (expressed adog Ki) of a ligand series
the lead optimization phase, when the molecular scaffold needsWith respect to two different receptor types as a dependent
to be tuned to fulfill constraints other than simply binding to Variable. Examples include serine proted§é§matr|x metal-
the targef. The availability of the three-dimensional (3D) loproteinased? nuclear receptors,glycine/NMDA and AMPA
structures of the proteins in the family can be very helpful to receptors®or protein kinase$? However, this type of analysis
fine-tune the interactions enabling the desired levels of specific- Nas two important shortcomings: first, imposes limitations in
ity. For example, inhibitors that target highly conserved side Multiple receptor comparisons, as they can only be obtained
chains or protein-backbone atoms are much more likely to be through multiple pairwise analyses; second, no direct use is
nonspecific than those that make strong interactions with made of the interactions between the ligand and the protein.
nonconserved residues. Unfortunately, existing methods to More rigorous methods, based on the extended linear response
estimate binding free energies using macromolecular 3D @Pproach (ELR), have also been proposed to study selectivity.
structures in docking and virtual screening are in many instances!n ELR, the average interaction energy of a ligand in water and
too simplistic or insensitive to model ligand selectivity. Some N the binding site is computed by means of Monte Carlo or
molecular dynamics simulations. These energies, together with
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Email: aro@cbm.uam.es. bonds formed in the binding process, the change in the
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to model the binding of 148 inhibitors, belonging to various o}
. i . A ! H
chemical series, to three different protein kinases. A satisfactory ,N\gk
. . . R1 <H R2

model involving the three receptors, witlQ& of 0.67 and four :
descriptors, could be derived, which underscores its potential
to study problems on selectivity. A difficulty with this method,
as with the MM-PB(GB)SA, is its computational burden.

Comparative binding energy (COMBINE) analyi&its also HN™ "NH,
a member of the 3D-QSAR family of techniques, but in contrast Figure 1. General structure of the 3-amidinophenylalafirgeries
to CoMFA or CoMSIA, an explicit use is made of the studied in this work (details of the specific ligands can be found in
interactions between ligand and protein, and, unlike ELR, only Table 1 and Table 1 of Supporting Information).
static structures are considered. The key idea is that a simple
expression for the differences in binding affinity of a series of
related ligane-receptor complexes can be derived by using
multivariate statistics to correlate experimental data on binding
affinities with components of the ligardeceptor interaction

energy comp_uted from energy-mln_|m|zed 3D structures. COM- interact with the P-pocket, where the most striking difference
BINE analysis has been used with success in a number of

case€?-25 |t has also been demonstrated that rearession mo Olelsbetvveen thrombin and the other two proteases, the insertion loop
o . . g : Tyr60A—Pro60B-Pro60C-Trp60D, is found. There are also
derived with COMBINE analysis are suitable for fast virtual . . . . B . n
. interactions of some ligands with the “aromatic box” in the
screening of compound databaseés.

D-pocket, f db id Phel74, Tyr99, and Trp215,
The potential role of COMBINE analysis in modeling pOCKe?, Jormec Dy Tesicles Fhe 4 anc b

lectivi initiall ned by W 4 Wedavh considered the most prominent structural difference between
selectivity was initially examined by Wang an eyho factor Xa and the rest. This set of 202 models was subjected to

as a part gf their work apalyzed a series of sialic acid and COMBINE analysis (protocol described in Figure 3) in different
benzoic acid analogues binding to the N2 and N9 subtypes of ., itiono (see Materials and Methods)

neuraminidase, having about 50% sequence identity. A predic COMBINE analysis of these complexes yielded statistically

tive joint model for the NZN9 subtypes, involving 39 significant models in most cases and for a majority of conditions
complexes, could be developed. Herg, we extend these f'nd.'ngs(TabIe 2 of the Supporting Information). For the case of the
_and present fully automated computational approaches_ ConSI(.]ler'screened coulombic potentialsnplicit solvent model (SCP-
ing an arbitrary number of receptors of the same protein family ISM) electrostatic model, a summary of the results is in Table
and aimed to the direct incorporation of selectivity in lead :

optimization. The method consists of structural alignment, ligand 2. Here, model refers to the type of COMBINE analysis in each
pum L - . 9 198 case, labeled by the set of receptors entering the analNsis.
docking, interaction energy decomposition, and statistical

. . refers to the total number of complexes that are employed in
modeh_ng based_on COMBINE an_al_yS|s. A.S an exa”?p'e' W€ each one of the analyses. For instance, modettXa+Trp
apply it to a series of 88 benzamidine derivatives (Figure 1)

binding to three different serine proteases: thrombin, trypsin means that a COMBINE analysis was carried out to explain

. : : ' the affinity differences of the series considering all three
E;dB}‘O?](;Tt]o;tX;lngaﬁ“ and previously studied using COMSIA receptors at once. Therefore, the total nunerf complexes

. . . employed in the analysis is in this case 202 (6%9 + 74).
Serine proteasésplay a key role in a number of diseasés. As can be observed, significant models were obtained for

Modest changes in sequence and shape of their substrate bindin?nrombin—f)(a—trypsin @ = 0.689), thrombir-fXa (Q? =
sites confer to this class of enzymes a wide variety of biological 0.736), and fXatrypsin Q% = 0.621), and, to a less extent,
functions. For instance, while thrombin and fXa are prominent ¢, thrombin—trypsin Q2 = 0.486) and for the single receptor
players in the blood-clotting cascade, trypsin is an enzyme \04els of thrombin ©? = 0.439) and trypsin@Q? = 0.335).
excreted by the pancreas to aid in the digestion of nutrients. A 5 the other hand, derivation of a predictive model was
_numk_)er of the clotting factors in the blood-clotting cascadf_e are nsuccessful for fXa inhibition alon€? = —0.040). The effect
inactive serine proteinase zymogens that are proteolytically o¢ the reatment of the electrostatic interactions on the resulting
activated by serine proteinases further up in the cascade.coy|NE analysis models is summarized in Table 3 using
Inh|b|t.|on .at dlﬁerent levels of 'Fhe caspade has a ql!st[nct. |mpact, the thrombin-fXa—trypsin case (the three-receptor model) as
resulting in varying therapeutic profiles for specific inhibitors. example (see Table 2 of the Supporting Information for a
Consequently, there is interest in the design of more selectiveg | account). As can be observed, the main benefit of SCP-
inhibitors of these enzymes to minimize side effects and 10 gy is 5 slight simplification of the regression models, yielding
enha_mce their bloavallab|llt§/._ln5|ghts from_(_:omp_ut_annaI the peak inQ? at a lower dimensionality than the standard
studies can be of help to design more specific inhibitors. treatments. This seems to be a general trend (see Table 2 of the
Supporting Information), suggesting that slightly more robust
models are generated with SCP-ISM. For this reason, the rest
Docking of the ligands (see Table 1 for a description) in the of our discussion will be focused only on the SCP-ISM-based
binding site of the three proteins produced binding modes with COMBINE models.
the expected set of interactions between ligands and proteins Coming back to Table 2, a somewhat unexpected conclusion
(see Figure 2B for an example). Not all docking experiments from the analysis of this table is that the use of multiple receptors
were successful, however. Out of the 264 (883) docking leads to improved regression models. In fact, while@QRealue
trials attempted, only 202 models successfully fulfilled the of the three-receptor model is rather satisfactory, the values for
distance criteria employed to ensure that correct binding modesthe one-receptor models are poorer than the ones obtained by
enter the analysis (59 complexes in the case of thrombin; 74 in Bohm et al** using CoMSIA or CoMFA. These authors reported
the case of trypsin; and 69 for fXa, see Materials and Methods). Q? values of 0.757, 0.752, and 0.594 (CoMSIA) and 0.687,
In the accepted set of complexes, many of the observed0.629, and 0.374 (CoMFA) for thrombin, trypsin, and factor

interactions are known to involve selectivity determinants (see
Figure 2B and Figure 4). Thus, ligands interact with the S1
pocket, where all residues are conserved except for the A190S
substitution in trypsin, a trypsin determinant. Similarly, ligands

