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ABSTRACT: The protozoan cysteine proteases cruzain in Trypanosoma cruzi
and rhodesain in Trypanosoma brucei are therapeutic targets for Chagas
disease and Human African Trypanosomiasis (HAT), respectively. A
benzimidazole series was previously characterized as potent noncovalent
competitive cruzain and rhodesain inhibitors with activity against
trypanosomes. Common structure−activity relationships (SAR) trends and
structural modifications leading to selectivity against each enzyme were
described. However, some of these trends could not be understood based on
the reported binding mode of lead compound 1. Therefore, we employed
microsecond molecular dynamics simulations and free energy calculations to
understand qualitative SAR trends and to quantitatively recapitulate them. Simulations revealed the most stable protein−ligand
interactions and provided insights concerning enzyme selectivity. Calculated relative binding free energies of compound 1
analogs exhibited deviations of 1.1 and 2.2 kcal/mol from the experimental values for cruzain and rhodesain, respectively. These
data encourage prospective thermodynamic integration (TI) studies to optimize this series and facilitate the prioritization of
compounds for synthesis.

■ INTRODUCTION

Trypanosoma cruzi and Trypanosoma brucei are parasitic
protozoa responsible for the life-threatening illnesses Chagas
disease and Human African Trypanosomiasis (HAT),
respectively. Chagas disease is globally prevalent with an
estimation of 8 million people affected in 21 countries and only
two drugs (benznidazole and nifurtimox) available for
treatment.1 HAT is exclusive endemic on the African continent
with a prediction of 60 million people at risk of infection and
four drugs (suramin, pentamidine, melarsoprol, and eflorni-
thine), and one drug combination (nifurtimox/eflornithine)
available.1 Overall, current therapies for these diseases are
limited due to cost, toxicity, narrow or undetermined efficacy,
and the development of drug resistance.1−3 Therefore, there is
a need to develop new and improved drugs for trypanoso-
miases treatment.
Due to their essential role in parasitic survival and infection,

cysteine proteases are relevant targets for antiparasitic
chemotherapy.4−9 Thus, medicinal chemistry studies have
focused on the major cathepsin L-like cysteine proteases

cruzain10 of T. cruzi and rhodesain11 of T. brucei. A variety of
potent inhibitors of both enzymes have been reported,
including vinyl sulfones,12−14 nitriles,15,16 thiosemicarba-
zones,17−20 ketones,6,21,22 benzimidazoles,23−25 and other
varied scaffolds.23,26−31 Since cruzain and rhodesain share
70% sequence identity between them, and have very similar
binding sites, classes of inhibitors active against both proteases
have also been described.12,15,17,26

In previous studies, a novel class of noncovalent
benzimidazole inhibitors was shown to inhibit cruzain23,25

and rhodesain24 at nanomolar concentrations and have
trypanocidal activity. These studies provided a structure−
activity relationship (SAR) for this class against both enzymes,
highlighting common features and modifications that lead to
inhibitor selectivity to each enzyme. For cruzain, QSAR studies
were also reported and highlighted functional groups which
most contribute to potency.32 The binding mode of the lead
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compound 1 (Figure 1) to cruzain has been solved by X-ray
crystallography,23 providing a basis to rationalize the SAR
obtained. However, several experimentally observed SAR
trends could not be explained just based on this information.
For example, the benzimidazole ring was found to be essential
for enzyme inhibition, despite being mostly solvent-exposed.
Therefore, we attempt to comprehend the molecular basis of
some of the SAR trends (Figure 1) and observed inhibitor
selectivity between these enzymes and the benzimidazole series
using computational methods.
Computational methods can help guide different stages in

drug development. Techniques such as molecular docking and
molecular dynamics allow one to describe the intra- and
intermolecular interactions most relevant for potency and
provide insights toward optimization of a scaffold. Free energy
calculations have been increasingly used to provide more
quantitative predictions and to prioritize compounds for
synthesis, based on their estimated potency.33,34 Here, we
first examined the dynamic behavior of lead compound 1 by
Molecular Dynamics (MD), while its energy behavior was
examined by the Molecular Mechanics Poisson−Boltzmann
Surface Area (MMPB/SA) method. With this strategy, we
could describe compound 1 interactions and behavior beyond
the crystallographic binding mode. Also, to better understand
the thermodynamics underlying the binding process between
these inhibitors and both enzymes, Thermodynamic Integra-
tion (TI)35 was employed. TI calculations were performed for
compound 1 analogs that embodied different structural
modifications that produced approximately 10-fold changes

in potency. The computational alchemical free energies
calculations were in good agreement with experimentally
determined IC50 values.

