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A simple pharmacophore point filter has been developed that discriminates between drug-like
and nondrug-like chemical matter. It is based on the observation that nondrugs are often
underfunctionalized. Therefore, a minimum count of well-defined pharmacophore points is
required to pass the filter. The application of the filter results in 66-69% of subsets of the
MDDR database to be classified as drug-like. Furthermore, 61-68% of subsets of the CMC
database are classified as drug-like. In contrast, only 36% of the ACD are found to be drug-
like. While these results are not quite as good as those obtained with recently described neural
net approaches, the method used here has clear advantages. In contrast to a neural net approach
and also in contrast to decision tree methods described recently, the pharmacophore filter has
been developed by using “chemical wisdom” that is unbiased from fitting the structural content
of specific drug databases to prediction models. Similar to decision tree methods, the
pharmacophore point filter provides a detailed structural reason for the classification of each
molecule as drug or nondrug. The pharmacophore point filter results are compared to neural
net filter results. A statistically significant overlap between compounds recognized as drug-
like validates both approaches. The pharmacophore point filter complements neural net
approaches as well as property profiling approaches used as drug-likeness filters in compound
library analysis and design.

Introduction

High-throughput screening (HTS) and combinatorial
chemistry have become cornerstones in drug discovery.1-3

With an increasing choice of compounds that can be
synthesized and screened, it becomes more important
to evaluate and enhance their chances to serve as lead
structures in a drug discovery program. Attempts have
been made to design screening libraries, mainly by
maximizing diversity, to improve the screening hit rate
beyond that of random libraries.4-7 However, the gen-
eral success of these approaches has yet to be proven.8
Independent of hit rate and diversity, the quality of the
hits in an HTS screen is crucial to identify a lead
compound for drug discovery. That is, a screening
library should be designed such that the chance of an

HTS hit to be followed up by medicinal chemistry as a
lead compound is increased. A molecule with such
characteristics is generally referred to as “drug-like”.
This term includes the synthetic accessibility of the
compound and its analogues. In addition, drug-like
compounds are expected to meet ADME (absorption,
distribution, metabolism, excretion) and toxicology pro-
files.9,10 Several efforts have been made to invent
computational filter cascades that discard compounds
in databases that are not drug-like.11 A recent review
by Walters and co-workers describes methods to recog-
nize drug-likeness by simple counting methods, func-
tional group filters, chemistry space evaluation meth-
ods, and neural networks.12 Therefore, we mention here
only briefly the most promising attempts to classify
drugs and nondrugs. Lipinski and co-workers have
described the perhaps most famous set of counting rules
to filter out compounds likely to show poor absorption
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properties.13 Filters on molecular weight, logP, number
of hydrogen bond donors, hydrogen bond acceptor, and
similar descriptors used by others14,15 such as number
of rotatable bonds, number of rigid bonds, number of
rings in a molecule, or charges per molecule mainly
address possible absorption issues but cannot easily
discriminate between drugs and nondrugs. A successful
method to distinguish between drugs and nondrugs has
been established in parallel by Ajay and co-workers16

and Sadowski and Kubinyi17 employing neural net
approaches together with topological descriptors such
as ISIS keys18 and Ghose and Crippen atom types19 to
code the molecular structures. The neural net classifica-
tion method has been found to discriminate between
drug-like chemical matter represented by databases
such as the CMC (Comprehensive Medicinal Chemis-
try),20 the MDDR (MACCS-II Drug Data Report),21 the
WDI (World Drug Index),22 and nondrug-like chemical
matter represented by databases such as the ACD
(Available Chemicals Directory).23 Eighty to ninety
percent of the compounds in those databases have been
correctly classified according to their heritage in a drug
or nondrug database. While this is a very encouraging
result, the neural net approach has some drawbacks
coming from its inability to provide discernible rules
directly related to the chemical structure of the classi-
fied compounds and from its database bias that may
limit its use further discussed below.