Results and Discussion
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Table 1. Compound Description, Experimental, and Predicted (LOO) Activities for the Three-Receptor COMBINE Regressior? Models

Compound description Experimental pK; Predicted (crossvalidated) pK;
Num R1 R2 Charge Thr Fxa Trp Thr Fxa Trp
SO,
1 —N  N-SO,Me +1 8.38 5.41 6.77 7.05 4.88 6.65
NMe,
2 Hau—@—sof —N  N-some +1 8.37 517 6.80 8.03 4.85 6.40
3wl Hso, —N_)-we +1 8.30 492 6.70 7.24 459 6.16
SO,
4 —N_ ) +1 821 4.39 6.85 7.02 4.54 6.1
Me
SO,
5 e —N  N-SO,Me +1 - 4.13 - - 5.31 -
Me (e} Me

=
@

+1 4.62 6.77 5.06
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wn [9%)
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+1 7.85 4.85 6.20 7.41 4.04 5.89

o

+1 438 6.20 4.11

[
O

9 ’ —N_)-come +1 7.77 437 7.44 7.83 486 6.58

10 SOQ‘ CO\UQ 0 - 438 6.89 - 4.11 4.98

11 SOQ' _NCN—coZMe +1 7.72 411 7.70 6.69 487 5.98

12 sof - Q +1 7.68 4.59 6.26 7.39 4.57 5.62

13 802- _NC/\N%:E +1 - - 6.85 - - 6.07
o

so,
14 ) +1 7.59 5.64 7.13 8.40 5.01 6.16
(o]
15 we—d Hso, —N_)-we +1 7.59 415 6.28 7.05 4.40 5.94

16 MeOQSOZ- —N/\:\/N—SOZMe +1 7.50 - - 6.67 - -

SO,-

’ —N_ ) +1 - - 6.14 - - 6.10

=
@

—
=<
3
B
o
g
@

=
@

so, ~

18 N(Ij 1 7.43 - 6.59 6.39 - 6.24
SO, o

19 —NC>—<H +1 7.43 472 6.66 7.59 4.60 6.49
SO,

20 -OCH,Ph +1 7.38 5.66 6.28 7.49 437 6.14
SO,

21 —N’\:/\o +1 738 4.80 6.68 6.93 451 6.23
SO, N\ o

» —N\_/HCHZOH +1 7.24 4.46 5.96 775 5.05 6.14
SO,

24 —~_) +1 7.19 4.42 6.48 7.14 4.49 6.23
so, MeO,C,

27 _ D"‘Me + 7.02 4.24 5.66 738 5.19 6.18
so, Me

-0
28 ~ +1 6.96 5.46 5.85 5.16 425 5.65
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Table 1 (Continued)

Murcia et al.

Compound description Experimental pK; Predicted (crossvalidated) pK;
Num R1 R2 Charge Thr Fxa Trp Thr Fxa Trp
SO,- SN
2 N 0 . 427 5.35 : 470 5.25
so, ’L
30 0 +1 6.92 5.64 5.82 6.60 4.64 6.00
SO, "
31 N +1 6.92 433 5.40 6.73 473 6.13
so Cco,Me
32 _N + 6.82 475 6.41 6.80 463 6.32
so,-
34 —N_)—conre +1 6.80 412 6.80 7.55 4.86 6.84
Me
35 Meroz- —N_)coe +1 - 4.08 6.00 - 3.88 5.53
Me
so,-
38 —~ ) 41 6.64 47 6.22 6.87 438 6.20
so, oy,
40 g 0 6.59 442 6.20 664 430 5.94
S0,
a1 oM + 6.55 5.60 5.60 582 480 5.44
so, CONHCH,Ph
42 . 1 655 477 692 631 417 6.69
43 e +1 6.50 4.89 5.92 6.62 4.96 5.99
SO,
44 Ns - Yme +1 6.47 375 5.44 727 4.74 6.46
® O
a5 we{ Moo, — ) +1 6.47 482 5.92 6.57 423 5.72
46 we—{ Hso; ) +1 6.46 412 5.66 6.21 418 5.58
© MeO,C,
47 2 -0 +1 638 5.50 . 7.49 491 .
Met
S0,
48 N 2 6.30 4.68 6.66 7.14 445 630
so, CO,i-Pr
49 _ C§ +1 6.29 4.80 637 6.45 4.60 6.56
SO,
50 —_)-cor 0 6.24 436 6.24 740 4.43 552
S0, PhH,CO,C,
51 o +1 6.20 4.70 6.00 6.98 467 6.16
so, MeO,C,
52 byl +1 6.18 3.96 5.09 5.87 4.70 6.01
SO, COz
55 _ C§ 0 5.96 436 636 6.33 447 6.33
o]
56 S —N_)-we +1 5.92 419 4.85 6.23 444 5.78
SO,
58 —CN—corO +1 - 5.12 7.10 - 470 727
so, MeHNOC,
59 _D 1 ; 424 5.10 ; 5.05 5.58
SO, -og,
60 0 5.54 3.89 4.80 6.76 4.62 6.07

-2
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Table 1 (Continued)

Compound description Experimental pK; Predicted (crossvalidated) pK;
Num R1 R2 Charge Thr Fxa Trp Thr Fxa Trp
SO,
63 NHe 1 524 459 460 5.69 472 5.55
S0, Me
64 N, +1 521 3.44 4.80 5.63 3.55 5.66
66 H- —N__pw-some 2 4.89 3.00 4.54 6.48 3.50 432
S0,
67 —{ ) 2 - 4.6 6.00 - 471 717
Me
68 MeOQsof NHMe 1 ; 372 3.85 . 4.80 530
Me Me
69 H- —N_ ) +2 457 3.64 454 482 3.02 4.02
S0,
70 co; 0 452 3.89 3.93 5.44 4.45 5.51
SO~ N
71 o Q@ 0 4.46 439 451 6.41 4.45 5.52
Me
72 Meroz- NHMe +1 ; ; 3.00 ; ; 5.19
Me
SOy Vo
73 —N_ -sope +1 8.48 4.66 6.72 7.69 425 6.13
SO,
74 O~ Me +1 7.89 5.51 6.59 6.39 4.68 6.03
SO,
75 —NCN-SOQMe +1 7.59 5.01 6.50 8.20 436 5.94
SO, \
76 O +1 752 4.66 6.22 6.51 4.69 6.30
SO ™
77 —N_ s +2 7.44 452 5.89 7.52 457 6.47
o
78 ) +1 7.28 430 6.36 6.78 454 6.05
so,- MeO,C,
79 _@ + 7.16 434 572 7.36 5.07 6.11
80 we— Hso, —_» +1 6.77 428 6.15 6.57 431 5.90
so, CONHMe
81 . +1 6.59 4.48 6.51 6.36 4.66 6.21
i-Pr
82 i-Persof —NCN—SOZMe +1 - - 6.01 - - 4.72
i-Pr
so, CO,CH,Ph
83 _N +1 6.52 5.07 6.80 6.51 442 6.76
SO,
84 ) +1 6.28 4.57 757 731 4.85 6381
so; MeO,C e
85 ‘”t/{ +1 6.28 4.44 5.75 6.21 494 6.14
SO,
86 A Jcoper 41 - 4.60 7.64 - 4.63 7.05
88 e Hso; “NHMe +1 4.75 4.40 434 5.39 444 5.39

