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ABSTRACT: Mathematical relationships that relate chemical
structure with selectivity have provided quantitative insights
underlying catalyst design and informing mechanistic studies.
However, flexible compounds can adopt several distinct
geometries and can be challenging to describe, using a single
structure-based descriptor. How best to quantify the structural
characteristics of an ensemble of structure poses both practical
and technical difficulties. In this work, we introduce an
automated computational workflow that can be used to obtain
multidimensional Sterimol parameters for a conformational
ensemble of a given substituent from a single command. The
Boltzmann-weighted Sterimol parameters obtained from this
approach are shown to be useful in multivariate models of enantioselectivity, while the range of values from conformers within 3
kcal/mol of the most stable structure provides a visual way to capture a possible source of uncertainty arising in the resulting
models for enantioselectivity. Our approach improves the model performance in cases where particularly flexible substituents
have been studied. In all cases, this approach enables the impact of conformational effects on model performance to be quickly
diagnosed: in particular, these effects may be more significant than statistical model error such that selectivity prediction should
be performed more cautiously. Implementing our approach requires no programming expertise and can be executed from within
a graphical user interface using open-source programs.
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1. INTRODUCTION

Steric effects are key nonbonding interactions that influence
molecular conformation and reactivity. These interactions can
be harnessed in asymmetric catalysis, where differential steric
effects between competing diastereomeric transition structures
lead to an energetic difference, resulting in enantioselectivity.1

Steric effects arise from the fact that each atom in a molecule
occupies a certain amount of space. Repulsive interatomic
interactions result from the overlap of neighboring electron
clouds, leading to an increase in the quantum mechanical
exchange energy (Pauli repulsion).2 Efforts to quantify the
relative magnitude of steric effects across different functional
groups have traditionally been described using empirical
relationships, leading to the establishment of physical-organic
parameters such as interference values,3 A-values,4 Charton,5

and Taft parameters.6 More recent work has also been
described.7,8 However, the steric demands of an anisotropic
functional group are not fully captured by a single parameter.
Sterimol parameters were developed to be multidimensional,
that is, they quantify steric demands along different principal
axes, making them better-suited to describe the effects of
unsymmetrical substituents.9 Although they were developed in
the 1970s, Sterimol parameters were largely unknown to the
organic chemistry community until more recently, and, as a

result, have been underused. A significant breakthrough was
made by the Sigman laboratory in 2012, who first showed that
Sterimol parameters could be used in the construction of
quantitative relationships between structure and enantioselec-
tivity in cases where unidimensional steric parameters failed.10

This discovery was of importance in igniting a great deal of
interest in the use of multivariate relationships in catalysis,11 and
it has also led to the adoption of Sterimol parameters muchmore
widely in describing and predicting functional group effects
upon stereoselectivity.
Multidimensional Sterimol parameters were developed by

Verloop, and the original Sterimol program by Verloop and
Hoogenstraaten, working at Duphar B.V. (The Netherlands)9 to
capture the dimensions (and, hence, steric interactions) of a
substituent along different directions. Using Corey−Pauling−
Koltun (CPK)molecular models,12 the principal axes B1, B5, and
L can be defined (Figure 1) about the point of attachment of a
given substituent. In brief, B1 represents the shortest distance
perpendicular from the primary axis of attachment; while B5
represents the longest distance. These two subparameters can be
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viewed as the minimum and maximum widths of a substituent
and are influenced by the extent of branching. The final
subparameter L is the total distance following the primary axis of
attachment, which therefore relates the length. Original
tabulated values of these parameters were generated more
than 40 years ago from three-dimensional (3-D) structures
constructed according to CPK definitions of bond lengths and
atomic radii, along with idealized (dihedral) angles. Since then,
quantum mechanical optimization of molecular structures has
become a routine means to obtain 3-D coordinates, from which
Sterimol parameters can be computed. However, this still
requires an arbitrary description of van der Waals radii to be
chosen. CPK values remain faithful to original Sterimol
implementation and take factors such as hybridization into
account. On the other hand, they are undefined for most
elements in the periodic table, which limits their application to
organic fragments.
Sterimol parameters were first used in quantitative structure−

activity relationship (QSAR) studies applied to medicinal
chemistry,10 in which substituents were typically fairly rigid,
and later in asymmetric catalysis to describe diverse substrates
and ligands.13,14 However, the inclusion of conformationally
flexible groups can be observed in more recent studies in
asymmetric catalysis.10,15,16

