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Comparative binding energy analysis, a technique to derive receptor-based three-dimensional quantitative
structure-activity relationships (3D-QSAR), is herein extended to consider both affinity and selectivity in
the derivation of the QSAR model. The extension is based on allowing multiple structurally related receptors
to enter theX-matrix employed in the derivation of the structure-activity model. As a result, a single
model common to all of them is obtained that considers both intra- and inter-receptor affinity differences
for a given congeneric series. We applied the technique to a series of 88 3-amidinophenylalanines, binding
to thrombin, trypsin, and factor Xa (fXa). A single predictive regression model for the three receptors involving
202 complexes, with a leave-one out (LOO) cross-validatedQ2 of 0.689, was obtained, and selectivity
requirements were investigated. We find that total or partial occupancy of any of the three main pockets in
the binding site (D-site, P-site, and the rim of the S1-site) leads to higher affinity across the family. However,
the fact that thrombin can make stronger interactions in the P-site, as a result of its exclusive 60-loop,
makes of this site a specificity pocket for this thrombin. Occupancy of the D-site leads to more active
inhibitors toward fXa for the same reason, but the model does not highlight strongly the D-box because
inhibitors are too short to fully occupy it. Negative charge density in the neighborhood of position 88 (a
Lys insertion in thrombin) is found to be a determinant for thrombin recognition. These results were consistent
with previous studies on selectivity in the thrombin/trypsin/fXa system.

Introduction

A drug should discriminate its molecular target from other
biomolecules present in the organism. Not only is the affinity
for the desired target of relevance, but also the adequate level
of cross-reactivity with other proteins, particularly those in the
same protein family. Fulfilling selectivity requirements has been
found to be of primary importance in a number of cases,
including protein kinases,1 matrix-metalloproteinases (MMPs),2

serine proteases,3,4 or nuclear receptors.5 Because most proteins
in the human genome are organized in families as a result of
the processes of gene duplication and divergence, this situation
is likely to be commonplace with a majority of the new post-
genomic targets. As a result, a paradigm shift in drug discovery
to the consideration of gene families as a whole, as opposed to
individual targets, is starting to emerge.6

Selectivity considerations become particularly prominent in
the lead optimization phase, when the molecular scaffold needs
to be tuned to fulfill constraints other than simply binding to
the target.7 The availability of the three-dimensional (3D)
structures of the proteins in the family can be very helpful to
fine-tune the interactions enabling the desired levels of specific-
ity. For example, inhibitors that target highly conserved side
chains or protein-backbone atoms are much more likely to be
nonspecific than those that make strong interactions with
nonconserved residues. Unfortunately, existing methods to
estimate binding free energies using macromolecular 3D
structures in docking and virtual screening are in many instances
too simplistic or insensitive to model ligand selectivity. Some

forms of free energy calculations, such as those based on MM-
PBSA or MM-GBSA,8 have been documented to provide some
encouraging results in the study of selectivity,9,10 but they are
in most situations too slow to efficiently explore chemical
diversity. Recent studies suggest that applying the MM-PBSA
energy function to a single, relaxed complex structure might
be a feasible strategy to reduce the computational burden,11 the
generality of these observations remains to be established.

When activities of a representative set of chemical variations
of the basic scaffold are available, it is often more beneficial to
resort to the use of three-dimensional quantitative structure-
activity relationships (3D-QSARs) that allow the derivation of
“ tailored” scoring functions. CoMFA12 or CoMSIA13 are two
popular 3D-QSAR methods. Both have been used to analyze
pairwise selectivity using either the difference or ratio between
biological activities (expressed as-log Ki) of a ligand series
with respect to two different receptor types as a dependent
variable. Examples include serine proteases,14,15 matrix metal-
loproteinases,16 nuclear receptors,17 glycine/NMDA and AMPA
receptors,18 or protein kinases.19 However, this type of analysis
has two important shortcomings: first, imposes limitations in
multiple receptor comparisons, as they can only be obtained
through multiple pairwise analyses; second, no direct use is
made of the interactions between the ligand and the protein.
More rigorous methods, based on the extended linear response
approach (ELR), have also been proposed to study selectivity.
In ELR, the average interaction energy of a ligand in water and
in the binding site is computed by means of Monte Carlo or
molecular dynamics simulations. These energies, together with
additional structural descriptors, such as the number of hydrogen
bonds formed in the binding process, the change in the
hydrophobic surface of the inhibitor upon binding, and the like,
enter a multiple linear regression equation to predict affinity.
Recently, Tominaga and Jorgensen20 studied the ability of ELR
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to model the binding of 148 inhibitors, belonging to various
chemical series, to three different protein kinases. A satisfactory
model involving the three receptors, with aQ2 of 0.67 and four
descriptors, could be derived, which underscores its potential
to study problems on selectivity. A difficulty with this method,
as with the MM-PB(GB)SA, is its computational burden.

