
Ten years have passed since the publication of the ‘rule 
of five’ physical property guidelines for drug permea
bility1,2. The rule of five, which was derived from a 
database of clinical candidates reaching Phase II trials or 
further, states that poor absorption or permeability are 
more likely when cLogP (the calculated 1octanol–water 
partition coefficient) is >5; molecular mass is >500 daltons 
(Da); the number of hydrogenbond donors (OH plus 
NH count) is >5; and the number of hydrogenbond 
acceptors (O plus N atoms) is >10 (Refs 1,2). Although the 
ruleoffive properties are interrelated (cLogP actually  
being a composite property dependent on molecular 
size, polarity and hydrogen bonding3), its conceptual 
simplicity and ease of calculation has made it the leading 
measure of druglikeness, with the original article having 
more than 1,500 literature citations. 

The physicochemical profiles of oral drugs4–6 are con
sistent with the rule of five, and recent studies on drug 
absorption have also highlighted the importance of polar 
surface area (PSA), which is closely correlated to O plus 
N atom count, and LogD (1octanol–water coefficient at 
various pH values)7,8. Overall oral bioavailability depends 
not just on absorption but also on dissolution, gut transit  
time and firstpass metabolism, so it is perhaps surpris
ing that rat bioavailability can be categorized by simple 
physical properties such as PSA and rotatable bonds9,10, 
and number of ruleoffive violations, PSA and ioniza
tion state11. However, these models do not readily explain 
human bioavailability data12. One further aspect that has 
received less attention is that bulk molecular properties 
are relevant to drug safety as well as pharmacokinetics and 

metabolism: marketed oral drugs, which are ruleoffive 
compliant4–6, have by definition successfully passed 
rigorous toxicological and clinical safety hurdles.

Analyses of druglikeness inevitably depend on the 
medicinal chemistry innovation and prevailing strate
gies of the past. However, it is clear that compounds 
produced by more recent medicinal chemistry efforts 
do not occupy the same chemical space as historical 
drugs. From three studies of oral drugs4–6, the mean 
cLogP values were 2.3, 2.5 and 2.5 and mean molecular 
masses were 333, 337 and 344 Da. By contrast, 1,117 
GlaxoSmithKline compounds9 and 553 Abbott com
pounds11 that had advanced to pharmacokinetic studies 
had, respectively, mean cLogP values of 4.3 and 3.9, and 
molecular mass values of 480 and 434 Da. Additionally, 
a group of 1,680 optimized compounds from the recent 
medicinal chemistry literature had a mean cLogP of 4.0 
and molecular mass of 435 Da13; and in another literature 
study, more than 50% of compounds with high potency 
had cLogP values >4.25 and molecular mass values 
>425 Da14. Drugs and research compounds also differ 
in physicochemical properties between target protein 
classes13,15,16 and therapy areas17. Molecular mass and 
other properties of oral drugs6,17, as well as of literature 
compounds16, are also increasing with time. 

These changes are potentially a concern because 
physical property inflation may prove detrimental 
to the health of drug development pipelines. Several 
studies4,14,16,18 of compounds in development concur 
that mean molecular mass declines as compounds 
progress through Phase I, II and III; moreover, the more 
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LogP
Log of the octanol–water 
partition coefficient, which  
is a measure of a drug’s 
lipophilicity. Defined as the 
ratio of un-ionized drug 
distributed between the 
octanol and water phases at 
equilibrium. Higher values 
imply greater lipophilicity.

Molecular mass
The molecular mass of a 
substance, frequently called 
molecular weight, is the mass 
of one molecule of that 
substance, and its units are the 
unified atomic mass unit (u)  
or Dalton (Da), which equals 
1/12 the mass of one atom  
of carbon-12.

Polar surface area
(PsA). This is defined as the 
surface sum over all polar 
atoms, (usually oxygen and 
nitrogen), also including 
attached hydrogens.

The influence of drug-like concepts on 
decision-making in medicinal chemistry
Paul D. Leeson and Brian Springthorpe

Abstract | The application of guidelines linked to the concept of drug-likeness, such as the 
‘rule of five’, has gained wide acceptance as an approach to reduce attrition in drug 
discovery and development. However, despite this acceptance, analysis of recent trends 
reveals that the physical properties of molecules that are currently being synthesized in 
leading drug discovery companies differ significantly from those of recently discovered oral 
drugs and compounds in clinical development. The consequences of the marked increase 
in lipophilicity — the most important drug-like physical property — include a greater 
likelihood of lack of selectivity and attrition in drug development. Tackling the threat of 
compound-related toxicological attrition needs to move to the mainstream of medicinal 
chemistry decision-making.
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Bioavailability
This is the fraction of an oral 
dose that reaches the systemic 
circulation.