The construction of a quantitative structure selectivity
relationship (QSSR) has developed into a predictive strategy
to accelerate ligand design.17 This approach assumes that
structurally (and/or electronically) similar compounds will
behave similarly and that modification of substituents will
produce predictable changes in selectivity. Thus, if substituent
modification does not modify the mechanistic pathway,
selectivities between competing pathways (ΔΔG⧧) will be
comparable, and the differences can be rationalized in terms of
structural changes, described by steric and electronic parame-
ters. However, an important question arises regarding which
set(s) of 3-D coordinates should be used to define these
parameters: is it more appropriate to use the most stable
conformation, a catalytically relevant conformation, or an
ensemble (Boltzmann) average? For instance, n-pentyl groups
have been considered.16 With many accessible conformations,
the use of just a single conformer may give rise to potentially
misleading steric parameters. The all-anti conformer is
characterized by large L and small B5 values, but the situation
changes dramatically (L decreases, B5 increases) when just one
dihedral adopts a gauche conformation. One may choose to take
the most favorable conformer and assume it describes the main
steric interactions, or create different sets (maximum and
minimum values for instance) in order to explore a range of
Sterimol values.18 Acknowledging that, outliers in QSAR or
QSSR models using Sterimol parameters may emerge more
often for flexible groups, even as simple as n-butyl. This
observation can, of course, be extrapolated to any parameter that
is structure-dependent, such as the Tolman’s cone angle.19 The
conformation(s) used in tabulated steric parameters found in

the older literature may not be readily discernible, particularly
since high-accuracy quantum chemical methods have only
become more available recently, such that those parameters
recorded for flexible functional groups should be treated
cautiously.
As described in the pioneering work by Sigman,10 the Charton

parameter is derived from a macroscopic experimental average,
and assuming that rotation about the primary bond to the
substituent is fast, any spatial anisotropy becomes an irrelevance.
Sterimol values outperform the Charton parameter where
multifaceted steric interactions must be taken into account,
potentially leading to multivariate relationships between
selectivity and several substituent parameters.20 In contrast to
Charton parameters, Sterimol parameters are not based on an
experimental observation (which inherently describes an
ensemble average). Instead, they depend on a particular
specification of molecular conformation. Many mechanisms in
asymmetric catalysis are not well-understood and the stereo-
determining transition states are strongly influenced by
conformational effects. As enantioselectivity is a macroscopic
observable, one should try to pay attention to conformers when
generating descriptor values to keep them as meaningful as
possible. The approach taken toward conformational sampling
(or even the absence of such considerations) may introduce
variations in steric parameters greater than the inherent noise of
a statistical model. Given the relatively small error bar that can
be tolerated to generate useful predictions of stereoselectivity,
due consideration should be given to conformational sampling
in the computation of physical-organic parameters for statistical
models.
Guidance for the development of statistically significant

models has been thoroughly explored, particularly in the QSAR
literature.21−23 Following from this, Sigman has shown how the
development of new steric and stereoelectronic parameters aid
in mechanistic interrogation so that if a correlation is found, one
can formulatemechanistic hypotheses from numerical models.24

In this work, we turn our attention to the role of parameter
uncertainty, brought about through conformational effects. Our
workflow provides a visualization of how variation in conforma-
tional Sterimol values may add uncertainty to the predictions
that result from a multivariate model. Intuitively, one may feel
that rigid substituents are more straightforward to model and
that more flexible groups are inherently less useful data points
which degrade model performance (see the Supporting
Information),15 however, in this work, we aimed to validate
quantitatively this hypothesis using an automated approach.
Advances in multivariate modeling may be aided by the

discovery of improved statistical algorithms, but undoubtedly
also with the development of descriptors that can be chemically
interpreted. Automation of descriptor generation will also
certainly play an important role in order to simplify routine
computational design.25 Also, we envisage that an automated,
easy-to-use and transparent approach to monitor and
Boltzmann-weight (if appropriate) conformational effects will
be of great use and may help to bring these approaches to a
broader section of the organic community.
This paper aims to address the aspect of conformational

sampling and the role that this has on the use of steric parameters
in physical organic chemistry. We have developed a broadly
applicable and robust approach to generate steric parameters for
flexible groups, termed weighted Sterimol (wSterimol for short).
The code is built to be used via a graphical interface on several
platforms, and open-source programs can be used. We will

Figure 1. Representation of Sterimol parameters B1, B5, and L with
front and lateral profiles of an i-propyl group using the CPK atomic
model.
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explain, in broad terms, the algorithm to tackle this problem as
easily as possible for the end-user and the benchmarking realized
to get consistent wSterimol values will also be discussed. Finally,
this approach has the potential to broaden the community use of
steric parameters to flexible substituents. This tool is also hoped
to reinforce the awareness of the influence of conformers on
model correlation errors as shown in three case studies found in
the literature.