Comparative binding energy (COMBINE) analysis21 is also
a member of the 3D-QSAR family of techniques, but in contrast
to CoMFA or CoMSIA, an explicit use is made of the
interactions between ligand and protein, and, unlike ELR, only
static structures are considered. The key idea is that a simple
expression for the differences in binding affinity of a series of
related ligand-receptor complexes can be derived by using
multivariate statistics to correlate experimental data on binding
affinities with components of the ligand-receptor interaction
energy computed from energy-minimized 3D structures. COM-
BINE analysis has been used with success in a number of
cases.22-25 It has also been demonstrated that regression models
derived with COMBINE analysis are suitable for fast virtual
screening of compound databases.26

The potential role of COMBINE analysis in modeling
selectivity was initially examined by Wang and Wade,24 who
as a part of their work analyzed a series of sialic acid and
benzoic acid analogues binding to the N2 and N9 subtypes of
neuraminidase, having about 50% sequence identity. A predic-
tive joint model for the N2+N9 subtypes, involving 39
complexes, could be developed. Here, we extend these findings
and present fully automated computational approaches consider-
ing an arbitrary number of receptors of the same protein family
and aimed to the direct incorporation of selectivity in lead
optimization. The method consists of structural alignment, ligand
docking, interaction energy decomposition, and statistical
modeling based on COMBINE analysis. As an example, we
apply it to a series of 88 benzamidine derivatives (Figure 1)
binding to three different serine proteases: thrombin, trypsin,
and factor Xa (fXa)14 and previously studied using CoMSIA
by Böhm et al.14

Serine proteases27 play a key role in a number of diseases.28

Modest changes in sequence and shape of their substrate binding
sites confer to this class of enzymes a wide variety of biological
functions. For instance, while thrombin and fXa are prominent
players in the blood-clotting cascade, trypsin is an enzyme
excreted by the pancreas to aid in the digestion of nutrients. A
number of the clotting factors in the blood-clotting cascade are
inactive serine proteinase zymogens that are proteolytically
activated by serine proteinases further up in the cascade.
Inhibition at different levels of the cascade has a distinct impact,
resulting in varying therapeutic profiles for specific inhibitors.
Consequently, there is interest in the design of more selective
inhibitors of these enzymes to minimize side effects and to
enhance their bioavailability.4 Insights from computational
studies can be of help to design more specific inhibitors.

Results and Discussion

Docking of the ligands (see Table 1 for a description) in the
binding site of the three proteins produced binding modes with
the expected set of interactions between ligands and proteins
(see Figure 2B for an example). Not all docking experiments
were successful, however. Out of the 264 (88× 3) docking
trials attempted, only 202 models successfully fulfilled the
distance criteria employed to ensure that correct binding modes
enter the analysis (59 complexes in the case of thrombin; 74 in
the case of trypsin; and 69 for fXa, see Materials and Methods).
In the accepted set of complexes, many of the observed

interactions are known to involve selectivity determinants (see
Figure 2B and Figure 4). Thus, ligands interact with the S1
pocket, where all residues are conserved except for the A190S
substitution in trypsin, a trypsin determinant. Similarly, ligands
interact with the P-pocket, where the most striking difference
between thrombin and the other two proteases, the insertion loop
Tyr60A-Pro60B-Pro60C-Trp60D, is found. There are also
interactions of some ligands with the “aromatic box” in the
D-pocket, formed by residues Phe174, Tyr99, and Trp215,
considered the most prominent structural difference between
factor Xa and the rest. This set of 202 models was subjected to
COMBINE analysis (protocol described in Figure 3) in different
conditions (see Materials and Methods).

COMBINE analysis of these complexes yielded statistically
significant models in most cases and for a majority of conditions
(Table 2 of the Supporting Information). For the case of the
screened coulombic potentials-implicit solvent model (SCP-
ISM) electrostatic model, a summary of the results is in Table
2. Here, model refers to the type of COMBINE analysis in each
case, labeled by the set of receptors entering the analysis.N
refers to the total number of complexes that are employed in
each one of the analyses. For instance, model Thr+fXa+Trp
means that a COMBINE analysis was carried out to explain
the affinity differences of the series considering all three
receptors at once. Therefore, the total numberN of complexes
employed in the analysis is in this case 202 (59+ 69 + 74).
As can be observed, significant models were obtained for
thrombin-fXa-trypsin (Q2 ) 0.689), thrombin-fXa (Q2 )
0.736), and fXa-trypsin (Q2 ) 0.621), and, to a less extent,
for thrombin-trypsin (Q2 ) 0.486) and for the single receptor
models of thrombin (Q2 ) 0.439) and trypsin (Q2 ) 0.335).
On the other hand, derivation of a predictive model was
unsuccessful for fXa inhibition alone (Q2 ) -0.040). The effect
of the treatment of the electrostatic interactions on the resulting
COMBINE analysis models is summarized in Table 3 using
the thrombin-fXa-trypsin case (the three-receptor model) as
an example (see Table 2 of the Supporting Information for a
full account). As can be observed, the main benefit of SCP-
ISM is a slight simplification of the regression models, yielding
the peak inQ2 at a lower dimensionality than the standard
treatments. This seems to be a general trend (see Table 2 of the
Supporting Information), suggesting that slightly more robust
models are generated with SCP-ISM. For this reason, the rest
of our discussion will be focused only on the SCP-ISM-based
COMBINE models.