Chemical space
This is the space spanned by 
all energetically stable 
stoichiometric combinations of 
electrons, atomic nuclei and 
topologies in molecules. Drug-
like space may contain 1 × 1020 
to 1 × 10200 molecules.  
All these molecules can never 
be made — to date 2.7 × 107 
molecules have been reported.

lipophilic compounds tend to be discontinued at each 
phase4. These observations are likely to be the result of 
developmental selection pressures, combined with the 
increase in physical properties of compounds entering 
drug development.

with a mean time of ~12 years from drug discovery to 
launch, any application of druglike concepts since the late 
1990s will have only had a marginal influence on today’s 
latestage development pipelines. However, there has been 
ample opportunity for druglikeness to have an impact 

 Box 1 | Data collection and analysis

Oral drugs. An oral drugs database containing 2,118 drugs approved worldwide up to June 2007 was assembled from 
the Food and Drug Administration Orange book56 and published databases5,6,57. For oral drugs launched since 1983 
(592 drugs), the year of launch was collected from literature compilations57,58 and the year of first publication of the 
drug (usually a patent6) was obtained from Scifinder59 and the Merck Index60.

Promiscuity data. The Cerep BioPrint database (‘BioPrint’ is a registered trademark of Cerep SA)27,28 contains data 
on 2,133 compounds, mainly existing drugs and reference compounds, which have been tested in an in vitro panel 
of 200 receptor, enzyme and metabolic screens. Promiscuity is defined as the number of hits for each compound, 
for which >30% inhibition was found at a concentration of 10 µM; compounds meeting this level of activity had IC50 
values determined. This is a larger data set than the BioPrint data examined previously (1,098 compounds)29.

Development compounds. Compounds originating with, or associated with, the top 25 pharmaceutical companies61 
and in Phase I or I–II (n = 91), Phase II or II–III (n = 214), and Phase III or preregistration (n = 126) were collected from 
the Prous Science Integrity database (‘Integrity’ is a registered trademark of Prous)57 in July 2007.

Patented compounds. Databases of the most recently published compounds in patent applications originating from four 
major pharmaceutical companies — AstraZeneca, GlaxoSmithKline, Merck and Co., and Pfizer — were curated from two 
sources, Prous Science Integrity57 and GVK Bio62. Prous Science Integrity data were collected from January 2001 to June 
2007; over this time period the four selected companies produced the largest number of patent applications compared 
with other organizations. Prous Science Integrity data include compounds from legacy organizations now merged with 
the selected companies (Merck Frosst, and Merck Sharp and Dohme are abstracted separately and were added to the 
Merck and Co. data). Compounds with molecular mass <1,000 daltons were selected from the earliest phase, defined as 
‘biological testing’ in Prous Science Integrity, which removes patents on existing drugs and development compounds. 
The data were further filtered, by selecting ‘lead compounds’ only — the Prous Science Integrity abstractors selected 
(mostly) a single compound from the patent application, either a specifically claimed compound, or the example with the 
best cited biological activity, or a compound representative of the others in the patent. Finally, basic patent applications, 
filed by the PCT route (Patent Cooperation Treaty for international patent applications, ‘WO’ numbered patents filed from 
2001 onwards, >90% of the total) were selected, providing the year of publication. This resulting database contained 
3,516 entries from 3,389 WO patents (855 AstraZeneca, 921 GlaxoSmithKline, 822 Merck and 918 Pfizer entries).