2. METHODOLOGY
While it is important to distinguish the different types of steric
interactions represented by B1, B5, and L, which could have a
different role in reactivity or selectivity, the contribution from all
conformers can also be described in terms of an ensemble value.
Thus, the different conformers can be weighted according to a
Boltzmann distribution, using populations derived from
computations. This weighting is indeed preferable for linear
substituents which may have a flat potential energy surface, for
which the different conformers lie very close in energy but may
have completely different 3-D shape and, hence, Sterimol values.
Analogously to the state-of-the-art in computational NMR

prediction,26 wSterimol automates conformer generation,
geometry optimization, filtering, and the final calculation of
Sterimol values (Figure 2). First, all the potential conformers are
generated with a conformational sampling method,27 such as
Monte Carlo,28 molecular dynamics,29 or SUMM (systemic
unbounded multiple minimum).30 Since systematic torsional
exploration of substituents with a small number of rotatable
bonds is exhaustive, we chose to implement a SUMM-like
approach. The structures are then saved, stored and can be
visualized at each step. When exploring the different dihedrals,
structures generated with substantial interatomic clashes were

filtered out. Geometry optimization is then performed, using
either semiempirical calculations (with Mopac31) or density
functional theory (DFT, with Gaussian32). Following optimiza-
tion, duplicate conformations are filtered out, based on an
RMSD threshold. In each group, only the lowest in energy
conformation is kept to be the representative structure of its
group, which one would call a conformer. Sterimol parameters
are finally computed for each conformer and the Boltzmann
distribution outputs three final values: wB1, wB5, and wL. For
further technical details, see the Supporting Information (SI).
In order to be as easy to handle as possible for the end-user,

wSterimol was coded in Python and has to be used directly from
within the Pymol graphical interface. This software has the
advantage of having an open-source version, and a python
interface, which does not require the use of a separate terminal
window. One can visualize the different conformers at the
different stages of the algorithm with the same atomic model
used to calculate Sterimol parameters. This visualization can
help in understanding the mechanistic explanation behind a
potential correlation in multivariate modeling. The underlying
computation of Sterimol parameters for a given conformation
can be performed from the command line if desired, and this
code is freely available.33 The wSterimol package itself is
released under an open-source MIT license and is also freely
available.34

We implemented an automated, modular workflow that can
be executed using a single command to obtain wSterimol values.
The first argument is a list of dihedrals to be explored (Figure 2).
Those can be easily chosen by looking at them directly in the
graphical interface. The last arguments are the atoms to define
the primary axis in Sterimol calculation.

Figure 2. Schematic representation of the weighted Sterimol algorithm triggered by very simple keywords in the Pymol console.
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3. BENCHMARKING

Although only one simple command (executed in Pymol) is
needed to generate the weighted Sterimol values, many default
parameters are deployed during the workflow (see the SI for a
full list). Some of them influence the output values and so
benchmarking studies were therefore performed to identify the
limits of wSterimol. Five key parameters are explored in this
section.
3.1. Comparison to Sterimol Seminal Code. The

weighted Sterimol script uses our Python implementation of
Verloop’s Sterimol program.35,36 The main advantages of the
updated version are the ability to process Cartesian coordinates;
and the inclusion of Bondi atomic van der Waals radii (in
addition to CPK), which have wider coverage of the periodic
table.37,38 This work reuses it to compute the different Sterimol
parameters for each generated conformers. We compared the
parameters obtained from original Fortran and updated Python
programs when fed identical structures of 22 common
substituents (n-alkyl, branched-alkyl, aromatic, benzylic). Most
values agree to 2DP, with the largest difference of just 0.01 Å
(see the SI).
3.2. Clustering Cutoff. Once several different input

structures have been optimized, one must characterize the
unique stable conformers. A stable conformer is characterized by
a local energy minimum, although a flat potential energy surface
(PES) can lead to distinct structures being incorrectly identified
as the same conformer. Thus, a cutoff must be chosen to decide
if two structures are duplicates and members of the same
conformational cluster. The structures are aligned to each other,
and the RMSD is retrieved for each pair alignment. If the RMSD
is below the decided cutoff, two structures are tagged as
duplicates and placed in the same conformational cluster. In
each cluster, the structure possessing the lowest energy is
defined as being the representative structure of its cluster (in
other words, a conformer). Therefore, this is a critical variable
that will control the number of conformers considered by the
wSterimol parameters. Five different substituents were chosen
to benchmark this variable (namely, n-butyl, n-pentyl, n-hexyl, n-
heptyl, and s-butyl) due to their potentially flat PES which would
complicate the optimization and make the cutoff very sensitive