Coming back to Table 2, a somewhat unexpected conclusion
from the analysis of this table is that the use of multiple receptors
leads to improved regression models. In fact, while theQ2 value
of the three-receptor model is rather satisfactory, the values for
the one-receptor models are poorer than the ones obtained by
Böhm et al.14 using CoMSIA or CoMFA. These authors reported
Q2 values of 0.757, 0.752, and 0.594 (CoMSIA) and 0.687,
0.629, and 0.374 (CoMFA) for thrombin, trypsin, and factor

Figure 1. General structure of the 3-amidinophenylalanine14 series
studied in this work (details of the specific ligands can be found in
Table 1 and Table 1 of Supporting Information).
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Table 1. Compound Description, Experimental, and Predicted (LOO) Activities for the Three-Receptor COMBINE Regression Modelsa
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Table 1 (Continued)
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Xa, respectively. Although an exact quantitative comparison is
not possible, because the set of molecules entering the analysis
were not the same in both studies (some molecules failed in
our docking procedure, see Materials and Methods), and the

differences may indicate possible inaccuracies in the modeled
complexes, as COMBINE analysis is more sensitive to the
details of the docked conformation than CoMSIA and CoMFA.
A second observation is that inclusion of several receptors leads

Table 1 (Continued)

a Num, number of the compound as it appears in Bo¨hm et al.14 Dashed entries correspond to failures in the docking protocol. No complex could be
derived in these cases, Compounds26, 37, and61 were found missing in proof. They can be found in Table 1 of the Supporting Information.
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to a higher complexity in the regression models. The correlation
between the cross-validated or fitted predictions with the
observed pKi values are shown in Figure 5 for the 202
complexes used in the three-receptor model. Excellent predic-
tions are obtained in this case, and no outliers are apparent. A
point to note is that, based on theQ2 values, the single receptor
results presented here are significantly worse than the ones
obtained previously by our groups analyzing by COMBINE
analysis the interaction of a set of 3-amidino-1H-indole-2-
carboxamide analogues with factor Xa,26 but we emphasize that
the series employed in this paper and the one used in the 2004
paper are different. While in the present case we study a series
of 3-amidinophenylalanine derivatives, in the 2004 paper, a set
of 3-amidino-1H-indole-2-carboxamide analogues were em-
ployed. Being that the two series are chemically different, with
different ranges of activity against fXa, different sets of

interactions, and so on, there is no reason to expect a regression
model of similar quality in both cases.

A pertinent question, in light of these results, is to ask whether
the two- and three-receptor models appear to give goodQ2

values simply because they distinguish between receptors, or
by contrast both intra- and inter-receptor variabilities are being
captured. To answer this question, we computed the SDEP
values to be expected if they would only model differences
among receptors, that is, considering than the COMBINE
models were simply assigning to each molecule the average
activity of the molecules in the training set observed with each
receptor. The average activities of the molecules in the series
for each receptor are 6.764 (thrombin), 4.544 (factor Xa), and
6.050 (trypsin). We then computed the expected SDEP values
of this so-called “null model”. Results are shown in Table 2, in
the SDEP-null column. In all cases, the observed SDEP values

Figure 2. (A) Trypsin-like serine-protease members studied in this work. The solvent accessible surface of the three membersstrypsin, fXa and
thrombinsis shown, colored by the secondary structure of the corresponding residue (red, helix; yellow, strand; green, coil). Three main subsites
in the ligand binding site are highlighted: S1 subsite, formed by a deep, narrow pocket where the conserved Asp189 forms a salt bridge with
positively charged moieties; the D (distal) pocket, lined mainly by aromatic residues and particularly evident in factor Xa, to a minor extent for
trypsin, and absent in thrombin; and the P (proximal) pocket, particularly evident in thrombin due to the insertion loop Tyr60A-Pro60B-Pro60C-
Trp60D, to a minor extend in factor Xa and absent in trypsin. Figure created with PyMol;59 (B) the insets show, for each enzyme, the predicted
binding mode of compound 1 (see Table 1), with the most relevant interactions labeled. Residue numbers correspond to positions on the multiple
sequence alignment (see Figure 4).
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are significantly smaller than the SDEP values from the null
models, demonstrating that the COMBINE analyses do model
both inter- and intra-receptor variance.