■ RESULTS

Binding Stability and Molecular Interactions of
Compound 1 from MD Simulations. Compound 1 was
the lead compound in this series and the only one for which
the binding mode has been experimentally determined.
Therefore, we chose this molecule as a prototype for our
MD simulations. Computer simulations were performed in
different complex configurations for the enzymes. For cruzain,
the available high-resolution structure of this complex23 was
employed as a starting configuration. Whereas, in the absence
of a crystal structure of compound 1 bound to rhodesain, we
initially performed simulations with the equivalent binding
mode. However, around 250 ns of the simulation the
protonated state of 1 became unstable and detached from
the active site, unlike its correspondent state in cruzain (see
Figure S1). Given the instability of this pose, next, we
performed molecular dynamics (MD) of this complex starting
from a putative pose of the ligand in the binding site (see the
Supporting Information). Interestingly, the RMSD between
the initial putative position of the ligand in rhodesain and
compound 1 in the crystallographic configuration was 3.9 Å.
This high RMSD was due to the different positioning of the
benzimidazole ring.
Taking into account the presence of an ionizable nitrogen in

the benzimidazole ring, we investigated the protonation state

Figure 1. Summary of SAR trends for the benzimidazole series against cruzain and rhodesain based on compound 1 structure.

Figure 2. Frequent interactions of compound 1 in the active site of rhodesain and cruzain according to MD analysis.
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of the lead compound 1. Programs Marvin36 and Epik37

indicated the coexistence of two possible ligand states
(protonated and neutral) at the assay pH value of 5.5, and
both were included in the simulations (see the Supporting
Information). In general, the protonated compound 1
produced configurations closer to its crystallographic position
than the neutral one, and it was more stable in comparison to
the starting configuration, suggesting better stability of this
state in complex with the enzymes (Figures S1, S2, and S3).
Significant changes in the hydrogen bond profile were

observed for the different protonation states of 1. When the
ligand was protonated, its linker region was more stably bound
to the enzymes, through hydrogen bonds with Gly-66 and Asp-
161 backbone atoms, as commonly observed in crystallo-
graphic complexes with cruzain13,21−23,38,39 and rhode-
sain.11,13,40 The extra hydrogen atom in the benzimidazole
ring was observed to hydrogen bond to the side chains of Asp-
161 and Ser-64 (Gly-64 in rhodesain), with occupancy
between 45% and 80% of the simulation time. On the other
hand, in simulations with 1 neutral, the benzimidazole nitrogen
hydrogen-bonded mostly to water molecules (Table S1).
To gain further insight into molecular interactions between

1 and the cysteine proteases, we analyzed which close
intermolecular contacts (up to 5 Å) were stable throughout
the simulation. In the simulations with 1 protonated, all atoms
in the bromophenyl ring and the linker stably interacted
(occupancies frequently over 90%) with several protein atoms,
especially in the S2 subsite, while only one carbon from the
benzimidazole interacted with any protein atom with
frequency over 50% (Table S2). The interactions observed
in the MD simulations are summarized in Figure 2.
Comparison of the interactions of the benzimidazole ring in

the two proteases indicates higher solvent exposure in

simulations against cruzain, while when bound to rhodesain
this ring seems to be more buried in the S1′ pocket, as
indicated by more frequent hydrogen bonds and by contacts
between benzimidazole carbons and the side chain of Asp-161
(Tables S1 and S2). This observation provides a possible
explanation for cruzain’s higher tolerance to substituents in the
benzimidazole ring, a notable SAR trend we experimentally
observed in a previous study.24

Energy Behavior of 1 from MMPB/SA. To further
evaluate differences between protonation states of 1 and
determine which residues most contribute to binding, we
employed MMPB/SA.
General energy profiles were similar between both enzymes

(Table S3). When the ligand was in the protonated form, the
electrostatic energy was negative for both cruzain (−291.6 ±
25.6 kcal/mol) and rhodesain (−383.2 ± 18.9 kcal/mol).
Likewise, the solvation free energy was positive for cruzain
(296.4 ± 21.9 kcal/mol) and rhodesain (385.6 ± 16.0 kcal/
mol). These contributions almost neutralized each other.
Similar energetic profiles were also observed for both enzymes
when the neutral state of 1 was considered. As expected, in this
case, both the electrostatic contribution (−18.8 ± 5.7 kcal/mol
and −14.9 ± 5.1 kcal/mol for cruzain and rhodesain,
respectively) and desolvation penalties were much lower
than observed for the protonated ligand. The van der Waals
component was the major contributor to the interaction
energies (−31.4 ± 2.7 kcal/mol and −30.6 ± 2.5 kcal/mol for
cruzain and rhodesain, respectively).
Per-residue energy decomposition (Figure 3) showed that

the contribution from residues to the total energy changed
according to the protonation state of the ligand. As expected,
this was observed primarily for charged residues. When the
ligand was in the protonated form, residues such as Cys-25,