Gillet and co-workers have achieved good separation
of drugs and nondrugs using a limited set of property
descriptors and a genetic algorithm.24 Ghose and co-
workers have presented an iterative fitting study to
quantitatively discriminate between drugs and non-
drugs using the CMC and ACD databases. Ghose and
Crippen atom types and additional physicochemical
parameters have been used as descriptors.25 Seventy
five percent of the CMC and twenty five percent of the
ACD have been classified as drug-like. Recursive par-
titioning methods have also been used with excellent
results. Ninety-two percent of compounds of the WDI
and 34% of the ACD databases have been classified as
drug-like by decision tree methods.26 Topological aspects
of drug-like chemical matter have been analyzed re-
cently by Bemis and co-workers,27,28 Ghose and co-
workers,29 as well as Xu and Stevenson.30 Their analy-
ses help to understand which structural elements and
functional groups are contained in drug-like molecules.
However, topological approaches have not been used to
discriminate between drug-like and nondrug-like chemi-
cal matter.

Neural net approaches, decision tree approaches, and
Ghose’s fitting approach are database-dependent. To
complement these successful methods to classify drugs
and nondrugs, it is desirable to identify a database-
independent rule set that can classify drugs versus
nondrugs. Such an expert system would give guidance
to chemists for tasks such as compound acquisition and
library design. The main advantage of an expert system
over a neural net approach is the detailed understand-
ing of the classification reasons for each molecule. In
addition, rules can be easily customized for different
tasks. Therefore, as a first step toward such an expert
system, we have developed here a pharmacophore point
filter that is able to separate drugs from nondrugs based

on simple, database-independent rules with significant
discrimination powersthereby complementing the neu-
ral net and property filter approaches.

Methods
Rule Base for Pharmacophore Point Filter. A set of

simple rules is established to classify molecular structures.
Four functional motifs are defined to be important in drug-
like molecules (Chart 1). The occurrence of these functional
motifs guarantees hydrogen-bonding capabilities that are
essential for specific drug interactions with its targets. These
functional groups can be combined to what we refer to here
as pharmacophore points. These pharmacophore points include
the following functional groups: amine, amide, alcohol, ketone,
sulfone, sulfonamide, carboxylic acid, carbamate, guanidine,
amidine, urea, and ester. Since we try to capture pharma-
cophore points that potentially provide key interactions with
the target protein, other functional groups such as, e.g., nitro
and imine are excluded. A nitro group, for instance, is rarely
seen in a hydrogen-bonding functionality. More often it plays
the role of a substituent that fine-tunes the physicochemical
properties of drug molecules (nitro groups occur only in 2.4%
(MDDR) to 2.7% (CMC) of drug candidates while they are
much more frequent in reagent type databases (nitro groups
occur in 7.9% of compounds in the ACD)). In principle,
heterocyclic groups such as pyridyl or other functional groups
such as nitrile could have been included in the pharmacophore
points. It has been found, however, that those groups are
somewhat indifferent toward distinguishing between drugs
and nondrugs. Pharmacophore points are fused and counted
as one when their heteroatoms are not separated by more than
one carbon atom. The idea of a drug/nondrug classification is
now based on the observation that nondrug molecules are often
underfunctionalized. Therefore, a molecule with less than two
pharmacophore points fails the filter. In addition, molecules
with more than seven pharmacophore points fail also due to
overfunctionalization.

Beyond these main rules, the following additional rules are
applied:

1. Primary, secondary, and tertiary amines are considered
pharmacophore points but not pyrrole, indole, thiazole, isox-
azole, other azoles or diazines.

2. Compounds with more than one carboxylic acid are
dismissed.

3. Compounds without a ring structure are dismissed.
4. Intracyclic amines that occur in the same ring are fused

(e.g., piperazine), i.e., they count as only one pharmacophore
point

A pharmacophore filter has been built by the above rules.
It is called pharmacophore filter 1 (PF1) below. One problem
with the requirement of two pharmacophore points is that
small CNS-active drugs have only one pharmacophore point
and therefore fail PF1. Thus we define here a pharmacophore
filter 2 (PF2) that differs from PF1 in that it allows for
compounds with only one pharmacophore point to pass the
filter provided it is of type carboxylic acid, amine, guanidine,
or amidine.