aNum, number of the compound as it appears ithiBoet al'* Dashed entries correspond to failures in the docking protocol. No complex could be
derived in these cases, Compourads 37, and61 were found missing in proof. They can be found in Table 1 of the Supporting Information.
Xa, respectively. Although an exact quantitative comparison is differences may indicate possible inaccuracies in the modeled
not possible, because the set of molecules entering the analysicomplexes, as COMBINE analysis is more sensitive to the
were not the same in both studies (some molecules failed in details of the docked conformation than CoMSIA and CoMFA.
our docking procedure, see Materials and Methods), and theA second observation is that inclusion of several receptors leads
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| Trypsin

Factor Xa

Thrombin

Figure 2. (A) Trypsin-like serine-protease members studied in this work. The solvent accessible surface of the threeigmbiersfXa and
thrombin—is shown, colored by the secondary structure of the corresponding residue (red, helix; yellow, strand; green, coil). Three main subsites
in the ligand binding site are highlighted: S1 subsite, formed by a deep, narrow pocket where the conserved Asp189 forms a salt bridge with
positively charged moieties; the D (distal) pocket, lined mainly by aromatic residues and particularly evident in factor Xa, to a minor extent for
trypsin, and absent in thrombin; and the P (proximal) pocket, particularly evident in thrombin due to the insertion loop-TBm&6@8-Pro60C-

Trp60D, to a minor extend in factor Xa and absent in trypsin. Figure created with PyNB);the insets show, for each enzyme, the predicted
binding mode of compound 1 (see Table 1), with the most relevant interactions labeled. Residue numbers correspond to positions on the multiple
sequence alignment (see Figure 4).

to a higher complexity in the regression models. The correlation interactions, and so on, there is no reason to expect a regression
between the cross-validated or fitted predictions with the model of similar quality in both cases.

observed K; values are shown in Figure 5 for the 202 A pertinent question, in light of these results, is to ask whether
complexes used in the three-receptor model. Excellent predic-the two- and three-receptor models appear to give ¢@bd
tions are obtained in this case, and no outliers are apparent. Avalues simply because they distinguish between receptors, or
point to note is that, based on tQ& values, the single receptor by contrast both intra- and inter-receptor variabilities are being
results presented here are significantly worse than the onescaptured. To answer this question, we computed the SDEP
obtained previously by our groups analyzing by COMBINE values to be expected if they would only model differences
analysis the interaction of a set of 3-amidind-ihdole-2- among receptors, that is, considering than the COMBINE
carboxamide analogues with factor ¥yut we emphasize that models were simply assigning to each molecule the average
the series employed in this paper and the one used in the 2004activity of the molecules in the training set observed with each
paper are different. While in the present case we study a seriesreceptor. The average activities of the molecules in the series
of 3-amidinophenylalanine derivatives, in the 2004 paper, a setfor each receptor are 6.764 (thrombin), 4.544 (factor Xa), and
of 3-amidino-H-indole-2-carboxamide analogues were em- 6.050 (trypsin). We then computed the expected SDEP values
ployed. Being that the two series are chemically different, with of this so-called fiull mode?. Results are shown in Table 2, in
different ranges of activity against fXa, different sets of the SDEP-null column. In all cases, the observed SDEP values
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Figure 3. Modeling selectivity with COMBINE analysi&. Initially, the structures in the family (either experimental or modeled structures) are
structurally aligned to create a multiple structural alignn¥éritach ligand in the set is then docketb each one of the models. A COMBINE

analysis is then carried out, using the previously computed alignment to place the interactions with the different proteins in register. A model of
the predicted activity of each ligand in each protein is then generated, which can be assessed by comparison with experimental data. The coefficients
of the resulting PL® model highlight key discriminating interactions. See text for details.

are significantly smaller than the SDEP values from the null sponding to the Glu/GIn 192 substitution (Glu in thrombin; GIn
models, demonstrating that the COMBINE analyses do model in fXa); for position 236, in the S1 pocket and, therefore, in
both inter- and intra-receptor variance. the neighborhood of Asp189, where thrombin has an Ala residue
Once the statistical significance of the models is established, and fXa has a Ser residue; and to a less extent position 88,
we turn our attention to their interpretation. The partitioning where thrombin presents the insertion of a Lys residue (Figure
scheme in COMBINE analysis allows for a dissection of 6). Finally, the desolvation coefficients are found in the region
statistically significant contributions to differences in affinity. adjacent to the thrombin-exclusive loop (position 79 and 241)
These are shown in the form of partial least squares (PLS) and in the D-box (position 132). Figure 7 suggests that both
coefficients for each interaction type, and can be found in Figure affinity and selectivity can be largely explained by VDW
6 for the three-receptor model. All pockets known to be required interactions in the P-site, the entrance of the S1 pocket, and, to
for inhibition and selectivity (Figure 2) are selected. This can a lesser extent, in the D-site, the electrostatic interaction with
also be noted by the close match between pockets and importanE192Q, and a few, less relevant, desolvation energies in the
residues labeled in the alignment (Figure 4B). Focusing on the D-box and the neighborhood of the P-site.
VDW coefficients, three main regions are selected (see also The thrombin versus fXa selectivity features can now be
Figure 7): the 8388 region, corresponding to the thrombin- rationalized on the light of the three-receptor model in Figure
exclusive loop, forming the P-site; the 12631 region, 5. In general, total or partial occupancy of the three main pockets
participating in the D-site; and the 26267 region, at the (D-site, P-site, and the rim of the S1-site) leads to higher affinity
entrance of the S1 pocket, including the interaction with the across the family. However, the fact that thrombin can make
backbone through residue Gly216 (position 264). The electro- stronger interactions with the ligands in the P-site, as a result
static coefficients show a large peak for position 238, corre- of the thrombin-exclusive 60-loop, makes of this site a specific-
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Table 2. Summary of the Selected Regression Motlels