Once the statistical significance of the models is established,
we turn our attention to their interpretation. The partitioning
scheme in COMBINE analysis allows for a dissection of
statistically significant contributions to differences in affinity.
These are shown in the form of partial least squares (PLS)
coefficients for each interaction type, and can be found in Figure
6 for the three-receptor model. All pockets known to be required
for inhibition and selectivity (Figure 2) are selected. This can
also be noted by the close match between pockets and important
residues labeled in the alignment (Figure 4B). Focusing on the
VDW coefficients, three main regions are selected (see also
Figure 7): the 83-88 region, corresponding to the thrombin-
exclusive loop, forming the P-site; the 126-131 region,
participating in the D-site; and the 262-267 region, at the
entrance of the S1 pocket, including the interaction with the
backbone through residue Gly216 (position 264). The electro-
static coefficients show a large peak for position 238, corre-

sponding to the Glu/Gln 192 substitution (Glu in thrombin; Gln
in fXa); for position 236, in the S1 pocket and, therefore, in
the neighborhood of Asp189, where thrombin has an Ala residue
and fXa has a Ser residue; and to a less extent position 88,
where thrombin presents the insertion of a Lys residue (Figure
6). Finally, the desolvation coefficients are found in the region
adjacent to the thrombin-exclusive loop (position 79 and 241)
and in the D-box (position 132). Figure 7 suggests that both
affinity and selectivity can be largely explained by VDW
interactions in the P-site, the entrance of the S1 pocket, and, to
a lesser extent, in the D-site, the electrostatic interaction with
E192Q, and a few, less relevant, desolvation energies in the
D-box and the neighborhood of the P-site.

The thrombin versus fXa selectivity features can now be
rationalized on the light of the three-receptor model in Figure
5. In general, total or partial occupancy of the three main pockets
(D-site, P-site, and the rim of the S1-site) leads to higher affinity
across the family. However, the fact that thrombin can make
stronger interactions with the ligands in the P-site, as a result
of the thrombin-exclusive 60-loop, makes of this site a specific-

Figure 3. Modeling selectivity with COMBINE analysis.21 Initially, the structures in the family (either experimental or modeled structures) are
structurally aligned to create a multiple structural alignment.51 Each ligand in the set is then docked26 to each one of the models. A COMBINE
analysis is then carried out, using the previously computed alignment to place the interactions with the different proteins in register. A model of
the predicted activity of each ligand in each protein is then generated, which can be assessed by comparison with experimental data. The coefficients
of the resulting PLS58 model highlight key discriminating interactions. See text for details.
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ity pocket for thrombin. Ligands with hydrophobic moieties
occupying the P-pocket should be selective toward thrombin.
Occupancy of the D-site leads to more active inhibitors toward
fXa for the same reason; although the regression coefficients
indicate that placing a hydrophobic moiety in this site increases

the affinity of the ligand for both thrombin and fXa, the effect
is more important for fXa, because this enzyme has stronger
interactions with the inhibitors in this site (not shown). However,
the model does not highlight strongly the influence of all
important residues in the D-box on activity. It only highlights
position 132 (see Figures 4B and 6), corresponding to the Tyr
residue of the D-box in fXa (see also Figure 2). Probably the
reason for this is that the inhibitor series is more selective toward
thrombin, and the substitutions are too short and do not fully
occupy the D-box. Regarding electrostatics interactions, the
analysis indicates that negative charge density in the neighbor-
hood of position 88 (a Lys insertion in thrombin) should be a
determinant for thrombin recognition, while fXa selectivity is
enhanced by ligands able to harbor negative charge density in
the neighborhood of position 238, where thrombin has a Glu
residue and fXa has a Gln residue.

As an illustrative example, a detailed view of the interactions
for derivative 1, the most potent thrombin inhibitor in the series,
can be observed docked into the different enzymes in Figure
2B. Figure 7 shows the same molecule docked onto the thrombin
surface, which has the residues selected in Figure 6 mapped
following the same color code. A common element of the three
complexes is the benzamidine moiety of the ligand inserted in
the S1-site. Some subtle differences in binding are apparent,
however. The amidino group forms a salt bridge with the side
chain of Asp189 (position 235). The distance from the CG atom
of Asp189 to the carbon atom of this amidino group is 4.0 Å in
thrombin, whereas the insertion of a phenylalanine residue
makes this distance slightly larger for trypsin (4.3 Å) and fXa
(4.8 Å). In all cases, the terminal amidino group is further
stabilized by contacts with the carbonyl oxygen of Gly219 (266)
and, additionally, for the trypsin case, by a hydrogen bond with
the side chain of Ser190 (position 236, Ala in thrombin and
fXA). The inhibitor glycine spacer forms two hydrogen bonds
with Gly216 (position 264). One of the oxygen atoms of the
sulfonyl group of the inhibitor is also hydrogen bonded to the
NH of the Gly219 backbone, while the other remains oriented
away from the binding site toward bulk water. More significant
differences are found in the disposition of the piperazine and
naphthyl moieties. First, while both in thrombin and in trypsin
complexes the naphthyl system of the ligand occupies the
D-pocket, the presence of an Ile215 in thrombin, instead of the
Gly residue found in trypsin, allows for a more notched
hydrophobic site and, consequently, for more hydrophobic