Unlike Prous Science Integrity, the available GVK Bio database is limited to compounds patented in selected target 
classes only: kinases, GPCRs (G-protein-coupled receptors), proteases, ion channels, transporters, nuclear hormone 
receptors and phosphatases. GVK Bio abstractors do not select specific compounds; instead a comprehensive coverage 
(sometimes limited to 100–200 compounds for a patent application) is provided. The database was searched for WO 
patents from the four selected companies for the period 2003–2007. Legacy and associated organizations appeared to 
be included separately in GVK Bio. Therefore the search terms used included the names Merck & Co, Merck and Co, 
Merck Frosst, and Merck Sharp for Merck; Glaxo and SmithKline for GlaxoSmithKline; Pfizer, Warner–Lambert, Upjohn 
and Pharmacia for Pfizer. AstraZeneca was used as a single search term. Some patent duplications under the different 
legacy organizations were found and removed. The numbers of compounds per patent from these searches ranged from 
one to several hundred; to provide a balanced assessment of each patent, the mean and median physical property data 
per patent were used in addition to the total numbers of compounds. Two GVK Bio databases resulted: GVK compounds 
containing 117,148 compounds (AstraZeneca = 25,233, GlaxoSmithKline = 28,810, Merck = 31,327 and Pfizer = 31,778), 
and GVK patents containing 1,903 WO patents (AstraZeneca = 440, GlaxoSmithKline = 497, Merck = 519 and Pfizer = 447).

In each database, GPCR targets were assigned according to the endogenous ligand — that is, amine, peptide or 
lipid15,63. Kinase, protease, ion channel, transporter and nuclear hormone receptor target classes were also assigned 
to the Prous Science Integrity compounds, based on the abstracted mechanism of action. The GVK Bio assignments of 
these target classes were used as provided. The numbers of compounds and patents and 1983–2007 oral drugs in 
each target class examined is summarized in Supplementary information S4 (table). A random selection of chemical 
structures and patent assignments from the assembled databases were checked for accuracy.

Data analysis. Physical property data were obtained from AstraZeneca’s C-Lab tool, incorporating standard packages 
for LogP calculations (cLogP, ACDLogP), and an in-house algorithm for the distribution coefficient (1-octanol–water 
LogD at pH 7.4). Other well-established molecular properties4–6,9,11 examined were polar surface area (PSA), the 
hydrogen-bond donor and acceptor counts, the numbers of rings and rotational bonds, the Lipinski score (a value of 1 
for each violation of the rule of 5 per molecule, with maximum value of 4), and the charge state (acid, base, quaternary 
base, neutral or zwitterion). Statistical analyses were performed with JMP64 and visualized with Spotfire65. In line with 
recent practice13 we cite median rather than mean physical property values for normally distributed continuous data 
(molecular mass and cLogP), although the use of mean data does not materially change the data or conclusions 
reached. For full statistical details, including promiscuity analyses and the results of paired Student’s t-tests between 
companies from JMP, see Supplementary information S5 (box).
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on current decisionmaking in medicinal chemistry. To 
examine this, we decided to compare the physicochemical 
profiles of recently discovered oral drugs and compounds 
in development with the most contemporary biologically 
active compounds: those published in the current patent 
literature (for a description of data collection and analy
sis, see BOX 1). we chose to look at patent applications for 
small molecules originating from four large multinational 
organizations: AstraZeneca, GlaxoSmithKline, Merck and 
Co., and Pfizer. These companies are the most prolific 
contributors of new patent applications in this field and 
have a spread of therapeutic interests covering most areas 
of current drug discovery, as well as a wealth of knowhow 
in drug discovery and development. we also examine the 
relationship between physical properties and drug promis
cuity, one possible source of toxicological side effects.

Oral drugs
In oral drugs approved since 1983, there are increases 
with publication date6 in three of the four ruleoffive 
properties (molecular mass, O plus N atom count and 
OH plus NH count), whereas one (lipophilicity, cLogP) 
is changing less appreciably (molecular mass and cLogP 
data are shown in fIG. 1). Median molecular mass 
increased significantly on average by 5.2 Da per publica
tion year from 1964–2001, and by 2.2 Da per launch year 
from 1983–2007. Given the large increase in molecular 
mass and small change in cLogP, it is not surprising that 
other related bulk physical properties — that is, PSA, 
rings and rotatable bond count — are also increasing sig
nificantly with publication time, whereas other measures 
of lipophilicity (AZLogD7.4) and percentage of PSA17 
are not (Supplementary information S1 (table)). 