SDEP-
model N Lvs R Q? SDEC SDEP null
Thr+fXa+Trp 202 7 0.771 0.689 0.588 0.686 0.826
Thr+fXa 128 6 0.842 0.736 0.536 0.693 0.772
Thr+Trp 133 5 0.636 0.486 0.609 0.724 0.945
fXa+Trp 143 5 0.723 0.621 0.560 0.655 0.752
Thr 59 7 0.779 0.439 0.462 0.735
fXa 69 1 0.152 —0.040 0.485 0.537
Trp 74 1 0.428 0.335 0.692 0.746

a Abbrevations: model, type of COMBINE analysis carried out, accord-
ing to the number and type of receptors employld;total number of
complexes employed in the derivation of the model; LVs, number of latent
variables in the PLS modeR?, squared correlation coefficier®{= 1 —
[Z(Vexpt) — Yitt(iy) A= (Vexpt) — FexpJ4, whereyiqy corresponds to the value
of the quantity fitted with the model for compléyexpq) is the experimental
value for that quantity and complex, afidyLis the average experimental
value of the quantity for alh complexes);Q?, LOO squared correlation
coefficient (the equivalent d& in LOO cross-validation); SDEC, standard
deviation of errors of correlation (SDEE{[Z(Yexpq — Viit(i))A/Nt 3); SDEP,
standard deviation of errors of cross-validated prediction (the equivalent
of SDEC calculated for LOO cross-validation).

the affinity of the ligand for both thrombin and fXa, the effect
is more important for fXa, because this enzyme has stronger
interactions with the inhibitors in this site (not shown). However,

Thrombin ; POAGEADCGLRPLPEKKQVODOQTEEELP ;0 the model does not highlight strongly the influence of all
e important residues in the D-box on activity. It only highlights
Thrombin s Y 1zoRIVEGCQDAEVOLEPNQYMLIRES P Q position 132 (see Figures 4B and 6), corresponding to the Tyr
serinal I‘é GoeTcoANTVPYQUSLNGS - - -g residue of the D-box in fXa (see also Figure 2). Probably the
50 reason for this is that the inhibitor series is more selective toward
Factorza EBaercoaritszrviiraaferrT '.’I’.' : thrombin, and the substitutions are too short and do not fully
Tpein ymEeeesmImsemvvEaafes - TR occupy the D-box. Regarding electrostatics interactions, the
eheombin TV DDLLVRIGKEHSRTRYEREvERsomoog 20 analysis indicates that negative charge density in the neighbor-
AR R RNTEQEE-gCEAvVEEVEYY hood of position 88 (a Lys insertion in thrombin) should be a
150 determinant for thrombin recognition, while fXa selectivity is
Thrombin ¥ I P :Ig I'_‘ 13 :; ALLELERPIELSDY enhanced by ligands able to harbor negative charge density in
Trypeia rvepsBviE- M NID[TMLIKLESAASLNSR the neighborhood of position 238, where thrombin has a Glu
180 residue and fXa has a Gin residue.
ks YAPACLPEROWABOsLMTOETGrvear EIZ As an illustrative example, a detailed view of the interactions
Teypsin VA SISLEESC----- rEreTae e for derivative 1, the most potent thrombin inhibitor in the series,
Thrambin R ETWITSVAEVQFEVLAQVYNLPLVEREVCK can be observed docked into the different enzymes in Figure
Trypsia K88 - - - - - §TSYPDVLECLEKAPILSEDSSCEK 2B. Figure 7 shows the same molecule docked onto the thrombin
theombin A ST R[FMMI rDNMECAGYEPD GEG o Lt surface, which has the residues selected in Figure 6 mapped
bitet il g f,: TonMrcAoYDT - - - a2 following the same color code. A common element of the three
4 complexes is the benzamidine moiety of the ligand inserted in
rheoabin G P PUMESPYNNRWYQMGIV the S1-site. Some subtle differences in binding are apparent,
Factorxa E GPEVTREK--DTYFVIGIV however. The amidino group forms a salt bridge with the side
chain of Asp189 (position 235). The distance from the CG atom
mrombts Xt tTEVYRLEENIQKYVID of Asp;89 to the carbon atom pf this amidino group.is 4.0 /3\ in
Factorta @ K ¥ I1 YTKVTAFLEWIDRSME thrombin, whereas the insertion of a phenylalanine residue
Trypesin N EP VYTEVCNYVSWIEKEQTTIA

. 4. (A) Structural ali ¢ of the th o biained makes this distance slightly larger for trypsin (4.3 A) and fXa
igure 4. ructural alignment o e three proteins as obtaine H HH H
with MAMMOTH-mult.5! Graphics created with PyMé&!.Pockets in (4.8 A). In all cases, the terminal amidino group is further

the active site are labeled and they correspond to the boxes in FigureStabiIiZEd by contacts with the carbonyl oxygen of Gly219 (266)

4B. The implied sequence alignment: (B) structure-based sequence@nd, additionally, for the trypsin case, by a hydrogen bond with
alignment of thrombin, trypsin, and fXa. The last 51 positions are not the side chain of Ser190 (position 236, Ala in thrombin and

shown. Alignment positions colored are those found significant to fXA). The inhibitor glycine spacer forms two hydrogen bonds
explain the affinity differences, with the coloring scheme according to \ith Gly216 (position 264). One of the oxygen atoms of the
Figure 6. Boxes correspond to the known selectivity sites (see Figure g ifony| group of the inhibitor is also hydrogen bonded to the
G e 0 B e e o e et substes (1 NH of the GIy219 backbone, whie the other remains orented
away from the binding site toward bulk water. More significant
differences are found in the disposition of the piperazine and
ity pocket for thrombin. Ligands with hydrophobic moieties naphthyl moieties. First, while both in thrombin and in trypsin
occupying the P-pocket should be selective toward thrombin. complexes the naphthyl system of the ligand occupies the
Occupancy of the D-site leads to more active inhibitors toward D-pocket, the presence of an lle215 in thrombin, instead of the
fXa for the same reason; although the regression coefficientsGly residue found in trypsin, allows for a more notched
indicate that placing a hydrophobic moiety in this site increases hydrophobic site and, consequently, for more hydrophobic
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Table 3. Effect of the Electrostatic Treatment on the Three-ReceptorTXe+Trp) COMBINE Modef

€ desol LVs
1 2 3 4 5 6 7 8 9 10
RZ Q2 RZ Q2 RZ Q2 RZ Q2 RZ Q2 R2 Q2 RZ Q2 R2 QZ R2 QZ R2 QZ
4 none 0.46 0.44 048 045 050 046 066 059 070 0.63 0.74 065 0.77 0.67 079 0.68 0.80 0.68 0.81 0.69
PB 0.47 0.44 049 045 052 048 0.67 0.62 071 0.64 0.74 065 0.76 0.67 0.78 0.67 0.80 0.68 0.81 0.68
ISM 0.46 044 049 045 052 047 064 057 0.70 062 0.73 063 0.75 0.65 0.78 0.66 0.80 0.67 0.81 0.68
dij none 0.37 031 051 042 063 054 066 058 069 062 0.73 064 0.75 0.64 0.77 064 0.79 0.66 0.80 0.66
PB 0.39 0.34 056 048 0.66 058 0.68 0.61 070 0.62 0.73 064 0.75 0.63 0.77 0.64 0.78 0.64 0.80 0.64
ISM 0.37 0.32 053 0.43 064 053 0.67 058 072 0.64 0.73 064 0.75 0.62 077 0.64 0.78 0.63 0.79 0.64
ISM  none 055 054 064 061 0.69 064 0.73 0.67 074 068 0.75 069 0.75 0.69 0.76 0.68 0.76 0.67 0.77 0.66
PB 0.53 052 063 0.60 0.66 062 0.70 0.63 073 0.65 0.74 067 075 0.68 0.76 0.68 0.76 0.68 0.77 0.67
ISM 0.40 0.37 0.62 0.58 0.66 063 0.68 0.64 070 0.64 0.73 066 0.74 0.67 075 0.68 0.76 0.68 0.76 0.67
ISMres 0.48 0.46 0.63 0.60 0.68 065 0.71 066 0.75 0.67 0.76 068 0.77 0.69 0.78 0.68 0.78 0.68 0.79 0.65