For a set of six compounds that all have only one pharma-
cophore point, Figure 1 illustrates some classification rules.
Compound 1 contains an amide and a urea that are fused since
the nitrogen atoms are separated by only one carbon. A
thiourea is also recognized but not counted. Compound 2 has
only an amine as a pharmacophore point since nitriles,
pyridines, and imines do not count. Also a nitro group
(compound 3) does not count as a pharmacophore point.
Compound 4 fuses a thiourea with a carbonyl oxygen to one
pharmacophore. The morpholine and thiophene groups are not
recognized as pharmacophore points. In compound 5, a sul-

Chart 1
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fonamide is fused with a urea. In compound 6, all heteroatoms
are fused to one pharmacophore. In addition, compound 6
would be also dismissed due to a missing ring topology in the
structure. Note that thioureas in compounds 1 and 4 are
recognized but not counted. The implementation of the phar-
macophore filter allows for the optional dismissal of thioureas,
thioamides, and compounds with other structural motifs.
However, these additional rules are not applied here because
PF1 and PF2 are not meant to replace purge programs for
reactive compounds.

Preparation of Databases. For test purposes of the
pharmacophore point filter, we use the ACD as the nondrug
database and the CMC and the MDDR as the drug databases.
To further characterize the drug databases, subsets of the
CMC and MDDR have been extracted according to the
combined recommendations of Bemis and Murcko27 and Lip-
inski and co-workers13 and analyzed separately. All databases
have undergone a filter cascade (Table 1) that excludes the
following compounds from each database: compounds with
missing or invalid structures; compounds with atoms other
than C, N, O, S, H, P, Si, Cl, Br, F, I; reactive or otherwise
not suited compounds. In addition, duplicates with CMC and
MDDR have been removed in the ACD. Duplicates with MDDR
have been removed in the CMC. To obtain single-record
entries, counterions and solvent molecules have been removed
from the structures. Self-duplicates have also been removed
in each database.

Implementation of the Pharmacophore Filter. The
pharmacophore filter has been implemented in a simple
FORTRAN program. It uses a multi-structure SD file as input.
The program makes use of topology recognition routines that
have been developed earlier in a different context.31 This
results in very fast data processing and guarantees that the
filter can be used in high throughput. About 100 000 structures
can be processed in 1 min of CPU time on an SGI R10000
processor.

Neural Network Preparation. For comparison purposes
we have trained a neural network to recognize drug-like and
nondrug-like chemical matter following closely the work of

Sadowski and Kubinyi.17 We have constructed a feedforward
neural net with 91 input neurons, five hidden neurons, and
one output neuron. All layers have been connected to each
other. The input neuron has been generated for each molecule
by converting its structural topology into 91 Ghose and
Crippen atom types found to occur at least 20 times in a
training set of 10 000 molecules.19 Note that this setup differs
slightly from the 92 Ghose and Crippen atom types Sadowski
and Kubinyi used in their approach. The modification is
probably due to slightly different statistics of atom type
occurrences in our training set compared to that used by
Sadowski and Kubinyi. Also note that we introduce an
additional atom type for carboxylic acid oxygen atoms. One
should keep in mind that the Ghose and Crippen atom types
were created and optimized as an atom-based parametrization
for logP calculations. Used as topological descriptors here
without any specific parametrization in mind, there is no
particular reason to keep them unchanged. Moreover, we feel
that the carboxylic acid as privileged substructure to bind to
a wide variety of proteins32 deserves its own oxygen atom type
in the current application. At the same time we expect this
slight modification to have negligible consequences for the
neural network classification. The output unit provides a score
between 0.1 (nondrug-like) and 0.9 (drug-like). The neural net
has been trained using the back-propagation with momentum
scheme as implemented in the SNNS program.33 The training
set consists of 5000 randomly chosen ACD compounds and
5000 randomly chosen MDDR compounds, representing non-
drug-like and drug-like chemical matter, respectively. Training
of the neural net has been performed for 2000 cycles with a
learning rate of 0.2 and a momentum term of 0.1. The training
data set has been shuffled before each cycle.