Figure 3. Per-residue energy decomposition of the absolute free energy from MMPB/SA. Residue names in black correspond to cruzain, while the
ones in gray correspond to rhodesain positions.
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Asp-60, and Asp-161 obtained favorable electrostatic energy
(−23.73, −11.50, and −44.80 kcal/mol for cruzain and
−23.78, −14.75, and −50.36 kcal/mol for rhodesain) over
its neutral form (0.44, 0.24, and −1.52 kcal/mol for cruzain
and 0.40, 0.20, and −1.05 kcal/mol for rhodesain). However,
residue electrostatic contributions were almost neutralized by
desolvation penalties (23.75, −11.48, and 44.52 kcal/mol for
cruzain and 23.75, 14.70, and 49.51 kcal/mol for rhodesain),
leaving the van der Waals component as a critical contributor
to the total energy. This component also was the major
contributor to binding for the neutral state of 1, with residues
Gln-159, Leu-160, and Asp-161 providing favorable energy
contributions (−1.24, −3.69, and −1.44 kcal/mol for cruzain
and −1.16, −3.61, and −1.40 kcal/mol for rhodesain).
Furthermore, the per-residue decomposition showed that the
residue differences between rhodesain (Gly-64, Asp-69, Asp-
117, and Ala-208) and cruzain (Ser-64, Asn-69, Glu-117, and
Glu-208) did not grant significant differences in their
contributions to binding.
Overall, the calculated absolute binding free energies,

considering entropic contribution correction from normal
modes analysis, favor the protonated state of ligand 1 (−8.7 ±
5.4 kcal/mol and −7.9 ± 6.8 kcal/mol for rhodesain and
cruzain, respectively) against the neutral state (−6.1 ± 3.8
kcal/mol and −4.4 ± 4.5 kcal/mol for rhodesain and cruzain,
respectively) for binding to both enzymes (Table S3).
Relative Free Energy of Binding from TI Simulations.

Next, we turned into TI alchemical transformations, to
investigate the modifications that significantly impacted
potency against the enzymes. TI calculations were performed
with the protonated ligand, based both on its higher stability
during the simulations and on more favorable calculated
absolute free energies by MMPB/SA. Aiming at quantitatively
recapitulating SAR trends, we organized a workflow for both
enzymes to calculate the relative binding free energy for
compounds with substituents on the phenyl ring (compounds
1, 2, 5, 7, 8, 15, and 16) or with a modification of the linker
between the phenyl and benzimidazole rings (24) (Figure 4).
Depending on the system, the transformations demonstrated
either a higher than 10-fold change (1 ↔ 2 and 1 ↔ 5 in

cruzain; 5 ↔ 7 and 5 ↔ 8 in rhodesain; 15 ↔ 16 and 1 ↔ 24
in both) or little change (up to 4-fold changes for 5 ↔ 7 and 5
↔ 8 in cruzain; 1 ↔ 2 and 1 ↔ 5 in rhodesain; 1 ↔ 15 in
both) in potency between compounds.
For cruzain, good results were obtained as the predicted

values were within 0.2 kcal/mol of their experimental
counterparts, except for two systems (15 ↔ 16 and 1↔ 24)
(Table 1). Lower accuracy was achieved for the rhodesain
calculations; only three out of seven transformations were
within 1.0 kcal/mol of their experimental values (5 ↔ 8, 1 ↔
15, and 1 ↔ 24) (Table 1). Overall, the RMSE (eq 5)
observed was ∼1.1 kcal/mol for cruzain and ∼2.2 kcal/mol for
rhodesain (Figure 5).
Three alchemical transformations (1 ↔ 2, 1 ↔ 5, and 5 ↔

7) were more accurate with cruzain than rhodesain. For
example, with rhodesain, the replacement of fluorine (5) by
iodine (7) at the phenyl ortho position resulted in a 12-fold
higher IC50 value, indicating an unfavorable change
(ΔΔGexperimental = 1.5 kcal/mol). Surprisingly, the calculated
free energy change was −1.6 kcal/mol, suggesting a favorable
transformation. On the other hand, the impact of this
substitution in potency against cruzain was low and precisely
captured by the calculations.
For both enzymes, two alchemical transformations (5 ↔ 8

and 1 ↔ 15) were highly accurate. Replacing the fluorine (5)
by methyl (8) resulted in a low absolute error for cruzain (0.1
kcal/mol) and rhodesain (0.7 kcal/mol). Replacement of the
phenyl with a naphthyl (1↔ 15) followed the same trend with
favorable 1.5 and 1.0 kcal/mol transformations for rhodesain
and cruzain, respectively, both predicted with errors within 0.2
kcal/mol.
Notwithstanding, the overall good agreement between the

TI and experimental results, the free energies of the 15 ↔ 16
transformation, corresponding to the replacement of bromine
with a hydroxyl in the naphthyl-substituted compound, were
poorly predicted for both enzymes (absolute error of over 2.0
kcal/mol). Such large TI errors might be due to the polar
nature of the hydroxyl group, as the transformation step of
recharging the hydroxyl in water produced a value almost three
units over the same transformation in the complex system
(Table S4 and S5). Also, for rhodesain, the calculation
experienced an increase in the vdW-related term (second step
of TI that estimates the contribution of the solvation free
energy for the transformation) of the conversion for the
complex (4.5 kcal/mol) compared to the ligand in water
transformation (2.4 kcal/mol) (Table S4).
To investigate whether the more significant errors obtained

were due to poor sampling, we performed new calculations
adding extra λ-windows for systems where the difference
between calculated and experimental was between 2.0 and 4.0
kcal/mol. However, there was no improvement when more
points were added to the transformation curve (data not
shown). Therefore, either the issue with these systems goes
beyond sampling problems or a much more extensive sampling
might be needed to allow observation of phenomena such as
interconversion between relevant binding modes.
Coherent with this possibility, a slow interconversion