(Figure 3A). The PM6-DH2 level of theory was used, because of
its rapidity and its good description of aliphatic chains.
To our surprise, however, wSterimol values were not

impacted by a clustering cutoff spanning a wide region from
0.1 to 1.0 Å, although the number of conformers involved in the
Boltzmann distribution was drastically different (Figure 3B).
The cutoff does not impact the weighted values but does modify
the calculation time. More conformers imply more Sterimol
calculations and the computational cost increases accordingly. A
higher cutoff is advised, in terms of cost, but should be limited to
avoid merging theoretically different conformers. A very large
clustering cutoff would remove any dynamism from the system,
leading ultimately to the “classic” Sterimol values. In practice
looking at the different structures, 1.0 Å clustering cutoff already
started tomerge structures which should be classified in different
clusters. We advise using a cutoff between 0.3 and 0.5 Å, default
in the script being 0.3 Å (see the SI to change it manually).

3.3. Effect of the Atomic Model. Verloop initially used a
CPK atomic model, for which connectivity information is used
to categorize different “types” of the same atom. For example,
the atomic radius of carbon ranges from 1.5 Å to 1.7 Å,
depending on formal hybridization, aromaticity, and ring size.
Either the atom types can be manually typed in the submitted
files, or they can be calculated as shown in our script. However,
these CPK values were limited to the elements H, C, N, O, F, P,
S, Cl, Br, and I. We considered that Bondi radii could provide an
alternative definition of van der Waals radii, which are both
simpler (a single value for each element) and with wider
coverage of the periodic table, based on crystallographic data
(Figure 4A). The effect on the computed weighted Sterimol was
explored on five linear substituents and four alkenes to have
different hybridization patterns (Figure 4B).
We found a systematic difference between the two atomic

models, but the actual variation is far less significant than the
effect of other variables such as the level of theory. In terms of
computational cost, CPK model is slightly more expansive due
to the computing time for connectivity calculation which is not
needed for Bondi. As Bondi has the advantage of being defined
across the periodic table and provide almost identical results, we
preconize its use over the CPK model (see the SI to change it
manually).

Figure 3. (A) Graphic charts representing the effect of the clustering cutoff on the Sterimol values for different substituents using PM6-DH2
semiempirical level of theory. The cut-offs are indistinguishable. (B) Graphic representing the number of considered “conformers” versus the
clustering cutoff used for different substituents.
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3.4. Convergence Criteria: The Dihedral Division
Number. When generating conformers, each dihedral is
explored by systematically rotating through a number of
increments. The dihedral division number describes how finely

the torsion is searched (Figure 5A). A greater number of
divisions leads to greater coverage and a higher chance of
locating all conformations on the potential energy surface
(PES). For n tending to ∞, a dihedral has been explored in a
continuum, maximizing the likelihood of finding all conformers.
The computational cost for k dihedral angles, however, also
increases with the dihedral division number as nk. In practice,
fewer than ten calculations should be enough to reach the
curvature of a local minimum that the optimization will follow. It
implies an optimum value is reachable between cost and
accuracy. The graphs below present the impact of the dihedral
division number on weighted Sterimol values for three linear
substituents. The generated structures by dihedral rotation are
highly dependent on the initial structure. Thus, nine different
initial conformations were taken to get a statistically significant
representation.
We demonstrate that the angle division number gives

consistent wSterimol parameters for values of five and above
(Figure 5B). Below this threshold, the weighted Sterimol values
tend to oscillate presumably due to the lack of complete
coverage of the PES. Above 5, wSterimol values converge nicely
but unfortunately with a higher computational cost. Therefore,
we advise the use of a dihedral division number of 5 for a balance
between cost and consistency, which is the default value (see the
SI to modify it manually).

3.5. Effect of the Level of Theory. Optimization criteria
and computed energies are highly dependent on the level of
theory used. As the Boltzmann-weights in the conformational
ensemble uses these energies, and clustering uses the
coordinates of the optimized structure to define conformers,
the level of theory has the most critical influence on the final
wSterimol values.
Four different compounds were taken in order to estimate

these differences: (1) a functional group with possible hydrogen

Figure 4. (A) Graphical representation of i-Pr group using CPK (left)
and Bondi (right) atomic model. (B) Charts representing the effect of
CPK and Bondi atomic models on wSterimol values for different
substituents at the PM6-DH2 level.