Results and Discussion

We have applied the pharmacophore filters PF1 and
PF2 to the databases prepared in Table 1. Table 2
summarizes the results. Roughly one-third of the pre-
pared ACD compounds pass PF1. In contrast, about two-
thirds of the MDDR and CMC compounds pass PF1. The
drug database subsets contain fewer compounds that
fail the filter indicating that they contain fewer under-
functionalized compounds. This is a statistically sig-
nificant discrimination between drug-like and nondrug-
like compounds based on simple pharmacophore rules.
The MDDR and CMC subsets that contain supposedly
even more drug-like compounds than the entire MDDR
and CMC, respectively, show higher rates of compounds

Figure 1. Examples of ACD compounds with one pharma-
cophore point count only.

Table 1. Database Preparation

number of entries

filter ACD MDDR
MDDR
subseta CMC

CMC
subset

initial 280093 101338 1492 7183 3672
remove salt, compounds
with atoms other than
C, N, O, S, H, P, Si, Cl,
Br, F, I, false entries,
entries without
structure

205049 97114 1492 6675 3672

remove reactive and
unsuited compoundsb

171192 81688 1322 5784 3672

remove self-duplicatesc 157280 78018 1322 5693 3672
remove duplicated with
MDDR

156213 N/A N/A 4807 2617

remove duplicates with
CMC

155402 N/A N/A N/A N/A

a The MDDR and CMC subsets have been prepared according
to the recommendations of Bemis and Murcko27 and Lipinski and
co-workers.13 b Reactive compounds and unsuited lead structures
were removed using a Daylight toolkit program and SMARTS for
reactive and unsuited lead compounds provided by Hann and co-
workers.35 In addition, thioureas and thioamides are dismissed.
c Duplicates were removed using SMILES matching.
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that survive PF1. Most notably, the number of PF1
survivors increases for the CMC subset over the entire
CMC by 10%. Figure 2 shows the distribution of
compounds according to their pharmacophore count for
drug and nondrug databases. Although very different
in size and without overlap of compounds, the drug
databases have very similar pharmacophore count
profiles. For both databases (MDDR and CMC), most
compounds (more than 30%) have a pharmacophore
count of two. In contrast, the nondrug database (ACD)
has more than 40% of its compounds with only one
pharmacophore point count in addition to 15% without
any. These results support the finding that the phar-
macophore point count is a suitable descriptor that is
able to classify between drugs and nondrugs. One
obvious shortcoming of PF1 is that many known drugs
that are active in the central nervous system have only
one pharmacophore. Therefore, a second pharmacophore
filter (PF2) has been used that allows for certain
compounds with only one pharmacophore point to pass
the filter. Table 2 shows that the rate of compounds from
drug databases that pass PF2 increases to 76-85%.
However, the number of compounds from the nondrug
database that pass the filter also increases. PF2 does
not result in an increased discrimination between drugs
and nondrugs. It merely illustrates that filter rules are
adjustable to specific needs.

In comparison to the pharmacophore filter, the neural
network is able to reach a better classification result