Figure 4. (A) Structural alignment of the three proteins as obtained
with MAMMOTH-mult.51 Graphics created with PyMol.59 Pockets in
the active site are labeled and they correspond to the boxes in Figure
4B. The implied sequence alignment: (B) structure-based sequence
alignment of thrombin, trypsin, and fXa. The last 51 positions are not
shown. Alignment positions colored are those found significant to
explain the affinity differences, with the coloring scheme according to
Figure 6. Boxes correspond to the known selectivity sites (see Figure
2 and the main text). Box labeling refers to the different subsites (1,
S1; 2, S2; 3, S3; 4, S4 or D-site; P, P-site). See also the main text.

Table 2. Summary of the Selected Regression Modelsa

model N LVs R2 Q2 SDEC SDEP
SDEP-

null

Thr+fXa+Trp 202 7 0.771 0.689 0.588 0.686 0.826
Thr+fXa 128 6 0.842 0.736 0.536 0.693 0.772
Thr+Trp 133 5 0.636 0.486 0.609 0.724 0.945
fXa+Trp 143 5 0.723 0.621 0.560 0.655 0.752
Thr 59 7 0.779 0.439 0.462 0.735
fXa 69 1 0.152 -0.040 0.485 0.537
Trp 74 1 0.428 0.335 0.692 0.746

a Abbrevations: model, type of COMBINE analysis carried out, accord-
ing to the number and type of receptors employed;N, total number of
complexes employed in the derivation of the model; LVs, number of latent
variables in the PLS model;R2, squared correlation coefficient (R2 ) 1 -
[Σ(yexp(i) - yfitt( i))2]/[Σ(yexp(i) - 〈yexp〉)2], whereyfitt( i) corresponds to the value
of the quantity fitted with the model for complexi,yexp(i) is the experimental
value for that quantity and complex, and〈yexp〉 is the average experimental
value of the quantity for alln complexes);Q2, LOO squared correlation
coefficient (the equivalent ofR2 in LOO cross-validation); SDEC, standard
deviation of errors of correlation (SDEC) {[Σ(yexp(i) - yfitt( i))2]/n}1/2); SDEP,
standard deviation of errors of cross-validated prediction (the equivalent
of SDEC calculated for LOO cross-validation).
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interactions. On the other hand, the naphthyl group cannot
occupy the aromatic cage in fXa and, as a result, remains partly
solvent exposed. Second, the piperazine moiety is buried in the
thrombin P-site, allowing for strong contacts with the catalytic
site (Figure 2b), whereas it remains open to solvent both in
trypsin and fXa.

Overall, these results are consistent with previous computa-
tional studies14,15,29,30on selectivity in the thrombin/trypsin/fXa
system. These studies have highlighted the importance of
establishing hydrophobic and steric interactions involving the

thrombin-exclusive 60-loop (P pocket) and the area between
this loop and the catalytic triad in the design of thrombin-
selective inhibitors. Likewise, the so-called Lys 60f in the S1′

Table 3. Effect of the Electrostatic Treatment on the Three-Receptor (Thr+fXa+Trp) COMBINE Modela

ε desol LVs

1 2 3 4 5 6 7 8 9 10

R2 Q2 R2 Q2 R2 Q2 R2 Q2 R2 Q2 R2 Q2 R2 Q2 R2 Q2 R2 Q2 R2 Q2

4 none 0.46 0.44 0.48 0.45 0.50 0.46 0.66 0.59 0.70 0.63 0.74 0.65 0.77 0.67 0.79 0.68 0.80 0.68 0.81 0.69
PB 0.47 0.44 0.49 0.45 0.52 0.48 0.67 0.62 0.71 0.64 0.74 0.65 0.76 0.67 0.78 0.67 0.80 0.68 0.81 0.68
ISM 0.46 0.44 0.49 0.45 0.52 0.47 0.64 0.57 0.70 0.62 0.73 0.63 0.75 0.65 0.78 0.66 0.80 0.67 0.81 0.68

dij none 0.37 0.31 0.51 0.42 0.63 0.54 0.66 0.58 0.69 0.62 0.73 0.64 0.75 0.64 0.77 0.64 0.79 0.66 0.80 0.66
PB 0.39 0.34 0.56 0.48 0.66 0.58 0.68 0.61 0.70 0.62 0.73 0.64 0.75 0.63 0.77 0.64 0.78 0.64 0.80 0.64
ISM 0.37 0.32 0.53 0.43 0.64 0.53 0.67 0.58 0.72 0.64 0.73 0.64 0.75 0.62 0.77 0.64 0.78 0.63 0.79 0.64