Figure 5. Graphic representing (A) the generated conformers of n-butyl, using different dihedral division number from 3 to 5 and (B) the wSterimol
values for n-butyl, n-pentyl, and n-hexyl at different dihedral division number starting from 9 different initial structures for statistical significance. The
asymptotes are represented by a horizontal line in each graph.
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bonding between an alcohol and a carbonyl, (2) a linear organic
molecule with van der Waals interactions only, (3) a nontrivial
functional group contained in a ligand, and (4) a dispersion-
dominated interaction between two adjacent aromatic rings

were chosen. Three commonly used DFT (B3LYP, M06-2X,

and ωB97xD) and two semiempirical functionals (PM6-DH2

and PM7)were chosen due to their spread use in the literature.39

Figure 6. Charts representing the effect of the level of theory on Sterimol values (L, B1, B5) of all the conformers (colored dots) used to calculate
wSterimol values (black tick marks) for a moiety that contains hydrogen bonding, for an aliphatic chain, for a ligand containing a complex functional
group, and finally for a dispersion-dominated moiety. Sterimol values of all the conformers are colored according to their relative energies, going from
0.0 to 5.0 kcal/mol. A cutoff of 5.0 kcal/mol was used to remove energetically disfavored conformers.

Table 1. Selected Common Functional Groups at the M06-2X/6-311+G(d,p)//M06-2X/6-31G(d) Level of Theorya

L B1 B5

group wL wB1 wB5 min max min max min max

1-Nap-CH2− 5.93 1.89 6.97 5.22 8.91 1.88 1.89 5.88 7.23
4-MePhCH2− 5.96 1.90 7.13 5.62 6.71 1.88 1.90 7.04 7.19
1-Ad− 6.61 3.15 3.49 6.61 6.61 3.15 3.15 3.49 3.49
c-hexyl− 6.65 1.92 3.48 6.65 6.65 1.92 1.92 3.48 3.48
Et− 4.59 1.88 3.16 4.59 4.59 1.88 1.88 3.16 3.16
Et2CH− 5.18 1.94 4.44 4.58 5.55 1.92 2.06 3.79 4.52
i-Pr− 4.56 1.91 3.17 4.56 4.56 1.91 1.91 3.17 3.17
i-Pr2CH− 5.45 2.17 4.46 4.62 5.63 1.97 2.22 4.45 4.52
i-PrCH2− 5.44 1.87 4.42 4.67 5.58 1.87 1.90 4.39 4.42
Me− 3.43 1.88 2.02 3.43 3.43 1.88 1.88 2.02 2.02
n-Bu− 5.80 1.88 4.71 4.63 6.84 1.88 1.89 3.52 5.69
n-pent− 6.14 1.88 5.36 4.60 7.83 1.87 1.91 3.53 6.93
Ph− 6.80 1.70 3.15 6.80 6.80 1.70 1.70 3.15 3.15
Ph2CH− 6.64 1.90 6.15 6.64 6.64 1.90 1.91 6.15 6.15
PhCH2− 5.32 1.90 6.04 5.12 6.71 1.88 1.90 5.82 6.07
s-Bu- 4.97 1.91 4.08 4.60 5.48 1.90 1.92 3.59 4.46
t-Bu− 4.54 2.76 3.17 4.54 4.54 2.76 2.76 3.17 3.17
t-BuCH2− 5.65 1.90 4.39 5.65 5.65 1.90 1.90 4.39 4.39

aThe weighted Sterimol parameters are listed alongside the minimum and maximum values in a 3.0 kcal/mol energy window. Further examples are
tabulated in the SI.

ACS Catalysis Research Article

DOI: 10.1021/acscatal.8b04043
ACS Catal. 2019, 9, 2313−2323

2318

http://dx.doi.org/10.1021/acscatal.8b04043


The M06-2X/6-31G(d) level of theory is used as a reference in
this benchmark.
As expected, the influence of the level of theory is highly

dependent on the functional group (Figure 6). Thus, aliphatic
chains are barely affected and show consistent values. This starts
to change in the presence of hydrogen bonding or dispersion
interactions. Semiempirical methods led to a different
distribution of the conformers, compared to DFT functionals,
even if the apparent wSterimol values are sometimes almost
identical. On average, twice as many conformers are generated
with PM6-DH2 and PM7 (semiempirical methods), compared
to the DFT functionals, and they are continuously scattered
along the y-axis. This is attributable to differences in the
underlying shape of the PES and the optimization convergence
criteria between different packages. Therefore, the conformers
were optimized with PM7 at 100 times more precise
convergence criteria (called PM7 P in Figure 6; see the SI for
details). PM7 indeed shows results that are more similar to
B3LYP for the hydrogen-bonding moiety. Semiempirical results
are expected to be superior to small-molecule force field
methods.40 However, we still found cases for more-complex
functional groups, where they give qualitatively different
predicted values than DFT. One can also notice that ωB97xD
and M06-2X are very similar, in terms of their conformer
distribution, and represent what is probably the best in terms of
cost and accuracy. In other words, we advise the use of the most
accurate level of theory as it is reasonable in order to generate
descriptors. As shown by Grimme and Schreiner, the
methodological state-of-the-art, along with computational
power, is continually improving.41 Therefore, descriptors should
remain easily computable but as accurate as possible.20 Using a
single machine (e.g., a laptop), wSterimol values are best
generated with PM7 (precise optimization). With access to
greater computational resources, we recommend using DFT
calculations, such as M06-2X 6-31g(d) (Gaussian is currently
supported by the code), including single-point energy
corrections if possible, e.g., with M06-2X 6-311+G(d,p). Such
calculations are still feasible on a single CPU with a few hours
calculation time for flexible systems containing 5−6 heavy
atoms.