between drug-like and nondrug-like compounds similar
in performance to neural nets reported before.16,17 While
the neural net in most cases performs better than the
pharmacophore filter, there are problems attached to
the neural net approach. Although tested on large sets
of the databases that were not used for training, the
neural net is trained to distinguish between “drug-
database-like” (e.g., CMC-like) and “nondrug-database-
like” (e.g., ACD-like) compounds rather than directly
addressing properties of drugs. The approach is only
conceptually “true” if the drug-like (nondrug-like) da-
tabase contains all the drug-like (nondrug-like) chemical
matter and no nondrug-like (drug-like) chemical matter.
One strength of the neural net is its ability to cope with
contaminated data (a small percentage of drug-like
compounds present in nondrug databases and vice
versa). However, it cannot compensate very well for the
absence of chemical classes in databases used for the
training of the neural net. To illustrate this point, we
have trained our neural net on MDDR and ACD data
only, using the CMC database that has no structural
overlap with the MDDR as test set. While 83% of the
MDDR database compounds are classified as being
drug-like by the neural net, only 66% of the CMC
compounds are identified as drug-like (Table 2). This is
a significant shortfall in performance of our neural net.
As a matter of fact, the performance of this CMC-
database-unbiased neural net is now similar to that of
the pharmacophore filter. This experiment illustrates
the database bias of the neural net approach. Of course,
in this particular case the performance of our net could
have been improved by using representatives of the
CMC in the training set. (A neural net trained on ACD
and both MDDR and CMC, but still not fully optimized
for recognizing CMC compounds as drug-like, is able to
identify more than 70% of the CMC as drug-like.)
However, our goal here is not to optimize the neural
net but rather to point out its possible pitfalls.

It may be interesting to ask how far the differences
in distributions of simple physicochemical parameters
of compounds in databases attributed with drug-like-
ness or nondrug-likeness may bias the interpretation
of the neural net or pharmacophore filter classification
results. It may be argued, for example, that since the
ACD (155 402 compounds, Table 1) has an average
molecular weight of only 312 Da compared to the MDDR
(78,018 compounds, Table 1) with 428 Da, molecular
weight as a simple physiochemical descriptor may
dominate the classification decisions. To eliminate mo-
lecular weight as a factor in the classification of
compounds, we choose a subset of the ACD that shows
the same molecular weight distribution as the MDDR.
About 22% of compounds in the MDDR have a molecular
weight above 500 Da; only 4.5% of the compounds in
the ACD have a molecular weight above 500 Da. These
percentages determine the largest subset of the ACD
that can possibly exhibit the same distribution in
molecular weight as the MDDR does. This ACD subset
contains 37 029 compounds. It holds all ACD compounds
with molecular weight above 500 (corresponding to 22%
of the subset) as well as random selections of ACD
compounds in other molecular weight brackets. Apply-
ing PF1 to this ACD subset yields an increase in drug-
like compounds to 45% compared to 36.5% for the entire

Table 2. Compounds Surviving Drug-likeness Filters

compounds surviving filter [%]

no. filter
ACD

155408
MDDR
78028

MDDR
subset
1322

CMC
4708

CMC
subset
2627a

1 pharmacophore
point filter 1b

36.5 65.9 68.6 60.6 67.7

1a pharmacophore
point filter 2c

48.3 78.4 83.5 76.4 85.3

2 neural net filter 25.3 83.7 78.4 66.2 67.9
3 1 and 2 14.9 42.0 58.9 46.4 51.9

(1 and 2 overlap [%]) (59.0) (74.8) (85.9) (76.7) (76.7)
{random overlap [%]} {9.2} {55.2} {53.8} {40.1} {46.0}

a Number of compounds in each database (see Table 1). b Com-
pounds with less than two pharmacophore points are dismissed.
c For compounds with a carboxylic acid, amine, amidine, or
guanidine pharmacophore point, the survival threshold is lowered
to one.