between binding modes was observed when cluster analysis
was performed in the 1000 ns MD simulations of the
protonated state of compound 1 complexed to both enzymes.
Comparison between the most populous cluster representa-
tives of cruzain and rhodesain showed an overlap (Figure 6a
and Tables S6 and S7 and Figures S4, S5, and S6). However,Figure 4. TI transformations workflow.
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these cluster representatives significantly differ to the crystallo-
graphic conformation of 1, due to a different place in the
benzimidazole ring (RMSD over 3.0 Å). Conformations that
closely resembled the crystallographic state (RMSD less than
2.0 Å) were also sampled in the second and third cluster in
cruzain and rhodesain, respectively (Figure 6b); however, their
sample frequency was higher for cruzain (17% vs 1% of the
simulation, Table S6). Such a difference in cluster populations
is in agreement with our analysis of intermolecular interactions,
which indicated higher solvent exposure of the benzimidazole
ring in cruzain simulations.
In addition to the quantitative comparison between

observed and predicted affinities, TI simulations also allowed
analysis of interactions which were frequently observed in this
compound series (Table S8). Similar to the observed for MD
simulations, hydrogen bond interactions between the benzi-
midazole ring NH and side chains of Asp-161 and Ser/Gly-64
were noticed throughout all TI simulations. The interaction

between Gly-66 and the linker carbonyl oxygen was also
observed in all transformations, with higher frequencies for the
rhodesain simulations. Interestingly, alchemical changes with
large TI errors displayed an increase of solvent interactions
with the linker carbonyl oxygen, exposed to solvent due to a
more extended conformation of the ligands.
We also investigated the molecular bases for some observed

SAR and selectivity trends, by analysis of the most populated
clusters and close contacts between each compound and the
two enzymes throughout TI transformations (Table S9).
Experimentally, the transformation 1↔24, in which the linker
ester oxygen is replaced by a carbon atom, reduces potency
against cruzain by 100-fold and against rhodesain by only 12-
fold. Comparison of the most populated clusters throughout
this TI transformation reveals differences in how the
bromophenyl ring is accommodated within the S2 pocket of
the two enzymes. Interestingly, the major clusters in cruzain
represent 73−81% of the simulation, while for rhodesain the
two most populated clusters represent approximately 40% of
the simulation each (Figure S7). Thus, it seems that rhodesain
has a higher tolerance for alterations in the position of the
bromophenyl ring. It is also observed that the linker ester
oxygen is in different positions when bound to the enzymes.
Such a difference might, therefore, be related to its higher
stabilization when binding to cruzain. In the crystallography
complex cruzain-compound 1 (PDB 3KKU), the linker oxygen
is in the vicinity of backbone nitrogens from His162 and
Gly163 (distances of 3.2 and 3.6 Å, respectively). Similar
distances are observed in the simulation of compound 1 bound
to cruzain. On the other hand, these distances are bigger in
simulations of compounds 1 and 24 bound to rhodesain
(Table S10). Consequently, it is possible that in this system
the different positioning of the bromophenyl ring decreases the
importance of electrostatic interactions involving the linker
oxygen from compound 1, reducing the impact of replacing
this atom by a carbon.
Another peculiar SAR trend is observed for transformation 1

↔ 5, in which the replacement of bromine by fluorine causes a
loss of potency in cruzain and an increase in rhodesain. Here,
analysis of the most populated clusters for compounds
involved in the transformation reveals only a small difference
in the position of the halogenated ring (Figure S8). However,
analysis of the close contacts (<5 Å) between the halogens and
each enzyme reveals that this difference is enough to change
the chemical environment of the halogens when bound to each
enzyme (Table S11). We hypothesize that the difference in
SAR may be therefore a consequence of the different position
of the phenyl ring when bound to the enzymes.

Table 1. Relative Free Energy of Binding of Compounds Calculated by TI and Compared to the Experimental Relative Binding
Free Energy

rhodesain cruzain

transformation calculated ΔΔG (kcal/mol) experimental ΔΔG (kcal/mol) |Δx|a calculated ΔΔG (kcal/mol) experimental ΔΔG (kcal/mol) |Δx|a

1 ↔ 2 3.4 ± 0.1 0.2 ± 0.3 3.2 1.4 ± 0.1 1.6 ± 0.2 0.2
1 ↔ 5 1.0 ± 0.1 −0.8 ± 0.3 1.8 1.1 ± 0.2 1.1 ± 0.3 0.0
5 ↔ 7 −1.6 ± 0.1 1.5 ± 0.4 3.1 −0.6 ± 0.1 −0.7 ± 0.3 0.1
5 ↔ 8 0.7 ± 0.1 1.4 ± 0.3 0.7 −0.1 ± 0.1 −0.2 ± 0.5 0.1
1 ↔ 15 −1.5 ± 0.1 −1.5 ± 0.9 0.0 −1.0 ± 0.1 −0.8 ± 0.3 0.2
15 ↔ 16 4.7 ± 0.2 1.4 ± 1.0 3.3 4.6 ± 0.1 2.2 ± 0.3 2.4
1 ↔ 24 1.4 ± 0.1 1.6 ± 0.4 0.2 1.3 ± 0.1 2.7 ± 0.2 1.4

aAbsolute error between the calculated and experimental values.