aThe R? and Q? values (see Table 2 for definitions) for the 10 first latent variables (LVs) of three-receptor models obtained with different electrostatics
models are shown. The different models differ in the dielectric treatmeent4; ¢ = d;; or ¢ = D(r), the sigmoidal distance dependent screening function
of SCP-ISM®5% and the way to include desolvation terms (none, no desolvation terms are included; PB, ligand and receptor global electrostatic desolvation
energies are computed solving the PoissBoltmann equatiott and are introduced in COMBINE analysis, as previously describédM, ligand and
receptor global desolvation terms are computed with the SCP-ISM model and included as external variables; ISMres, as before, but recepinrislesolvati
partitioned in residue contributions). See Table 2 of the Supporting Information for similar results with the other receptor combinations gtigeger.
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Figure 5. (A) Fitted and (B) cross-validated correlations between 0.2 4 / ’Il
observed and predicted activities for the 88 compounds in the 3 proteins 4 5 | 266
(Trp+Thr+Fxa model, 202 complexes, see also Table 1). 04 /l 235
4 132

interactions. On the other hand, the naphthyl group cannot alignment position

occupy the aromatic cage in fXa and, as a result, remains partlyFigure 6. PLS regression coefficients as a function of alignment
solvent exposed. Second, the piperazine moiety is buried in theposition. VDW coefficients are in green; electrostatics in red; and

thrombin P-site, allowing for strong contacts with the catalytic residue-based desolvation electrostatic energies in blue. The alignment
y corresponds to the one found in Figure 4. Labeled are the residue

site (Flgure 2b), whereas it remains open to solvent both in positions considered to provide significant coefficients to explain affinity
trypsin and fXa. differences.

Overall, these results are consistent with previous computa-
tional studie¥*152%3%n selectivity in the thrombin/trypsin/fXa  thrombin-exclusive 60-loop (P pocket) and the area between
system. These studies have highlighted the importance ofthis loop and the catalytic triad in the design of thrombin-
establishing hydrophobic and steric interactions involving the selective inhibitors. Likewise, the so-called Lys 60f in theé S1
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protein family can be considered in the generation of a single
structure-activity model common to all of them, and taking
every affinity data as an individual entry in the correlation, for
an arbitrary number of ligands.

A pertinent question is the size of the training set required
for the analysis. Here, a set of 88 ligands has been employed.
Itis, however, possible that a smaller number is enough to reach
our conclusions, as experience indicates that in most applications
COMBINE analysis has been successfully applied with datasets
of significantly smaller sizé225> We have used the whole set
of 88 ligands for two main reasons: first, because this allows
a direct comparison with the results obtained with CoMFA for
this same datasét;second, because the use of a large number
of ligands is the best way to demonstrate the robustness of the
statistical models developed.

Integration of computational methods such as the one
presented here with results from high-throughput small molecule
target interaction mapsable to provide binding profiles for
large numbers of chemically diverse compounds and large
Figure 7. Ligand binding site with the residues selected in Figure 6 Number of targets, combined with the phenotypes elicited by
mapped onto the thrombin surface. Coloring scheme also according tothese compounds in biological systems, should facilitate the

Figure 6. The complex shown corresponds to thrombin and derivative development of inhibitors with appropriate specificity profiles.
1, the most potent thrombin inhibitor in the series. Figure generated

with PyMol.>® Materials and Methods
subpocket (primed side of the thrombin active site) has also ~Materials. The general chemical scaffold of the 88 ligands
been implicated in thrombin selectivi®y.On the other hand, IS schematically shown in Figure 1. Structural variations of the

the incorporation of hydrophobic interactions within the D- Parent structure, present at positions R1 and R2, as well as their
pocket in the generation of fXa specific inhibitors is well- eXperimenta"y determined biological activities toward the three
recognized. As it is, the interaction of negative charges with Proteins (i values) were taken from ‘Bmn et al'* They are

the GIu/GIn192 position (position 238 in our alignment) are found in Table 1, as well as in Table 1 of the Supporting
thought to create unfavorable interactions with the Glu residue Information. The affinities toward thrombin and trypsin spread
in thrombin. This interaction, together with the interaction with Over a satisfactory range, covering 4.0 and 4.7 logarithmic units,
glycines 216 and 219, seem to condition a different orientation respectively, whereas in the case of factor Xa a variation over
for the entry of the benzamidine moiety in the S1 subpocket 3.0 logarithmic units falls close to the lower limit required for
and impose a different interaction pattern with the catalytic triad, COMBINE analysis. Molecules were initially built with Insight-
which has also been implicated in the rationalization of ligand I1.42

selectivity. This may be the reason for the emergence of Crystal structures 1let$, 1pph?* and 1hc@® of thrombin,
significant PLS coefficients for the conserved positions 237 and trypsin, and fXa, respectively, were selected from the Brookhaven

239. Protein Data Bank (PDB§ and are shown in Figure 2A. For
consistency, these correspond to the same set of structures
Conclusions employed by Bam et all* where the receptor structure was
This work constitutes a step forward toward structtaetivity indirectly accounted for in the ligand alignment process prior

models for entire protein families and the incorporation of to COMFA/CoMSIA analysis. Crystal structures lets and 1pph

selectivity in the lead optimization of congeneric series. We correspond to the structure of thrombin and trypsin, respectively,
present quantitative models of affinity prediction for ligand complexed with 3-TAPAP (compound number 45 in the series),
series across a family of receptors and, as a byproduct, we obtaifvhile the apo form is used for fXa (pdb entry 1hcg), as the
insights on selectivity determinants from the analysis of the corresponding complex with 3-TAPAP is not available. Nev-
resulting statistical models. There are at least two reasons to€rtheless, crystallographic studies with different sets of inhibitors
prefer such an approach of a simple, energetic, and geometrichave shown that in these enzymes only small changes in the
analysis of representative complexes. First, such dual analysisPinding pocket upon binding are observed.
is not possible, in general, only with plain energetic and  Their binding site can be divided in several subsites (Figure
structural analysis, and second, it provides information about 2A): the deep hydrophobic S1 pocket, where a conserved Asp
the reliability of the quantitative predictions through @&and (Asp189) forms a salt bridge with positively charged moieties;
SDEP values. the catalytic triad, or S2 pocket, formed by residues His57,
Other 3D-QSAR models have tried to take into account Aspl02, and Serl195; the S3 binding subsite, consisting of
selectivity correlations, usually by comparing individual single Gly216 (position 264); the thrombin insertion loop, Tyr60A
receptor-based models for the same series of ligands bindingPro60B-Pro60C-Trp60D (positions 83-86), which forms the
to different proteink1832-37 or, at most, considering as de- hydrophobic P (proximal) pocket; and finally the hydrophobic
pendent variables affinity ratiéf% 4 or difference¥* between  distal S4 region (also called D pocket), lined by residues 99,
pairs of proteins. Besides the limitations in the number of 174, Trp215, and Gly217 (only for fully conserved residues,
receptors to analyze, these approaches may suffer from propagaresidue names are provided).
tion errors associated with the use of ratios or differences. To Parametrization. Structural water molecules in the protein
our knowledge, this is the first report of a fully automated were removed when present and, as a rule, all carboxylic acid
method where an arbitrary number of members of a given groups were ionized, while all basic amino, amidino, and
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guanidino groups were protonated. Protein atoms were described N Ng 0iG

by the PARM98” AMBER force field. As ligands are con-  AGSS® BSZZZ +

cerned, the benzamidine moiety and basic amino functional == D(rij)rij

groups were protonated, while amides and primary and second- 33N tNR 1 1 1 1
ary amino groups adjacent to aromatic portions were treated as - qi2 — Y —
uncharged. All carboxylate groups were considered deproto- 2 £ D(R)R D(R)R R K

nated. ESP partial chard@svere derived with MOPA using
the AM1 Hamiltoniaf? starting from the molecular conforma-