ISM none 0.55 0.54 0.64 0.61 0.69 0.64 0.73 0.67 0.74 0.68 0.75 0.69 0.75 0.69 0.76 0.68 0.76 0.67 0.77 0.66
PB 0.53 0.52 0.63 0.60 0.66 0.62 0.70 0.63 0.73 0.65 0.74 0.67 0.75 0.68 0.76 0.68 0.76 0.68 0.77 0.67
ISM 0.40 0.37 0.62 0.58 0.66 0.63 0.68 0.64 0.70 0.64 0.73 0.66 0.74 0.67 0.75 0.68 0.76 0.68 0.76 0.67
ISMres 0.48 0.46 0.63 0.60 0.68 0.65 0.71 0.66 0.75 0.67 0.76 0.68 0.77 0.69 0.78 0.68 0.78 0.68 0.79 0.65

a TheR2 andQ2 values (see Table 2 for definitions) for the 10 first latent variables (LVs) of three-receptor models obtained with different electrostatics
models are shown. The different models differ in the dielectric treatment (ε ) 4; ε ) dij; or ε ) D(r), the sigmoidal distance dependent screening function
of SCP-ISM56,57) and the way to include desolvation terms (none, no desolvation terms are included; PB, ligand and receptor global electrostatic desolvation
energies are computed solving the Poisson-Boltmann equation54 and are introduced in COMBINE analysis, as previously described;25 ISM, ligand and
receptor global desolvation terms are computed with the SCP-ISM model and included as external variables; ISMres, as before, but receptor desolvation is
partitioned in residue contributions). See Table 2 of the Supporting Information for similar results with the other receptor combinations studied in this paper.

Figure 5. (A) Fitted and (B) cross-validated correlations between
observed and predicted activities for the 88 compounds in the 3 proteins
(Trp+Thr+Fxa model, 202 complexes, see also Table 1).

Figure 6. PLS regression coefficients as a function of alignment
position. VDW coefficients are in green; electrostatics in red; and
residue-based desolvation electrostatic energies in blue. The alignment
corresponds to the one found in Figure 4. Labeled are the residue
positions considered to provide significant coefficients to explain affinity
differences.
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subpocket (primed side of the thrombin active site) has also
been implicated in thrombin selectivity.31 On the other hand,
the incorporation of hydrophobic interactions within the D-
pocket in the generation of fXa specific inhibitors is well-
recognized. As it is, the interaction of negative charges with
the Glu/Gln192 position (position 238 in our alignment) are
thought to create unfavorable interactions with the Glu residue
in thrombin. This interaction, together with the interaction with
glycines 216 and 219, seem to condition a different orientation
for the entry of the benzamidine moiety in the S1 subpocket
and impose a different interaction pattern with the catalytic triad,
which has also been implicated in the rationalization of ligand
selectivity. This may be the reason for the emergence of
significant PLS coefficients for the conserved positions 237 and
239.

Conclusions

This work constitutes a step forward toward structure-activity
models for entire protein families and the incorporation of
selectivity in the lead optimization of congeneric series. We
present quantitative models of affinity prediction for ligand
series across a family of receptors and, as a byproduct, we obtain
insights on selectivity determinants from the analysis of the
resulting statistical models. There are at least two reasons to
prefer such an approach of a simple, energetic, and geometric
analysis of representative complexes. First, such dual analysis
is not possible, in general, only with plain energetic and
structural analysis, and second, it provides information about
the reliability of the quantitative predictions through theQ2 and
SDEP values.

Other 3D-QSAR models have tried to take into account
selectivity correlations, usually by comparing individual single
receptor-based models for the same series of ligands binding
to different proteins14,18,32-37 or, at most, considering as de-
pendent variables affinity ratios38-40 or differences14 between
pairs of proteins. Besides the limitations in the number of
receptors to analyze, these approaches may suffer from propaga-
tion errors associated with the use of ratios or differences. To
our knowledge, this is the first report of a fully automated
method where an arbitrary number of members of a given

protein family can be considered in the generation of a single
structure-activity model common to all of them, and taking
every affinity data as an individual entry in the correlation, for
an arbitrary number of ligands.

A pertinent question is the size of the training set required
for the analysis. Here, a set of 88 ligands has been employed.
It is, however, possible that a smaller number is enough to reach
our conclusions, as experience indicates that in most applications
COMBINE analysis has been successfully applied with datasets
of significantly smaller size.22-25 We have used the whole set
of 88 ligands for two main reasons: first, because this allows
a direct comparison with the results obtained with CoMFA for
this same dataset;14 second, because the use of a large number
of ligands is the best way to demonstrate the robustness of the
statistical models developed.