Figure 5. Comparison between the calculated relative binding free
energy and experimental relative binding free energy. Cruzain and
rhodesain outcomes are indicated by black and white squares,
respectively. Horizontal and vertical lines display the errors in the
experimental and calculated relative binding free energies, respec-
tively.
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■ DISCUSSION

Previous studies revealed that the SAR profile and mechanism
of inhibition of lead compound 1 and its analogs were in
general very similar against rhodesain and cruzain. However,
these studies also provided intriguing results, including SAR
trends which could not be understood either based on the
reported binding mode of lead compound 1 or considering
docking results. Thus, we applied MD simulations to gather
further structural information and better understand SAR
trends. Qualitative trends were interpreted based on the
analysis of stable protein−ligand interactions, while TI
retrospectively recapitulated quantitative patterns.
The systems studied here are challenging cases for

simulations, with ligands that contain an ambiguous proto-
nation state. The nitrogen at position 3 in the benzimidazole
ring has a predicted pKa very close to the assay pH, and it is
predicted to bind near ionizable residues, which could further
cause a pKa shift. Therefore, MD simulations included both
possible protonation states of the ligand and residues Cys-25
and His-162 represented as an ionic pair.41 On the basis of the
analysis of ligand stability, absolute binding free energy
predicted by MMPB/SA, and hydrogen bonding profile, the
protonated state of ligand 1 displayed more favorable energy
behavior for both enzymes. These results are in agreement with
our expectations because the protonated ligand would facilitate
electrostatic interactions due to its additional hydrogen and
positive charge in an overall negatively charged binding site
(Figure S9). More specifically, through the simulations, we
observed that the additional hydrogen interacted with Ser-64
(cruzain), Gly-64 (rhodesain), and Asp-161 (both enzymes),
while in its absence the benzimidazole ring mostly interacts
with solvent molecules. Hence, our results suggest that
compound 1 and its analogs are probably protonated when
bound to both enzymes.
In simulations against both enzymes, the benzimidazole ring

was the ligand region with higher flexibility, whereas the
bromophenyl ring and the linker appear to anchor the
compound in the binding site. The linker amide also seems
to play an important role, through stable hydrogen bond
interactions to the backbone of Gly-66 and Asp-161.

Accordingly, these interactions were observed in the cruzain-
compound 1 crystallographic complex,23 and the carbonyl
amide was shown to be essential for inhibition of both
enzymes.24,25 In addition, both the analysis of close contacts
and MMPB/SA results indicate the importance of van der
Waals contacts with the S2 pocket. A similar result was recently
reported for another class of cruzain inhibitors, in which a
chloroquinoline ring was found to stably interact within the S2
pocket while the substituent in this ring showed high
flexibility.42 These results are in agreement with the known
importance of the S2 pocket for the potency and specificity of
cysteine proteases.43

Despite the high sequence identity between these
trypanosomal proteases, cruzain contains a Glu-208 in the
bottom of the S2 pocket,41 while in rhodesain this residue is
replaced by Ala-208. This change is essential for the ability of
cruzain to recognize both hydrophobic and positively change
moieties in P2,44 and it also results in a considerably more
open S2 subsite in rhodesain. Consequently, we observed a
higher oscillation of the bromophenyl ring in compound 1 in
rhodesain simulations. This single mutation at residue 208 is
also the likely explanation for one of the differences
experimentally observed in the SAR between the enzymes:
rhodesain seems more tolerant of modifications in naphthyl
analogs.
Our simulations also provide a rationale for the importance

of the benzimidazole ring in this compound series. This was a
surprising result from the SAR against both enzymes, as even
modification to a benzoxazole abolishes enzyme inhibition,24,25

while the crystallographic structure indicates that this ring is
very solvent-exposed. The crystal structure was determined at
high resolution, with unambiguous electron density for the
ligand.23 However, crystals were obtained at pH 8.5, in which
the ligand is expected to be neutral. On the other hand, at pH
5.5, simulations with both protonation states of 1 suggest the
highest stability of the protonated compound, and inter-
conversion between the crystallographic binding mode an
alternative binding mode in which the benzimidazole interacts
with the S1’ pocket. The alternative mode resembles docking
predictions described in Ferreira et al.23 when 1 was reported
and obtained by us with several docking programs (unpub-