. o . ) The first term on the right-hand side of the equation
tion built in Insight-1l. AMBER atom types were automatically 9 d

. . - . corresponds to the screened Coulombic interaction between the
ass'gf‘ed 20 the ligands by our in-house docking program, ascharges of the ligand and the receptor, while the second
describect o . . o . corresponds to the electrostatic desolvation free energy of both
Model Building. The procedure is outlined in Figure 3. First, |igand and receptolN, andN are the number of atoms in the
a multiple structural alignment of the three structures was carried |igand and receptor, respectivetyis the charge of thith atom;
out using a multiple alignment versighof the MAMMOTH rj is the distance between atomandj, andR; corresponds to
progrant? to establish structure-based residue equivalencesine Born radius of atoni in the complexed ) or in the
among the three enzymes (Figure 4). This yielded a total of ,,complexedRY) form. Finally, D(r) is a sigmoidal distance-
351 final positions for the matrix of the three superimposed yenendent screening function. The functional formsRand
proteins. Ln a second step, our pre_\/lously_descrlbed _docklng D(r) can be found in the original papers by Hassan &6-2l.
algorithn?® was used to model the interaction of the ligands When distances are in A and charges in electron uﬁ'ﬂ?ﬁg is

I . o L 14
br']ndl'.ng V:;'th the three receptor Cf‘?“’"ées- AS;‘ fi8o ethal.,b d given in kcal mot®. The model has been parametrized in our
the ligand parent structure was fixed according to the boun laboratory for its use in the study of the interactions between

geometry of 3-TAPAP (R*= p-toluenesulfonyl, R2= piperi- small organic molecules and proteins. A full account of the
dino) in 1pph. The rotameric-based torsional seafch accountedperformance will be presented in a forthcoming publication
only for the additional rotatable bonds presented in the R1 and (Morreale et al., in press). The main advantage of SCP-ISM
R2 substituents of_ the ligand structure (Figure 1). A harmo_nlc with respect to the PB model employed before in COMBINE
penalty term was incorporated to the docking scoring function onavsis s that it affords computational speed while allowing a
to restrain 6 5 A the interaction distance of the benzamidine rigorous account of the solvent effect in the evaluation of
group in the ligand with Asp189 (numb('e)s\nng scheme follows  rotein-ligand interactions. In addition, it permits decomposing
chymotrypsin). Similarly, restraints of 3.2 A for hydrogen bonds - ¢ gesolvation energy of the receptor in residue contributions.
with Gly216 were employed between the amidic nitrogen atom Thege were incorporated into thematrix (351 new additional

of the ligand sulfonamide group and the carbonyl oxygen atom \ ariaples were added, see below). For comparative purposes,
of the mentioned glycine and between the amidic oxygen atom regression models were also derived using the standard Cou-
of the ligand and the nitrogen atom of thg Gly216 backbone |ompic method as well as incorporating desolvation free energies
NH group. A force constant of 5 kcal mdlA~?was employed.  of jigand and receptor by numerically solving the PB equation,
The lowest energy complexes were energy minimized with 55 describe® However, due to its novelty and improved
AMBER 7.0°% as describe® The distance cutoff of 5 A gasistical properties (Table 2 of the Supporting Information),
between the carboxylic carbon of Asp189 and the amidine group oy discussion will be focused on the results obtained with SCP-
carbon of the ligand was used to filter out geometrically g, statistics for the optimal models in these conditions are
incorrect docking modes prior to COMBINE analysis. A final - shown in Table 1. Models are further discussed in the Results

set of 202 complexes in total resulted (59 complexes in the casegng Discussion sections. All tested models are in Table 2 of
of lets; 74 in the case of 1pph; and 69 for 1hcg) and were he Supporting Information.

subjected to COMBINE analysis. Chemometrics Analysis. The chemometrics analysis was
Energy Calculations.Once the liganetreceptor models are  carried out with a multiple receptor adapted version of our in-
derived, in COMBINE analysis an interaction matrix (the so- house program COMBINE, considering the set of 202
called X-matrix) summarizing the interaction energy of each complexes and their corresponding affinity data as dependent
ligand with each residue in the protein is derivéd/an der  variables (Table 1 and Supporting Information). The MAM-
Waals (VDW) and electrostatics interactions are typically MOTH alignment (Figure 4B) was used to build a position-
employed. The original electrostatic models employed in the basedX-matrix of energy contributions. Lennardones and
COMBINE analysis were based on simple forms of the electrostatics ligandreceptor interaction energies per residue
Coulomb equation. Later, it was shown that more sophisticated were computed as usual, but introduced in a globahatrix
electrostatics treatments, such as those based on numericallyccording to the MAMMOTH alignment. Gaps entered the
solving the PoissonBoltzmann (PB) equatio?f, could lead to matrix with a zero value. In the final matrix, each complex was
improved regression modelsHowever, due to the computa-  then described by 351 intermolecular electrostatic energy
tional burden, these models cannot be employed in virtual variables and 351 intermolecular VDW energy variables, giving
screening calculations. Generalized Born (GB) mdddiave a total of 702 unscaleck-variables. In addition, different
emerged in recent years as a convenient compromise betweeronditions were tested with different dielectric models and the
computational efficiency and theoretical soundness. Here, introduction of additional external variables (desolvation ener-
besides the basic dielectric models for the computation of gies for ligand and receptor). The variables were used directly
electrostatic energy contributions regularly in COMBINE in the analysis without further pretreatment. feariable was
analysig! (Table 2 of the Supporting Information), some assigned as iy toward the appropriate receptor. Similarly,
statistical models were derived that included electrostatic models considering all possible two receptor combinations were
interactions calculated with a new GB-IfRenodel, the screened  derived: thrombir-trypsin (133 complexes), thrombirfXa
SCP-ISM%6:57 The SCP-ISM electrostatic binding free energy (128 complexes), and trypsifXa (143 complexes). Finally,
has the following functional form (Morreale et al., in press): one-receptor-based analyses were also developed. All the
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different conditions for the PL38 analyses carried out, and the
corresponding statistics from 1 to 10 latent variables regression
models are found in Table 2 of the Supporting Information. In
all cases, leave-one-out cross-validation was employed to
evaluate the quality of the models.
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at http://pubs.acs.org.

References

(1) Bain, J.; McLauchlan, H.; Elliott, M.; Cohen, P. The specificities of
protein kinase inhibitors: an updatgiochem. J2003 371, 199-
204.