Factors driving the increases in physical properties in 
the most recently discovered oral drugs include a greater 
number of apparently less druggable new targets19,20, for 
which larger and more lipophilic molecules appear to be 
necessary for high affinity binding to active sites — for 
example, HIv protease inhibitors and antagonists of 
peptidic Gproteincoupled receptors (GPCrs) — and 
intensive optimization of specific molecular classes 

Figure 1 | Trends in cLogP and molecular mass in launched drugs. The relationships between median clogP (a) or 
molecular mass (b) and launch or publication dates for 592 oral drugs approved worldwide between 1983 and 2007 are 
shown. The publication data exclude 29 drugs published pre-1964 or post-2001. launch and publication dates differ 
by a median of 10.5 years, consistent with drug development time frames. For each launch year, 10–100% of the drugs 
occupied a median publication time of 20.6 years. Hence, using publication dates6 gives a better view of contemporary 
practice than launch dates. The results of straight line fits are: molecular mass publication: r2 = 0.70, slope = 5.2,  
p <0.0001; molecular mass launch: r2 = 0.27, slope = 2.1, p = 0.0076; clogP publication: r2 = 0.17, slope = 0.034, p = 0.010; 
clogP launch: r2 = 0.095, slope = 0.022, p = 0.13. The size of the squares represents the mean lipinski score with range 0 
(smallest) to 1 (largest) (see also supplementary information s5 (box) panels 1,2).

Figure 2 | Trends in drug approvals and their 
molecular mass. The number of oral drugs approved  
per annum worldwide from 1983 to 2006 and the 
percentage of these drugs that have molecular mass 
<350 Da are shown.
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Pharmacophore
The ensemble of steric and 
electronic features that is 
necessary to ensure optimal 
interactions with a specific 
biological target structure  
and to trigger (or to block)  
its biological response.

with common substructures or pharmacophores17. For 
example, using publication dates from Proudfoot6, there 
are timerelated increases in molecular mass with year of 
publication in benzodiazepines, βadrenoceptor antago
nists, histamine H2 antagonists, dihydropyridine calcium
channel blockers, nonsteroidal antiinflammatory drugs 
and quinolone antibiotics (Supplementary information S2 
(box)).

The reduction in the proportion of launched low
molecularmass oral drugs over time correlates with 
the established decline in new drug launches21 (fIG. 2). 
Although we do not propose that this provides a complete 
explanation of the drop in productivity experienced by the 
pharmaceutical industry, as there are several other poss
ible reasons21, the possibility that it has been an impor
tant contributory factor deserves serious consideration.  

Figure 3 | Promiscuity analysis. Top: relationships between median clogP (a) or molecular mass (b) and promiscuity of 
2,133 drugs and reference compounds in 200 assays from the Cerep BioPrint database. Promiscuity is the number of hits 
for each compound, in which >30% inhibition was found at a concentration of 10 µM. Points are coloured by median ring 
count and sized by either median molecular mass (281.3–582.9 Da) (a); or median clog P (0.63–7.15) (b); promiscuity points 
with <4 compounds are omitted. The results of straight line fits (n = 64) are clogP: slope 16.1, r = 0.83, p = 1.4 × 10–17; 
molecular mass: slope = 0.27, r = 0.46, p = 0.0013. The clogP relationship appears sigmoidal and can be fitted to a logistic 
expression (r = 0.84). Bottom: the effect of ionization state, relationship between median log promiscuity and binned 
clogP (c) and molecular mass (d). labels are the number of compounds per point; points with <4 compounds are omitted. 
The total numbers of compounds (n) in each ionization class and median (mean) promiscuity values are: acids n = 284, 3 
(5.1); bases n = 813, 23 (25.2); neutrals n = 867, 5 (8.4), zwitterions n = 99, 3 (4.7) and quaternary bases n = 70, 10 (19.1). The 
following equation describes promiscuity trends for the whole data set: log Promiscuity = 0.075 clogP – 0.71 A – 0.54  
n – 0.47 Z + 1.00 (n = 2133; r = 0.65; s = 0.42; p for all variables and intercept < 10–25; A, n and Z are indicator variables, set 
equal to 1 for acids, neutrals and zwitterions respectively). see also supplementary information s5 (box) panels 3–6.
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There is ample evidence that more extreme physical 
properties and therefore more complex molecules 
will have concomitantly increased predicted risks to 
developability — including bioavailability, permea
bility, solubility, synthesis and formulation — thereby 
decreasing chances of success through the development 
process4,22.

Promiscuity
The fact that drug lipophilicity is changing less over 
time than other physical properties suggests that this 
is an especially important druglike property, the con
trol of which is important for ultimate success in drug 
development. This is not surprising: the role of LogP in 
influencing drug potency, pharmacokinetics and toxicity 
has been established for many years22–26. This property 
essentially reflects the key event of molecular desolva
tion in transfer from aqueous phases to cell membranes 
and to protein binding sites, which are mostly hydro
phobic in nature. If lipophilicity is too high, there is an 
increased likelihood of binding to multiple targets and 
resultant pharmacologically based toxicology, as well as 
poor solubility and metabolic clearance. 