Figure 6. Outcomes from the cluster analysis of the protonated state of compound 1 in cruzain and rhodesain indicate sampling of a similar
conformation space. (a) First cluster (cluster 0) representatives of both simulations overlap. However, the distance between these conformations to
the crystallographic position of compound 1 is evident. (b) The second (cluster 1) and third (cluster 2) cluster representative structures of cruzain
and rhodesain, respectively, showed very close conformation to the crystallographic one.
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lished results). In this pose, the additional hydrogen is involved
in hydrogen bonds with residues from the S1′ pocket, which
could not be performed by the inactive benzoxazole analog.
It has also been described that the addition of substituents in

the benzimidazole ring had a lower impact on cruzain
inhibition. Such a trend was observed for addition of
substituents on the nitrogen or in the phenyl ring of the
benzimidazole, both for electron-donating and electron-
withdrawing groups.24 In accordance with our MD results,
this might be due to differences in cluster populations observed
against these enzymes, as the benzimidazole ring was less
solvent-exposed in rhodesain simulations, in which it occupied
the S1′ subsite more frequently than in cruzain simulations.
Therefore, this SAR trend seems to be mainly due to steric
effects.
Having analyzed qualitative SAR trends, we moved to TI

alchemical transformations. A good practice in alchemical free
energy calculations is to exploit similarity between states by
removing or decoupling as few atoms as possible.45 Therefore,
we created a workflow which consisted of mostly straightfor-
ward transformations starting from the lead compound 1
which resulted in significant changes in potency. In total, seven
transformations systems were performed in both cruzain and
rhodesain, encompassing the diversity of the analogs inhibitory
potency (Figure 4).
For cruzain, estimated differences in relative binding free

energy were in reasonable agreement with the experimental
IC50 data. Even in the two cases where these values differ by
over 1.0 kcal/mol, it is worth noting the correct prediction on
the qualitative impact of the modifications (i.e., whether they
would improve or reduce potency). Therefore, the TI
outcomes for cruzain agreed with other retrospective studies
in which the error of the calculated free energy of binding was
around 1−2 kcal/mol relative to the experimental data.46−49

These results are especially encouraging when we consider that
the determination of ligand protonation state was not trivial
and most ligands contained halogen atoms for which the
interactions are still challenging for force fields.50

Despite similar trends that were observed in the initial
simulations of 1 bound to cruzain and rhodesain, and the high
residue identity between both enzymes, the precision of the TI
calculations was considerably lower for rhodesain. A possible
explanation for this difference in performance is the absence of
a crystallographic complex. While the available high-resolution
structure of compound 1 in complex to cruzain23 was
employed as a starting configuration for MD simulations,
rhodesain simulations were performed from a putative pose of
ligand 1 in the binding site.
Notably, in this starting configuration for rhodesain

simulations, we observed a different positioning of the
benzimidazole ring than found in cruzain (RMSD of 3.9 Å
from the crystallographic configuration). While a cluster
corresponding to the crystallographic binding mode of 1 in
cruzain has also been observed in rhodesain simulations, its
population represented only 1% of frames, whereas the cluster
considered as the started configuration was observed 85% of
the time. These results suggest a possible difference in relative
contributions of multiple relevant binding modes for cruzain
and rhodesain. This limitation would explain why imperfect
sampling might not have allowed adequate interconversion
between binding modes and resulted in more substantial errors
for some transformations.51,52

■ CONCLUSION

Herein we performed MD simulations to better understand
SAR and selectivity trends between a series of benzimidazoles
and the trypanosomal proteases cruzain and rhodesain.
Despite the challenges faced for TI simulations with these

systems, such as uncertainty on ligand protonation states,
modeling of halogen interactions by force fields, and the
absence of a starting crystallographic binding mode for
rhodesain, the accuracy of the TI calculations is within the
range currently reported in the literature. Results are better for
cruzain, with most absolute errors ≤0.2 kcal/mol.
On the basis of the good overall agreement between the

calculated and experimental binding free energies, the current
data provide a basis for employing similar calculations in
prospective studies to guide potency optimization, in an effort
to generate leads for Chagas disease and HAT.

■ EXPERIMENTAL SECTION

Preparation of Cysteine Protease X-ray Structures for
Computational Assays. Crystal structures of cruzain and
rhodesain were retrieved from the Protein Data Bank,53 being
chosen based on their high resolution. In the case of cruzain,
the structure (PDB code 3KKU23) contains the noncovalent
ligand 1, the lead compound in the series herein studied,
bound to the enzyme active site. The chosen rhodesain
structure (PDB code 2P8640) contains the irreversible pseudo
peptide inhibitor K11002 bound to the active site. The
reported resolution for these X-ray diffraction derived
structures 1.28 and 1.16 Å, respectively.
As there is no crystal structure of compound 1 bound to

rhodesain, we removed K11002 inhibitor from the binding site
of PDB 2P86 and created an apo system structure before MD
simulations were performed. A binary complex formed by
rhodesain and compound 1 was created using molecular
docking (see details in the Molecular Docking section) within
the receptor active site, in which the ten most representative
protein conformations obtained from a previous simulation of
the apo system were considered.
Computational preparation of the proteins consisted of

adding hydrogen atoms to the residues according to acidic
conditions (the assay pH value of 5.5) using the Protonate3D
protocol from MOE.54 All aspartate and glutamate residues
were in their deprotonated forms, except Asp-57 which was
protonated due to its proximity to Asp-60. All arginine and
lysine residues were in the protonated, positively charged,
state. In the active site, the catalytic dyad was considered as a
thiolate-imidazolium ion pair, His-NH+/Cys-S− (His-162-
NH+/Cys-25-S−, cruzain numbering), commonly believed to
exist in cysteine proteases.55,56