Integration of computational methods such as the one
presented here with results from high-throughput small molecule-
target interaction maps41 able to provide binding profiles for
large numbers of chemically diverse compounds and large
number of targets, combined with the phenotypes elicited by
these compounds in biological systems, should facilitate the
development of inhibitors with appropriate specificity profiles.

Materials and Methods

Materials. The general chemical scaffold of the 88 ligands
is schematically shown in Figure 1. Structural variations of the
parent structure, present at positions R1 and R2, as well as their
experimentally determined biological activities toward the three
proteins (pKi values) were taken from Bo¨hm et al.14 They are
found in Table 1, as well as in Table 1 of the Supporting
Information. The affinities toward thrombin and trypsin spread
over a satisfactory range, covering 4.0 and 4.7 logarithmic units,
respectively, whereas in the case of factor Xa a variation over
3.0 logarithmic units falls close to the lower limit required for
COMBINE analysis. Molecules were initially built with Insight-
II.42

Crystal structures 1ets,43 1pph,44 and 1hcg45 of thrombin,
trypsin, and fXa, respectively, were selected from the Brookhaven
Protein Data Bank (PDB)46 and are shown in Figure 2A. For
consistency, these correspond to the same set of structures
employed by Bo¨hm et al,14 where the receptor structure was
indirectly accounted for in the ligand alignment process prior
to COMFA/CoMSIA analysis. Crystal structures 1ets and 1pph
correspond to the structure of thrombin and trypsin, respectively,
complexed with 3-TAPAP (compound number 45 in the series),
while the apo form is used for fXa (pdb entry 1hcg), as the
corresponding complex with 3-TAPAP is not available. Nev-
ertheless, crystallographic studies with different sets of inhibitors
have shown that in these enzymes only small changes in the
binding pocket upon binding are observed.

Their binding site can be divided in several subsites (Figure
2A): the deep hydrophobic S1 pocket, where a conserved Asp
(Asp189) forms a salt bridge with positively charged moieties;
the catalytic triad, or S2 pocket, formed by residues His57,
Asp102, and Ser195; the S3 binding subsite, consisting of
Gly216 (position 264); the thrombin insertion loop, Tyr60A-
Pro60B-Pro60C-Trp60D (positions 83-86), which forms the
hydrophobic P (proximal) pocket; and finally the hydrophobic
distal S4 region (also called D pocket), lined by residues 99,
174, Trp215, and Gly217 (only for fully conserved residues,
residue names are provided).

Parametrization. Structural water molecules in the protein
were removed when present and, as a rule, all carboxylic acid
groups were ionized, while all basic amino, amidino, and

Figure 7. Ligand binding site with the residues selected in Figure 6
mapped onto the thrombin surface. Coloring scheme also according to
Figure 6. The complex shown corresponds to thrombin and derivative
1, the most potent thrombin inhibitor in the series. Figure generated
with PyMol.59
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guanidino groups were protonated. Protein atoms were described
by the PARM9947 AMBER force field. As ligands are con-
cerned, the benzamidine moiety and basic amino functional
groups were protonated, while amides and primary and second-
ary amino groups adjacent to aromatic portions were treated as
uncharged. All carboxylate groups were considered deproto-
nated. ESP partial charges48 were derived with MOPAC49 using
the AM1 Hamiltonian50 starting from the molecular conforma-
tion built in Insight-II. AMBER atom types were automatically
assigned to the ligands by our in-house docking program, as
described.26

Model Building. The procedure is outlined in Figure 3. First,
a multiple structural alignment of the three structures was carried
out using a multiple alignment version51 of the MAMMOTH
program52 to establish structure-based residue equivalences
among the three enzymes (Figure 4). This yielded a total of
351 final positions for the matrix of the three superimposed
proteins. In a second step, our previously described docking
algorithm26 was used to model the interaction of the ligands
binding with the three receptor cavities. As in Bo¨hm et al.,14

the ligand parent structure was fixed according to the bound
geometry of 3-TAPAP (R1) p-toluenesulfonyl, R2) piperi-
dino) in 1pph. The rotameric-based torsional search accounted
only for the additional rotatable bonds presented in the R1 and
R2 substituents of the ligand structure (Figure 1). A harmonic
penalty term was incorporated to the docking scoring function
to restrain to 5 Å the interaction distance of the benzamidine
group in the ligand with Asp189 (numbering scheme follows
chymotrypsin). Similarly, restraints of 3.2 Å for hydrogen bonds
with Gly216 were employed between the amidic nitrogen atom
of the ligand sulfonamide group and the carbonyl oxygen atom
of the mentioned glycine and between the amidic oxygen atom
of the ligand and the nitrogen atom of the Gly216 backbone
NH group. A force constant of 5 kcal mol-1 Å-2 was employed.
The lowest energy complexes were energy minimized with
AMBER 7.053 as described.26 The distance cutoff of 5 Å
between the carboxylic carbon of Asp189 and the amidine group
carbon of the ligand was used to filter out geometrically
incorrect docking modes prior to COMBINE analysis. A final
set of 202 complexes in total resulted (59 complexes in the case
of 1ets; 74 in the case of 1pph; and 69 for 1hcg) and were
subjected to COMBINE analysis.