4. TABULATION OF COMMON FUNCTIONAL GROUPS

Herein, we show the tabulated values of common functional
groups already found in the literature (Table 1). A longer list can
be found in the SI. This table aims to serve as a standard source
of information for flexible common substituents, while rigid
moieties are also listed for the sake of consistency in modeling. A
3.0 kcal/mol energy window is used because it captures 99% of
the population at 298 K in all the substituents shown below at
the considered level of theory. Using a substituent as flexible as
n-heptyl, the captured population remains above 99% at 298 K.
Our benchmarking studies illustrate that DFT calculations
should be used if practically possible. The wSterimol values in
this table are Boltzmann-weighted at the M06-2X/6-311+G-
(d,p)//M06-2X/6-31G(d) level of theory.

5. APPLICATIONS

In this section, we demonstrate conformational effects in the
application of multivariate models of enantioselective catalysis.
We chose case studies for which it has previously been shown
that Sterimol parameters alone provide a useful structure−
selectivity relationship. Models for which steric interactions do

not provide the main contribution were not considered. Our
emphasis is not on the predictive and interpretative qualities of
these models since these aspects have already been explained,
but on the additional information that comes from the
application of wSterimol parameters. Three case studies are
shown. In the first case, this approach gives equivalent
performance to conventional Sterimol parameters and confirms
that substituent flexibility has only a minor impact on model
performance and interpretation. The second example provides
improved performance over static parameters, while also
showing that the conformational dependence of parameter
values at the higher end of the predicted values can be far greater
than the statistical model error. In the final case study, wSterimol
helps to identify regions of the model where conformational
sampling could have an impact on statistical performance and
predictivity.
Miller and Sigman discovered that substrate steric parameters

play an essential role in the organocatalysed desymmetrization
of bisphenols (Figure 7).10 A strong relationship exists between
the enantioselectivity and the two parameters B1 and L, such that
the optimal substrate for this reaction has a large minimum

Figure 7. QSSR analysis of the desymmetrization of bisphenol using
wSterimol values. Error bars represent the range of Sterimol values of
the conformers within 3.0 kcal/mol window. Gray area represents the
standard error of the model at the 95% confidence interval. Only the
substituents with a range of Sterimol values leading to a range greater
than 0.05 kcal/mol were labeled. Original model values have been
placed in brackets for comparison. wSterimol model (this work):
ΔΔG⧧ = 0.83 + 0.46wB1 − 0.10wL, Training [R2 = 0.96, RMSE = 0.09
kcal/mol], LOOCV [R2 = 0.91, RMSE = 0.14 kcal/mol], ANOVA [wB1
= 2.1× 10−7, wL = 1.4× 10−2]. Sterimol model (original work):ΔΔG⧧

= 0.83 + 0.47B1 − 0.10L, Training [R2 = 0.97, RMSE = 0.08 kcal/mol],
LOOCV [R2 = 0.92, RMSE = 0.13 kcal/mol], ANOVA [B1 = 6.9 ×
10−8, L = 7.3 × 10−3].
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width (B1) and a short length (L). This correlation implies a
propeller-like twist of the aryl rings in the reaction mechanism.
As was noted, the use of Sterimol was consistent with the
substituent exhibiting a strong conformational preference and
that the substituents must be treated as static and not dynamic.
Therefore, we decided to test wSterimol on a system that is static
and where Sterimol parameters perform very well, to ensure that
this did not lead to any degradation of the linear model.
Reassuringly, the use of wSterimol showed negligible differences
in terms of correlation, error, and significance of the model. We
illustrate this by depicting both the standard error of the model
(gray bands) and the range of wSterimol values within 3 kcal/
mol from the most stable conformer (error bars) in Figure 7.
The gray bands around the regression line show the range in
which the true regression line lies with 95% confidence. The
bands visualize all intervals for every possible x-values and are
tightest where the data are grouped more densely. For a given
prediction, the experimental value will lie within the upper and
lower bounds 95% of the time. One can see that the model
standard error is more significant than possible noise
attributable to different conformations: this is particularly true
for isotropic functional groups (Me, tBu, Ad). One can conclude
that conformational effects do not play a significant role in
model construction and performance and that the model
obtained with wSterimol is consistent with the hypothesized
mechanistic explanation observed previously.
We suggest that the wSterimol approach of including