The Cerep BioPrint database of drugs and reference 
compounds provides a unique opportunity to examine  
the role of physical properties in influencing drug 
promiscuity and side effects27,28. It is clear that overall 
promiscuity is predominantly controlled by lipophilicity  
and ionization state (fIG. 3). Bases and quaternary bases 
are notably more promiscuous than acids, neutral 
compounds or zwitterions (fIG. 3 and Supplementary 
information S3 (box)), but in all ionization classes, pro
miscuity correlates positively with cLogP (or ACDLogP, 
AZLogD7.4 and percentage of PSA, which are correlated 
with cLogP). Interestingly, the number of rings also 
shows a relationship with promiscuity, although this 
trend cannot be distinguished from lipophilicity. 

The overall relationship between promiscuity and 
molecular mass is complex (fIG. 3b,d). Bases show 
optimal promiscuity in the 350–500Da range and 
neutrals appear to be similar; however, with acids, 
there is a positive correlation between promiscuity 
and molecular mass (fIG. 3d). The results in fIG. 3 were 
corroborated by analysis of crossscreening data with 
AstraZeneca project compounds, which showed similar  
overall trends with ionization, cLogP and molecular 
mass. These results contrast with a published analysis29 
of highthroughput screening data, using 220 diverse 
targets and 75,000 compounds, in which promiscuity 
decreased proportionally with increasing molecular 
mass; perhaps the BioPrint data set is too small to reveal 
this trend. In addition to bulk lipophilicity, specific  
threedimensional pharmacophoric and structural 
features including hydrogen bonding, polarizability 
and steric constraints, which are not fully represented 
by molecular mass, will drive the magnitude of binding 
affinity for protein active sites. Promiscuity is necessary 
for the action of some drugs, especially central nervous 
system agents, but it is clear that deliberate design of 
multipleacting compounds at selected targets, an 
attractive therapeutic proposition, is a considerable 

Figure 4 | Trends in clogP and molecular mass in recently patented compounds 
from four pharmaceutical companies. The median values of clogP (a) or molecular 
mass (b) labelled by year obtained from WO patent databases (see BOX 1 for 
explanation of WO patent). Prous science integrity data covers 2001–2006 (blue) 
and GVK Bio patent data 2003–2006 (red). Points are sized by mean lipinksi score  
(a value of 1 for each rule of 5 violation per compound; range here is 0.30–0.74). 
Aggregating the data and comparing companies gives the following statistically 
significant differences (for student’s t test, p values <0.05, see supplementary 
information s5 (box), panels 7–12): Prous science integrity clogP: AstraZeneca 
versus GlaxosmithKline <0.0001; AstraZeneca versus Merck 0.0018; AstraZeneca 
versus Pfizer <0.0001; GlaxosmithKline versus Merck 0.034; GlaxosmithKline versus 
Pfizer <0.0001; Merck versus Pfizer <0.0001. GVK Bio clogP: AstraZeneca versus 
GlaxosmithKline 0.0004; GlaxosmithKline versus Merck 0.036; GlaxosmithKline 
versus Pfizer <0.0001; Merck versus Pfizer <0.0012. Prous science integrity and GVK 
Bio molecular mass: Pfizer versus the other companies <0.0001.
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physicochemical challenge30. Although promiscuity 
will be less important if selectivity for the desired target 
is high, the lesson from this analysis is that the risk of 
unwanted pharmacology increases with lipophilicity 
and is dependent on ionization class66.

Current medicinal chemistry
The four companies with the most prolific contribu
tion to the recent smallmolecule drug discovery patent 
literature have differing yearbyyear physicalproperty 
profiles among their patented compounds (fIG. 4). This 
might be expected given the timescales of discovery 
chemistry and project patent delivery, and overall 
project portfolios in a given year. However, looking 
at the property distributions over the whole period 
examined (2001–2007 for Prous Science Integrity data,  
2003–2007 for GvK Bio data), there are significant 
differences between the companies. The rank order of 
cLogP and molecular mass values agree for both the 
Prous Science Integrity and GvK Bio patent data. For 
median cLogP, GlaxoSmithKline > Merck > AstraZeneca 
> Pfizer; for median molecular mass, GlaxoSmithKline 
= Merck = AstraZeneca > Pfizer. The overall corres
pondence between the two databases provides corrobo
ration for the observed trends. The only differences are 
the AstraZeneca cLogP comparisons with Merck and 
Pfizer, which are statistically different in the Prous 
Science Integrity data (with more data points) but not 
in the GvK Bio patent data. 