Determination of the protonation state of compound 1 at
pH 5.5 was performed with the programs ChemAxon’s
MarvinSketch36 and Schrödinger‘s Epik.37 Ligands were
parametrized using the Generalized Amber Force Field
(GAFF)57 and AM1-BCC58 atomic partial charges were
assigned using the Antechamber59 program. All topologies
and coordinate files for the simulations were created through
the LEaP module. Both LEaP and Antechamber programs are
part of the AmberTools version 14.0.60

Binding Site Definition. We considered as the active site
of cruzain all the residues within 10 Å of compound 1 center of
mass: Gln-19, Gly-23, Cys-25, Trp-26, Ala-27, Ser-29, Asp-60,
Ser-61, Gly-62, Cys-63, Ser-64, Gly-65, Gly-66, Leu-67, Met-
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68, Asn-69, Glu-117, Val-137, Ala-138, Val-139, Asp-140, Ala-
141, Ser-142, Gln-159, Leu-160, Asp-161, His-162, Gly-163,
Val-164, Trp-184, Thr-186, Leu-204, and Glu-208. Consider-
ing the high similarity between cruzain and rhodesain, the
active site for the latter was defined as comprised of those
residues that were structurally aligned to cruzain’s active site.
Most positions contained the same residues, although
differences were found in the following positions for rhodesain:
Phe-61, Gly-64, Asp-69, Asp-117, Ile-137, Thr-142, Asn-186,
and Ala-208.
Molecular Docking. All docking calculations were carried

out with the Glide program, version 6.661−63 employing the XP
algorithm and using the Virtual Screening Workflow that
allows ensemble docking of a ligand library against multiple
rigid receptors. To determine an initial binding mode of
compound 1, ten representative structures were extracted from
the apo-rhodesain molecular dynamics (MD) simulation using
hierarchical clustering. The two best scoring poses were
selected and submitted to additional analysis using a short ten
nanoseconds (ns) molecular dynamics simulation. Outcomes
were compared with cruzain MD simulations of compound 1
(see the Supporting Information).
Molecular Dynamics Simulations. MD simulations were

carried out using the GPU implementation of Particle Mesh
Ewald Molecular Dynamics (PMEMD) in AMBER 14.0.60

Molecular interactions were computed using the Amber 99SB-
ILDN force field64 with the TIP3P65 model for water
molecules. Electrostatic interactions were computed using
the Particle Mesh Ewald (PME)66 method. A cutoff of 8 Å for
nonbonded interactions was employed. Bonds involving
hydrogen atoms were constrained with SHAKE for nonwater
molecules. A truncated periodic octahedral box was used as a
simulation box with a minimum distance of 12 Å between any
box edge and any solute atom.
Minimization occurred with harmonic constraints on protein

heavy atoms. Heating happened in the NVT ensemble from 0
to 300 K using the Langevin thermostat,67 with a collision
frequency set to 2 ps−1. Lastly, an unrestrained equilibration
over 1 ns in the NPT ensemble with a target pressure of 1 bar
and 2 ps coupling time was applied. The details of the
extensive equilibration protocol applied here can be found in
Wallnoefer et al.68 The final coordinates of the minimization
and equilibration protocol were then used to complete 1000 ns
at 300 K maintained by the Langevin thermostat67 using a time
step of 2 fs. Atomic coordinates and velocities were recorded
every 20 ps.
Trajectories analysis were performed by cpptraj,69 also part

of the AmberTools version 14.0.60 Hydrogen bond analysis
was performed with cpptraj version 17.00 (command hbond
paired with nointramol) allowing one to track only
intermolecular interactions between the ligand and the
enzymes. This version of cpptraj was also used to track close
contacts (distance <5.0 Å) formed by the ligand (command
nativecontacts). VMD70 was used to visualize the trajectories.
Root-mean-square deviations (RMSD) between heavy atoms
of the ligand, extracted from simulation frames, were submitted
to the Hungarian symmetry-correct heavy atom algorithm71

using DOCK672 and plotted with program R.73 To group
similar conformations of the protonated state of compound 1
during the simulations, the trajectories were clustered by
performing clustering analysis using the DBScan clustering
algorithm74 available through AmberTools with a cutoff value
of 1.2 Å.