weighted parameter and taking into account possible ranges of
values, can be used in the same domain of applicability as
conventional Sterimol parameters. If a system is static,
wSterimol will take it into account and behave like a
conventional Sterimol parameter. However, it is advantageous
for describing a dynamic system. The same conclusion can be
drawn from the Nozaki−Hiyama−Kishi (NHK) propargylation
of acetophenone (see the SI).
Our second case-study considered the asymmetric addition of

diethylzinc on benzaldehyde using chiral phosphoramide
ligands (Figure 8).15 A correlation between steric effects and
observed enantioselectivity can be obtained using ligand
substituent Sterimol parameters (as opposed to the entire
ligand). Sterimol descriptions of the entire amine group of the
N-substituted ligands originally led to a poor correlation. The
involvement of minimal width (B1

R1) of R1 and R2 (B1
R2)

parameters led to the mechanistic hypothesis that the carbonyl
group is pushed away from the Zn center and that a larger
proximal steric bulk will increase the enantioselectivity. Noting
that steric descriptions of the more flexible, full system perform
worse than those of the more rigid subsystems in multivariate
linear regression, we reasoned that a potential source of this
difference could be the much greater conformational degrees of
freedom accessible to the larger system. By using wSterimol, two
outliers were identified using the boxplot visualization technique
(see the SI) and the correlation in Figure 8A was obtained.
Compared to the previous model, performing the regression
using weighted Sterimol values, rather than singular values,
results in a better fit and emphasizes the importance of
conformer sampling. As shown below, the amplitude in Sterimol
values at the extremities of the model is far greater than the
statistical model error, which further reinforces that the
predictive power of the model in these regions may be weaker.
We also performed the regression using the entire amino group.
The use of weighted Sterimol parameters on the full amine gives
a weaker correlation than the subsystems as previously shown,

Figure 8. QSSR analysis of the asymmetric addition of diethylzinc on
benzaldehyde using chiral phosphoramide ligands. Gray area represents
standard error of the model at the 95% confidence interval. Error bars
represent the range of Sterimol values of the conformers within a 3.0
kcal/mol window. Only the substituents with a range of Sterimol values
leading to a range greater than 0.05 kcal/mol were labeled. Original
model values were put in bracket for comparison. (A) Model using
wSterimol on R1 and R2 of the ligand, with two outliers removed.
wSterimol model (this work): ΔΔG⧧ = 0.94 − 0.34wLR1 + 0.27wLR2,
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with the same outliers (Figure 8B). The extreme difficulty of
regression is emphasized visually in this case by themagnitude of
the range of conformer values at the higher end of the predicted
values: this would be particularly important to realize if the
model is being used to optimize (i.e., enhance) enantioselec-
tivity, since the likely predictive power is degraded in this region
in particular. Such an observation may direct additional
experimental effort in obtaining data for a more-rigid group in
this region of parameter space or urge more caution in
generating the descriptor values and selecting the level of
theory. The use of weighted Sterimol shows an increase in the
performance and the consistency of the models.
Finally, we also studied an asymmetric Henry reaction using

chiral 1,2-amino phosphinamide ligands (Figure 9).16 After
screening several ligands, a quantitative correlation between the
observed enantioselection was obtained using steric parameters
to describe each ligand’s N-substituents. This shows a
correlation using Sterimol values, B1 of R1 and B5 of R2,
underlying the importance of the width of these two subgroups.
By using wSterimol values, a slightly smaller correlation was
obtained than that observed previously, where singular Sterimol
values were used (Figure 9). The amplitude of possible Sterimol
values for low-energy conformers within 3.0 kcal/mol noticeably
exceeds the model error for two ligands, showcasing the
importance of descriptor generation for confident prediction.
Again, the wSterimol values (i.e., the Boltzmann-weighted
central points) give at least as good correlations as when using a
singular value, and the additional information regarding the
variability of these values provides context in interpreting the
statistical performance and aids to identify regions of the model
that may be weaker.

6. LIMITATIONS AND FUTURE DEVELOPMENTS
The current implementation of wSterimol automates the
generation, optimization, clustering, and analysis of an acyclic
conformational ensemble, generating individual and weighted
Sterimol values, which are then easily applied to models such as
those above. Ring conformers are currently not sampled;
however, this can be implemented using, e.g., distance-geometry
methods, molecular dynamics. However, one can generate
structures with a third-party program then continue with the
different modules in wSterimol. Although rotatable dihedrals are
not detected automatically, this can be advantageous, since it
allows selected torsions to be excluded from sampling if desired.
Given the modular nature of the plugins we have written,
expansion to incorporate additional steric parameters for
automated conformational weighting is also straightforward.