(2) Matter, H.; Schudok, M. Recent advances in the design of matrix
metalloprotease inhibitor€urr. Opin. Drug Disceery Dev. 2004
7, 513-535.

(3) Bruncko, M.; McClellan, W. J.; Wendt, M. D.; Sauer, D. R.; Geyer,
A. et al. Naphthamidine urokinase plasminogen activator inhibitors
with improved pharmacokinetic properti€dioorg. Med. Chem. Lett.
2005 15, 93-98.

(4) Walker, B.; Lynas, J. F. Strategies for the inhibition of serine
proteasesCell Mol. Life Sci.2001, 58, 596-624.

(5) Coghlan, M. J.; EImore, S. W.; Kym, P. R.; Kort, M. E. The pursuit
of differentiated ligands for the glucocorticoid receptGurr. Top.
Med. Chem2003 3, 1617-1635.

(6) Caron, P. R.; Mullican, M. D.; Mashal, R. D.; Wilson, K. P.; Su, M.
S. et al. Chemogenomic approaches to drug disco@uyr. Opin.
Chem. Biol.2001, 5, 464—470.

(7) Pirard, B. Computational methods for the identification and optimi-
sation of high quality lead€omb. Chem. High Throughput Screening
2004 7, 271-280.

(8) Kollman, P. A.; Massova, |.; Reyes, C.; Kuhn, B.; Huo, S. et al.
Calculating structures and free energies of complex molecules:
combining molecular mechanics and continuum modgts. Chem.
Res.200Q 33, 889-897.

(9) Rizzo, R. C.; Toba, S.; Kuntz, I. D. A molecular basis for the
selectivity of thiadiazole urea inhibitors with stromelysin-1 and
gelatinase-A from generalized born molecular dynamics simulations.
J. Med. Chem2004 47, 3065-3074.

(10) Laitinen, T.; Kankare, J. A.; Perakyla, M. Free energy simulations
and MM-PBSA analyses on the affinity and specificity of steroid
binding to antiestradiol antibodyroteins2004 55, 34—43.

(11) Kuhn, B.; Gerber, P.; Schulz-Gasch, T.; Stahl, M. Validation and
use of the MM-PBSA approach for drug discovedyMed. Chem.
2005 48, 4040-4048.

(12) Cramer, R. D., llI; Patterson, D. E.; Bunce, J. D. Recent advances
in comparative molecular field analysis (CoMFA)xog. Clin. Biol.
Res.1989 291, 161-165.

(13) Klebe, G.; Abraham, U.; Mietzner, T. Molecular similarity indices
in a comparative analysis (CoMSIA) of drug molecules to correlate
and predict their biological activityl. Med. Chem1994 37, 4130~
4146.

Murcia et al.

(14) Bohm, M.; Sturzebecher, J.; Klebe, G. Three-dimensional quantitative
structure-activity relationship analyses using comparative molecular
field analysis and comparative molecular similarity indices analysis
to elucidate selectivity differences of inhibitors binding to trypsin,
thrombin, and factor XaJ. Med. Chem1999 42, 458-477.

(15) Bhongade, B. A.; Gouripur, V. V.; Gadad, A. K. 3D-QSAR CoMFA
studies on trypsin-like serine protease inhibitors: a comparative
selectivity analysisBioorg. Med. Chem2005 13, 2773-2782.

(16) Matter, H.; Schwab, W. Affinity and selectivity of matrix metallo-
proteinase inhibitors: a chemometrical study from the perspective
of ligands and proteinsl. Med. Chem1999 42, 4506-4523.

(17) Wolohan, P.; Reichert, D. E. COMFA and docking study of novel
estrogen receptor subtype selective ligaddsComput.-Aided Mol.
Des.2003 17, 313-328.

(18) Baskin, I. I.; Tikhonova, I. G.; Palyulin, V. A.; Zefirov, N. S.
Selectivity fields: comparative molecular field analysis (CoMFA)
of the glycine/NMDA and AMPA receptorsl. Med. Chem2003
46, 4063-4069.

(19) Naumann, T.; Matter, H. Structural Classification of Protein Kinases
Using 3D Molecular Interaction Field Analysis of Their Ligand
Binding Sites: Target Family LandscapdsMed. Chem2002 45,
2366-2378.

(20) Tominaga, Y.; Jorgensen, W. L. General model for estimation of
the inhibition of protein kinases using Monte Carlo simulatiahs.
Med. Chem2004 47, 2534-2549.

(21) Ortiz, A. R.; Pisabarro, M. T.; Gago, F.; Wade, R. C. Prediction of
drug binding affinities by comparative binding energy analy3is.
Med. Chem1995 38, 2681-2691.

(22) Kmunicek, J.; Luengo, S.; Gago, F.; Ortiz, A. R.; Wade, R. C. et al.
Comparative binding energy analysis of the substrate specificity of
haloalkane dehalogenase frokanthobacter autotrophicu§J10.
Biochemistry2001, 40, 8905-8917.

(23) Wang, T.; Wade, R. C. Comparative binding energy (COMBINE)
analysis of OppA-peptide complexes to relate structure to binding
thermodynamicsJ. Med. Chem2002 45, 4828-4837.

(24) Wang, T.; Wade, R. C. Comparative binding energy (COMBINE)
analysis of influenza neuraminidasmhibitor complexesJ. Med.
Chem.2001, 44, 961-971.

(25) Perez, C.; Pastor, M.; Ortiz, A. R.; Gago, F. Comparative binding
energy analysis of HIV-1 protease inhibitors: incorporation of solvent
effects and validation as a powerful tool in receptor-based drug
design.J. Med. Chem1998 41, 836-852.

(26) Murcia, M.; Ortiz, A. R. Virtual screening with flexible docking and
COMBINE-based models. Application to a series of factor Xa
inhibitors.J. Med. Chem2004 47, 805-820.

(27) Maryanoff, B. E. Serin inhibitors of serine proteases as potential
therapeutic agents: the road from thrombin to tryptase to cathepsin
G. J. Med. Chem2004 47, 769-787.

(28) Krem, M. M.; Rose, T.; Di Cera, E. Sequence determinants of
function and evolution in serine proteaséeends Cardieasc. Med.
2000 10, 171-176.

(29) Kastenholz, M. A.; Pastor, M.; Cruciani, G.; Haaksma, E. E. J.; Fox,
T. GRID/CPCA: A new computational tool to design selective
ligands.J. Med. Chem200Q 43, 3033-3044.

(30) Sheridan, R. P.; Holloway, M. K.; McGaughey, G.; Mosley, R. T.;
Singh, S. B. A simple method for visualizing the differences between
related receptor sited. Mol. Graphics Modell2002 21, 217-225.

(31) Rezaie, A. R.; Olson, S. T. Contribution of lysine 60f t6 §iecificity

of thrombin. Biochemistry1997, 36, 1026-1033.

Debnath, B.; Samanta, S.; Naskar, S. K.; Roy, K.; Jha, T. QSAR

study on the affinity of some arylpiperazines towards the 5-HT1A/

alphal-adrenergic receptor using the E-state ind#sorg. Med.

Chem. Lett2003 13, 2837-2842.

Kamath, S.; Buolamwini, J. K. Receptor-guided alignment-based

comparative 3D-QSAR studies of benzylidene malonitrile tyrphostins

as EGFR and HER-2 kinase inhibitors. Med. Chem2003 46,

4657-4668.