Energy Calculations.Once the ligand-receptor models are
derived, in COMBINE analysis an interaction matrix (the so-
called X-matrix) summarizing the interaction energy of each
ligand with each residue in the protein is derived.21 Van der
Waals (VDW) and electrostatics interactions are typically
employed. The original electrostatic models employed in the
COMBINE analysis were based on simple forms of the
Coulomb equation. Later, it was shown that more sophisticated
electrostatics treatments, such as those based on numerically
solving the Poisson-Boltzmann (PB) equation,54 could lead to
improved regression models.25 However, due to the computa-
tional burden, these models cannot be employed in virtual
screening calculations. Generalized Born (GB) models55 have
emerged in recent years as a convenient compromise between
computational efficiency and theoretical soundness. Here,
besides the basic dielectric models for the computation of
electrostatic energy contributions regularly in COMBINE
analysis21 (Table 2 of the Supporting Information), some
statistical models were derived that included electrostatic
interactions calculated with a new GB-like55 model, the screened
SCP-ISM.56,57 The SCP-ISM electrostatic binding free energy
has the following functional form (Morreale et al., in press):

The first term on the right-hand side of the equation
corresponds to the screened Coulombic interaction between the
charges of the ligand and the receptor, while the second
corresponds to the electrostatic desolvation free energy of both
ligand and receptor.NL andNR are the number of atoms in the
ligand and receptor, respectively;qi is the charge of theith atom;
rij is the distance between atomsi and j, andRi corresponds to
the Born radius of atomi in the complexed (Ri

c) or in the
uncomplexed (Ri

u) form. Finally, D(r) is a sigmoidal distance-
dependent screening function. The functional forms forR and
D(r) can be found in the original papers by Hassan et al.56,57

When distances are in Å and charges in electron units,∆GLR
ele is

given in kcal mol-1. The model has been parametrized in our
laboratory for its use in the study of the interactions between
small organic molecules and proteins. A full account of the
performance will be presented in a forthcoming publication
(Morreale et al., in press). The main advantage of SCP-ISM
with respect to the PB model employed before in COMBINE
analysis is that it affords computational speed while allowing a
rigorous account of the solvent effect in the evaluation of
protein-ligand interactions. In addition, it permits decomposing
the desolvation energy of the receptor in residue contributions.
These were incorporated into theX-matrix (351 new additional
variables were added, see below). For comparative purposes,
regression models were also derived using the standard Cou-
lombic method as well as incorporating desolvation free energies
of ligand and receptor by numerically solving the PB equation,
as described.25 However, due to its novelty and improved
statistical properties (Table 2 of the Supporting Information),
our discussion will be focused on the results obtained with SCP-
ISM. Statistics for the optimal models in these conditions are
shown in Table 1. Models are further discussed in the Results
and Discussion sections. All tested models are in Table 2 of
the Supporting Information.

Chemometrics Analysis.The chemometrics analysis was
carried out with a multiple receptor adapted version of our in-
house program COMBINE,21 considering the set of 202
complexes and their corresponding affinity data as dependent
variables (Table 1 and Supporting Information). The MAM-
MOTH alignment (Figure 4B) was used to build a position-
basedX-matrix of energy contributions. Lennard-Jones and
electrostatics ligand-receptor interaction energies per residue
were computed as usual, but introduced in a globalX-matrix
according to the MAMMOTH alignment. Gaps entered the
matrix with a zero value. In the final matrix, each complex was
then described by 351 intermolecular electrostatic energy
variables and 351 intermolecular VDW energy variables, giving
a total of 702 unscaledx-variables. In addition, different
conditions were tested with different dielectric models and the
introduction of additional external variables (desolvation ener-
gies for ligand and receptor). The variables were used directly
in the analysis without further pretreatment. They-variable was
assigned as pKi toward the appropriate receptor. Similarly,
models considering all possible two receptor combinations were
derived: thrombin-trypsin (133 complexes), thrombin-fXa
(128 complexes), and trypsin-fXa (143 complexes). Finally,
one-receptor-based analyses were also developed. All the
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different conditions for the PLS58 analyses carried out, and the
corresponding statistics from 1 to 10 latent variables regression
models are found in Table 2 of the Supporting Information. In
all cases, leave-one-out cross-validation was employed to
evaluate the quality of the models.
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