7. PERSPECTIVES
Although conformational analysis is a familiar topic to organic
chemists, coupling practical implementations of this with
electronic structure calculations, and using the results to derive
ensemble-average properties can be a daunting challenge, and
we hope to have alleviated much, if not most, of the pain
involved. We have created a computational workflow,
wSterimol, to enable the computation of physical organic
parameters for a conformational ensemble. The design
philosophy has been to build a tool that can be used by
nonexperts, using open-source software, with a single command
accessed via a graphical interface or from the command line.

Figure 8. continued

Training [R2 = 0.96, RMSE = 0.08 kcal/mol], LOOCV [R2 = 0.87,
RMSE = 0.15 kcal/mol], ANOVA [wLR1 = 1.4 × 10−4, wLR2 = 1.7 ×
10−4]. Sterimol model (original work): ΔΔG⧧ = 1.04 − 0.36B1

R1 +
0.29B1

R2, Training [R2 = 0.80, RMSE = 0.18 kcal/mol], LOOCV [R2 =
0.46, RMSE = 0.32 kcal/mol], ANOVA [B1

R1 = 5.7 × 10−3, B1
R2 = 3.8 ×

10−2]. (B) Model using wSterimol on the full amine of the ligand, with
two outliers removed. wSterimol model (this work): ΔΔG⧧ = 0.93 +
0.28wB5 − 0.12wB1, Training [R2 = 0.84, RMSE = 0.14 kcal/mol],
LOOCV [R2 = 0.70, RMSE = 0.20 kcal/mol], ANOVA [wB5 = 7.6 ×
10−4, wB1 = 5.1 × 10−2]. Sterimol model (original work):ΔΔG⧧ = 0.95
+ 0.27B5, Training [R

2 = 0.58, RMSE = 0.24 kcal/mol], LOOCV [R2 =
0.45, RMSE = 0.28 kcal/mol], ANOVA [B5 = 1.0 × 10−2].

Figure 9.QSSR analysis of asymmetric Henry reaction using wSterimol
values from chiral 1,2-amino phosphonamide ligands. Gray area
represents the standard error of the model at the 95% confidence
interval. Error bars represent the range of Sterimol values of the
conformers within 3.0 kcal/mol window. Only the substituents with a
range of Sterimol values leading to a range greater than 0.05 kcal/mol
were labeled. Original model values are shown in brackets for
comparison. wSterimol model (this work): ΔΔG⧧ = 0.93 −
0.40wB1

R1 + 0.27wB5
R2, Training [R2 = 0.93, RMSE = 0.15 kcal/mol],

LOOCV [R2 = 0.88, RMSE = 0.20 kcal/mol], Test [R2 = 0.99, RMSE =
0.07 kcal/mol], ANOVA [wB1

R1 = 3.5 × 10−6, wB5
R2 = 8.2 × 10−4].

Sterimol model (original work): ΔΔG⧧ = 0.93 − 0.40B1
R1 + 0.28B5

R2,
Training [R2 = 0.95, RMSE = 0.13 kcal/mol], LOOCV [R2 = 0.90,
RMSE = 0.18 kcal/mol], Test [R2 = 0.98, RMSE = 0.11 kcal/mol],
ANOVA [B1

R1 = 1.2 × 10−6, B5
R2 = 2.9 × 10−4].
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This approach provides a capability for automated conforma-
tional sampling and avoids complex recipes involving multiple
programs, spreadsheets, or scripting. The availability of this tool
allows powerful multivariate models and Sterimol parameters to
be applied to synthetically relevant functional groups, where
tabulated values may either be absent from the literature, or
worse, lack conformational context. This package can be used
alongside freely available programs, maximizing the reprodu-
cible nature of the computed parameters. We have demon-
strated the importance of such an approach with three case
studies: where flexible substituents were present, this resulted in
an improvement in the final model, while for rigid substituents,
the model performs equally well. Conformer effects in models
found in the literature are sometimes more significant than the
confidence interval of the model, meaning conformational
sampling is a greater factor of error in the quantitative prediction
of selectivity than the inherent model noise, sometimes with 1
kcal/mol of difference for flexible linear substituents. Therefore,
we hope that this tool broadens the scope of substituents that
can be reliably used in multivariate models of enantioselectivity
and a means to quantify the effect of conformational flexibility
on statistical models using 3-D physical-organic descriptors such
as Sterimol parameters.
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