Rivara, S.; Mor, M.; Bordi, F.; Silva, C.; Zuliani, V. et al. Synthesis

and three-dimensional quantitative structdaetivity relationship

analysis of h(3) receptor antagonists containing a neutral heterocyclic

polar group.Drug Des. Disceery 2003 18, 65—79.

Brea, J.; Rodrigo, J.; Carrieri, A.; Sanz, F.; Cadavid, M. I. et al.

New serotonin 5-HT(2A), 5-HT(2B), and 5-HT(2C) receptor an-

tagonists: synthesis, pharmacology, 3D-QSAR, and molecular

modeling of (aminoalkyl)benzo and heterocycloalkanodedJed.

Chem.2002 45, 54-71.

Fichera, M.; Cruciani, G.; Bianchi, A.; Musumarra, G. A 3D-QSAR

study on the structural requirements for binding to CB(1) and CB(2)

cannabinoid receptors. Med. Chem200Q 43, 2300-2309.

(32)

(33)

(34)

(35)

(36)



COMBINE Analysis Considering Multiple Receptors

(37) Moron, J. A.; Campillo, M.; Perez, V.; Unzeta, M.; Pardo, L.
Molecular determinants of MAO selectivity in a series of indolyl-
methylamine derivatives: biological activities, 3D-QSAR/CoMFA
analysis, and computational simulation of ligand recognitioived.
Chem.200Q 43, 1684-1691.
Bakken, G. A,; Jurs, P. C. QSARs for 6-azasteroids as inhibitors of
human type 1 5alpha-reductase: prediction of binding affinity and
selectivity relative to 3-BHSDJ. Chem. Inf. Comput. S@001, 41,
1255-1265.
Ravina, E.; Negreira, J.; Cid, J.; Masaguer, C. F.; Rosa, E. et al.
Conformationally constrained butyrophenones with mixed dopam-
inergic (D(2)) and serotoninergic (5-HT(2A), 5-HT(2C)) affinities:
synthesis, pharmacology, 3D-QSAR, and molecular modeling of
(aminoalkyl)benzo- and -thienocycloalkanones as putative atypical
antipsychoticsJ. Med. Chem1999 42, 2774-2797.
Huang, Q.; Liu, R.; Zhang, P.; He, X.; McKernan, R. et al. Predictive
models for GABAA/benzodiazepine receptor subtypes: studies of
quantitative structureactivity relationships for imidazobenzodiaz-
epines at five recombinant GAB#benzodiazepine receptor subtypes
[exf372 (x = 1-3, 5, and 6)] via comparative molecular field
analysis.J. Med. Chem1998 41, 4130-4142.
(41) Fabian, M. A,; Biggs, W. H., llI; Treiber, D. K.; Atteridge, C. E.;
Azimioara, M. D. et al. A small molecutekinase interaction map
for clinical kinase inhibitorsNat. Biotechnol2005 23, 329-336.
(42) Insight-11, version 2000; Molecular Simulations, Inc.: San Diego,
CA

(38)

(39)

(40)

(43) Brandstetter, H.; Turk, D.; Hoeffken, H. W.; Grosse, D.; Sturzebecher,
J. et al. Refined 2.3 A X-ray crystal structure of bovine thrombin
complexes formed with the benzamidine and arginine-based thrombin
inhibitors NAPAP, 4-TAPAP, and MQPA. A starting point for
improving antithrombotics]. Mol. Biol. 1992 226, 1085-1099.

(44) Turk, D.; Sturzebecher, J.; Bode, W. Geometry of binding of the
N-a-tosylated piperidides aframidino-,p-amidino-, ang-guanidino
phenylalanine to thrombin and trypsin. X-ray crystal structures of
their trypsin complexes and modeling of their thrombin complexes.
FEBS Lett.1991, 287, 133-138.

(45) Padmanabhan, K.; Padmanabhan, K. P.; Tulinsky, A.; Park, C. H,;
Bode, W. et al. Structure of human desd5) factor Xa at 2.2 A
resolution.J. Mol. Biol. 1993 232 947—966.

(46) Berman, H. M.; Westbrook, J.; Feng, Z.; Gillland, G.; Bhat, T. N.
et al. The Protein Data Bankucleic Acids Res200Q 28, 235—

242.

Journal of Medicinal Chemistry, 2006, Vol. 49, N6233

(47) Wang, J.; Cieplak, P.; Kollman, P. A. How well does a restrained
electrostatic potential (RESP) model perform in calculating confor-
mational energies of organic and biological moleculés€omput.
Chem.200Q 21, 1049-1074.

(48) Besler, B. H.; Merz, K. M.; Kollmann, P. A. Atomic charges derived
from semiempirical methods. Comp. Chem199Q 11, 431-439.

(49) Stewart, J. J. MOPAC: a semiempirical molecular orbital program.
J. Comput.-Aided Mol. De4.99Q 4, 1-105.

(50) Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F.; Stewart, J. J. P.
Development and use of quantum mechanical molecular models. 76.
AM1: a new general purpose quantum mechanical molecular model.
J. Am. Chem. S0d.985 107, 3902-3909.

(51) Lupyan, D.; Leo-Macias, A.; Ortiz, A. R. A new progressive-iterative
algorithm for multiple structure alignmerBioinformatics2005 21,
3255-3263.

(52) Ortiz, A. R.; Strauss, C. E.; Olmea, O. MAMMOTH (matching
molecular models obtained from theory): an automated method for
model comparisonProtein Sci.2002 11, 2606-2621.

(53) Case, D. A.; Pearlman, D. A,; Caldwell, J. W.; Cheatham, T. E., llI;
Wang, J.; Ross, W. S.; Simmerling, C.; Darden, T.; Merz, K. M.;
Stanton, R. V.; Cheng, A.; Vincent, J. J.; Crowley, M.; Tsui, V.;
Gohlke, H.; Radmer, R.; Duan, Y.; Pitera, J.; Massova, |.; Seibel,
G. L.; Singh, U. C.; Weiner, P. P.; Kollman, AMBER 7 University
of California: San Francisco, CA.

(54) Honig, B.; Nicholls, A. Classical electrostatics in biology and
chemistry.Sciencel995 268 1144-1149.

(55) still, W.; Tempczyk, A.; Hawley, R.; Hendrickson, T. Semianalytical
treatment of solvation for molecular mechanics and dynardigsm.
Chem. Soc199Q 112, 6127-6129.

(56) Hassan, S. A.; Guarnieri, F.; Mehler, E. L. A general treatment of
solvent effects based on screened Coulomb poteniigfys. Chem.

B 2000 104, 6478-6489.

(57) Hassan, S. A.; Guarnieri, F.; Mehler, E. L. Characterization of
hydrogen bonding in a continuum solvent modelPhys. Chem. B
200Q 104, 6490-6498.

(58) Wold, S.; Ruhe, A.; Wold, H.; Dunn, W. J., lll. The collinearity
problem in linear regression. the partial least squares (PLS) approach
to generalized inverseSIAM J. Sci. Stat. Comi984 5, 735-743.

(59) DeLano, W.The PyMOL Molecular Graphics SysterDelLano
Scientific, LLC: San Carlos, CA, http://www.pymol.org.

JMO060350H