Taking the average property values for GvK Bio 
compounds aggregated from all companies confirms that 
the movement of chemical space in current chemistry to 
higher molecular mass and cLogP has progressed even 
further from historical oral drugs, recent oral drugs and 
development compounds. These comparisons are sum
marized in fIG. 5. The median patented compound has 
a cLogP of 4.1 and molecular mass of 450 Da, whereas 
the most recent oral drugs, discovered since 1990, have a 
median cLogP of 3.1 and molecular mass of 432 Da. even 
in the 2001–2006 period, the upward trend in both cLogP 
and molecular mass is continuing in the aggregated Prous 
Science Integrity data.

One reason why physical properties may be increasing 
is that many of today’s drug protein targets are different 
from those explored historically. It is clear that the four 
companies in this study are pursuing kinases and GPCrs 
responding to peptidic ligands as significant compo
nents of their portfolios (Supplementary information S4 
(table)). Among drugs launched since 1983, these classes 
are a minority, with only 7 kinase inhibitors and 14 GPCr 
peptide inhibitors. Comparisons of targetclass property 
profiles of current patents with oral drugs are summa
rized in fIG. 6, using the aggregated data from the four 
companies and the GPCr peptide and kinase data from 
the individual companies. Two main trends emerge from 
fIG. 6: first, the physical properties of most established 
drug classes are being inflated in current chemistry; sec
ond, the company differences seen in all patents persist in 
most cases among the kinase and GPCr peptide targets. 
The major compound target class in oral drugs approved 
since 1983 is the aminergic GPCr receptor (20% of the 
drugs), which is generally considered highly druggable 
as the endogenous ligands (serotonin, noradrenaline, 
histamine and acetylcholine) are small molecules. even 
in this receptor class, both molecular mass and cLogP 
have significantly increased in current chemistry.

The final comparison between the companies is 
perhaps the most interesting. Chemokine GPCr recep
tors, responding to peptide ligands, have been among 
the more difficult target classes in terms of control of 
physical properties of antagonists. The chemokine (CC 
motif) receptor 5 (CCr5) has been an area of consider
able interest for treatment of HIv and rheumatoid 
arthritis, with the Pfizer CCr5 antagonist maraviroc31 
being the most advanced, having recently been approved 
for the treatment of HIv. The four companies arrived at 
the same chemical class of CCr5 antagonist, contain
ing a common phenylpropylpiperidine pharmacophore 
(fIG. 7), as major components of their efforts on this  
target31–34. In this compound class there is a spread of 2.3 
units in cLogP and 110 Da in molecular mass between 
companies (fIG. 7). The physical properties of the CCr5 
phenylpropylpiperidine compounds are statistically  
different by company and this single class of compounds 
mirrors the overall company trends seen in fIG. 4. This 
single target analysis strongly suggests that differences 
in physical property inflation between companies are 
due to differences in local medicinal chemistry practice  
and the emphasis (or not) placed on the control of 
physical properties.

Figure 5 | overall trends in median cLogP and molecular mass in compounds 
from four pharmaceutical companies. The figure compares historical oral drugs, 
compounds in development and in current patents from AstraZeneca, GlaxosmithKline, 
Merck and Pfizer. Points are coloured and labelled by source, and sized by mean lipinksi 
score (a value of 1 for each rule of 5 violation per compound; range here is 0.26–0.74). 
n = number of compounds, or number of patents for GVK Bio. For the aggregated Prous 
science integrity data over the period 2001–2006, there are upward property trends: the 
results of straight line fits of property versus year are molecular mass, slope 2.0 Da (both 
mean, r = 0.61 and median, r = 0.62, not significant) and clogP slope 0.06 (mean, r = 0.81, 
p = 0.05) and 0.02 (median, r = 0.31, not significant).
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Perspectives
Despite the apparent widespread acceptance of druglike 
principles over the past decade, the trends in physical 
property inflation seen with recent oral drugs is con
tinuing in current medicinal chemistry (fIG. 5). why are 
chemists still synthesizing larger and more lipophilic 
compounds? with absorption, distribution, metabolism 
and excretion (ADMe) optimization now a standard 
component of drug discovery programmes22, persistent 
effort may pay off and result in compounds with good 
oral bioavailability that have physical properties in ‘excep
tion chemical space’ versus oral drugs. recent examples 
of highmolecularmass oral drugs include HIv protease 
inhibitors and angiotensin II receptor antagonists; addi
tionally, in a GlaxoSmithKline study, rat bioavailability 
was claimed to be unrelated to molecular mass9. Thus, 
pharmacokinetically acceptable chemical space can be 
found beyond the ruleoffive guidelines. Increasing 
lipophilicity will also tend to increase binding affinity23–26, 
so the pursuit of lipophilic, large, potent and bioavailable 