MMPB/SA Calculations. To further characterize the
interaction of compound 1 with both enzymes, we performed
MMPB/SA calculations to qualitatively determine the most
significant contributors to the free energies of binding through
MD simulations.75 The Molecular Mechanics Poisson−
Boltzmann Surface Area (MMPB/SA) are postprocessing
end-state approaches to compute free energies of molecules
in solution, characterized by the use of Poisson−Boltzmann
(PB)76 methods. In this approach, the average interaction
energies between receptor and ligand are usually obtained by
performing calculations on an ensemble of uncorrelated
snapshots collected from an equilibrated MD or Monte
Carlo simulation. The interaction energy and solvation free
energy for the complex, receptor, ligand and their resulting
averages were calculated using the MMPBSA.py script75

available through the AMBER distribution.
The polar contribution to the solvation free energy was

computed by solving the linearized PB equation using Parse
radii and a solvent probe radius of 1.4 Å. The dielectric
constant was set to 1.0 for the interior of solutes (interior of
protein) and 80.0 for the solvent. The nonpolar solvation
contribution was determined using a solvent-accessible surface
area (SASA) term where the surface tension proportionality
constant was set to 0.00542 kcal/(mol Å−2) and the offset
value was set to 0.92 kcal/mol.75 The snapshots for all three
species were obtained from a single trajectory, the so-called
single trajectory approach. We extracted one snapshot every 2
ns from the 1000 ns MD simulation. The entropy correction
term to the free energies was computed using the normal mode
approximation using the mmpbsa_py_nabnmode program
included with AmberTools.60 In this method, the vibrational
frequencies of normal modes can be calculated at varied local
minima of the potential energy surface, and from standard
formulas the vibrational entropy contribution can be
approximated.75 Since estimation by normal modes are time-
consuming, we used a maximum of 200 frames from the ones
selected in the PB calculation. The binding energies were also
decomposed into contributions of individual residues using the
MMPBSA.py75 script by applying the so-called per-residue
decomposition. However, due to the script limitations entropy
correction was not included in the energy decomposition.

Thermodynamic Integration (TI). To assess the change
in the biding free energy between two compounds in the
benzimidazole series, relative free energy calculations were
performed by thermodynamic integration (TI). In this
method, simulations are usually carried out by visiting a series
of nonphysical intermediate states connecting the real end
states A and B.77 The free energy difference between two states
described by two potential functions VA and VB, corresponding
to states A and B, respectively, is given by

G
V

V V V
( )

d ; (1 )
0

1

m m A m B∫ λ
λΔ = ∂ λ

∂
λ = − λ +

λ (1)

where the coupling parameter λ varies from 0 to 1,78 and Vm
represents the combined linear potential energy. The angular
brackets indicate a Boltzmann-weighted ensemble average
taken at a given λ-value. The integral in (eq 1) generally
cannot be solved analytically. Therefore, the trapezoid rule was
chosen as the numeric integration method.
As free energy is a state function, the ΔΔG variation can be

rigorously calculated according to eq 277 that is based on a
thermodynamic cycle:
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where ΔΔGtheoretical means the computed relative binding free
energies, ΔGA and ΔGB stand for the binding of two different
ligands to a receptor, while ΔGC and ΔGS are transformations
from one ligand to the other bound to the host molecule or
simply solvated in water, respectively.
TI simulations were carried out by the CPU implementation

of PMEMD in AMBER 14.0 using a dual-topology and
multistep approach,79 keeping the same parameters utilized in
previous MD simulations (see Supporting Information). For
each λi-window, initial coordinates were optimized by 1000
steps of steepest descent algorithm. Each system was heated
from 0 to 300 K over 250 ps, and an additional equilibration
simulation was performed to adjust the density in the NPT
ensemble for more 250 ps.
For the two systems, the ligand in solution and the ligand−

receptor complex, the simulation time to each λ-window was
set to 0.5 ns for switching the charge on and off. Afterward, the
vdW-transformation stage was assigned to take one nano-
second for each λ-window.
In total, 21 λ-windows for each ligand transformation were

performed in steps of Δλ = 0.05. Forward (A → B) and
backward (B → A) transformations were calculated, where A
and B represent the initial and final states, respectively, and
results are shown as the average of both.
The statistical error can be calculated as the square root of a

weighted sum of the variances corresponding to the
intermediate λ-states:

wG
2 2∑σ σ=

λ
λ λΔ

(3)

where σλ is the standard error of the mean for the ∂V/∂λ values
of the λth window. To compare computational results to the
TI outcomes, we used the IC50 values of the transforming
compounds to estimate the experimental relative free energy of
binding between a pair of molecules according to eq 4,

G kT ln
IC

ICexperimental
50,1

50,2
ΔΔ = −

(4)

where IC50,1 and IC50,2 correspond to compounds 1 and 2,
respectively. k is the Boltzmann constant, and T the absolute
temperature.
The Root-Mean-Square-Error (RMSE) between the exper-

imental and calculated free energies was also computed and
determined by

N
G GRMSE

1
( )

N

i 1
experimental theoretical

2∑= ΔΔ −ΔΔ
= (5)

where N is the number of TI transformations.
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Luzhkov, V. B.; Åqvist, J. Free Energy Calculations and Ligand
Binding. Adv. Protein Chem. 2003, 66, 123−158.
(79) Kaus, J. W.; Pierce, L. T.; Walker, R. C.; McCammon, J. A.
Improving the Efficiency of Free Energy Calculations in the Amber
Molecular Dynamics Package. J. Chem. Theory Comput. 2013, 9 (9),
4131−4139.

Journal of Chemical Information and Modeling Article

DOI: 10.1021/acs.jcim.8b00557
J. Chem. Inf. Model. 2019, 59, 137−148

148

http://www.R-project.org/
http://dx.doi.org/10.1021/acs.jcim.8b00557