Figure 2. Distribution of pharmacophore points for drug and
nondrug databases.
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ACD. The neural net applied to the ACD subset yields
36% drug-like compounds for the ACD subset compared
to 25% for the entire ACD. The results suggest that both
the neural net as well as the pharmacophore filter
depend on the molecular weight of the compounds. For
the pharmacophore filter, this observation may not be
surprising since larger compounds will on average bear
more functionality. Discrimination against high molec-
ular weight compounds in the ACD subset lowers the
percentage of drug-like compounds to 42%. Introducing
a molecular weight cutoff at 500 Da for drug-like
compounds (‘rule of 5’) somewhat remedies the obvious
molecular weight dependence of PF1 (60.5% of com-
pounds with molecular weight above 500 Da are found
to be drug-like by PF1). The neural net performs
similarly. Applying the same molecular weight cutoff
of 500 Da, 58.5% of the compounds with high molecular
weight in the ACD are recognized as drug-like. The
increase in drug-likeness for the neural net also under-
lines a point made earlier that it is the database-
likeness that is evaluated by the neural net rather than
the drug-likeness. Obviously, the molecular weight-
adjusted ACD subset becomes more drug-like than the
entire ACD. There is also no doubt that the ACD
contains drug-like compounds. So one could also argue
that the increased drug-likeness in the ACD subset as
seen by both the pharmacophore filter and the neural
net are due to the enrichment of drug-like compounds
in the ACD subset. At the same time this finding raises
the question, Is the ACD a good representative of
nondrugs in the first place? An anonymous referee
pointed out that a more desirable data set may consist
of active compounds labeled drug-like and a set of
similar but inactive compounds labeled nondrug-like.
While this seems to be a good idea, there is no rich
selection of data available to assemble such a data set
of tens of thousands of compounds necessary to train a
neural net. So it seems, at least for now, that further
investigations of drug-likeness have to continue using
the somewhat imperfect databases available to us today.

Another shortcoming of the neural net approach is
its “black box” character. One may trace the statistics
of the descriptors used in the input neurons and get
some rough idea about whether a certain compound has
a chance to be classified as drug or nondrug. However,
there is no rigorous way to derive rules due to the
nonlinear character of the network architecture.16,34

This may limit the design power of the neural net
approach, for instance, for combinatorial libraries. Since
the neural net cannot be applied with confidence to the
building blocks alone, there are no direct rules to guide
the design of combinatorial libraries. Virtual libraries
can only be filtered after enumeration; this greatly
complicates the optimization process. This example
illustrates why it is highly desirable to have a database-
independent approach to classify drug-likeness that also
provides a detailed understanding of why a molecule is
classified as drug or nondrug. In light of the above
discussion, we therefore consider the pharmacophore
point filter as a very useful tool even though its
performance may not be as good as that of the neural
net.

It is instructive to further compare the pharmacoph-
ore filter and neural net results by analyzing their

overlap. Table 2 shows that 59% of the ACD compounds
identified by the neural net are also recognized by the
pharmacophore filter as drug-like. This is a significant
enrichment over a random overlap of 9%. The overlap
of drug-like chemical matter identified by the neural net
and the pharmacophore filter are even higher in the case
of the drug databases (75-86%). However, these results
are less impressive because the random overlays are
also significantly higher (40-54%). Nevertheless, the
significant overlap between both approaches shows that
similar characteristics of molecular topology are recog-
nized here by different means, thereby cross-confirming
the validity of both approaches.

The characterization of drugs by structural motifs is
not new. Bemis and Murcko27,28 as well as Ghose and
co-workers29 have systematically studied the topology
of molecules in drug databases. While their studies
clearly help to understand the topology of drug-like
molecules, it is hard to use their data directly for drug/
nondrug discrimination purposes. This point is il-
lustrated best by looking at benzene - the most
frequently found structural motif in drugs. While this,
as much as other hydrophobic ring structures, is a very
important feature of many drugs, benzene also occurs
in more than 60% of compounds in the ACD. Therefore,
benzene as structural motif cannot help to discriminate
between drugs and nondrugs. Attempts have been made
by us to introduce criteria to the pharmacophore filter
based on ring counts in a molecule. Although Oprea
showed recently that the distribution of the number of
ring counts significantly differs between ACD and
MDDR,15 we could not improve the pharmacophore filter
discrimination on those databases by defining additional
ring count rules.

Conclusion
A pharmacophore point filter has been developed that

discriminates significantly between drug-like and non-
drug-like chemical matter based on simple structural
rules. While its performance is weaker than that of a
neural network approach, it is free of the main draw-
backs of the neural net: its “black box” character and
its database bias. Strong overlaps between survivors of
the pharmacophore point filter and survivors of the
neural network filter validate the drug-likeness criteria
of both approaches. In addition to property filters, the
complimentary use of both approaches can greatly
enhance our ability to characterize compounds in ven-
dor, combinatorial, and/or virtual databases.
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