compounds in current medicinal chemistry programmes 
probably explains the observed property inflation. 

However, the most important challenge to the medi
cinal chemist today is not just obtaining high potency 
and good ADMe, but also delivering candidate drugs 
that will not eventually fail owing to other compound
related properties, especially toxicity. The implications of 
working increasingly closer to the extremities of drug
like chemical space appear serious for overall product
ivity (fIG. 2) and promiscuity leading to increased risks 
of pharmacologically based toxicity (fIG. 3). Although 
more difficult target druggability19,20 is playing a role in 
physicalproperty expansion, the effect of local medicinal  
chemical decisionmaking is significant as shown by 
the differences between companies (fIG. 4). In addition, 
changes in medicinal chemistry practice appear to be 
driving physicalproperty inflation in both newer and 
some older target classes (fIGs 6,7). 

we suggest that compound lipophilicity, as estimated 
by cLogP, is the most important molecular property23–26, 

Figure 6 | Target class trends in cLogP and molecular mass. The median values of clogP (a) and molecular mass (b) 
by drug target class, comparing oral drugs launched from 1983–2007 with individual companies (AstraZeneca, 
GlaxosmithKline (GsK), Merck and Pfizer’s G-protein-coupled (GPCR) peptide and kinase targets) and the aggregated 
company data (all targets). Points coloured by target class, sized by median molecular mass (307.8–531.0 Da) (a); or 
clogP (2.44–5.41) (b); and shaped by source data. Comparison of companies was by student’s t tests (p values, nD = not 
different (p >0.05)), see supplementary information s5 (box), panels 13–24). For GPCR peptides, clogP statistical values 
(Prous science integrity, GVK Bio patents) are: GlaxosmithKline versus Pfizer, 0.012, <0.0001; GlaxosmithKline versus 
AstraZeneca, 0.0032, <0.0001; GlaxosmithKline vs Merck, nD, 0.025; Merck versus Pfizer 0.027, nD; Merck versus 
AstraZeneca 0.011, nD; AstraZeneca versus Pfizer, nD, nD. For molecular mass, statistical values (Prous science 
integrity, GVK Bio patents) are: GlaxosmithKline versus Pfizer, 0.030, 0.0084; GlaxosmithKline versus AstraZeneca, nD, 
nD; GlaxosmithKline versus Merck, <0.0001, 0.0006; Merck versus Pfizer, <0.0001, <0.0001; Merck versus AstraZeneca, 
0.0002, 0.0078; AstraZeneca versus Pfizer,  0.0019, 0.0007. For kinases, clogP statistical values (Prous science integrity, 
GVK Bio patents) are: GlaxosmithKline versus Pfizer, <0.0001, 0.0097; GlaxosmithKline versus AstraZeneca, nD, nD; 
GlaxosmithKline versus Merck, nD, nD; Merck versus Pfizer, <0.0001, nD; Merck versus AstraZeneca, nD, nD; 
AstraZeneca versus Pfizer, <0.0001, 0.0068. For molecular mass, statistical values (Prous science integrity, GVK Bio 
patents) are: GlaxosmithKline versus Pfizer, nD, nD; GlaxosmithKline versus AstraZeneca, 0.0005, <0.0001; 
GlaxosmithKline versus Merck, nD, nD; Merck versus Pfizer, nD, nD; Merck versus AstraZeneca, 0.0002, 0.0002; 
AstraZeneca versus Pfizer, <0.0001, <0.0001. 
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Phospholipidosis
Phospholipidosis is a lipid 
storage disorder in which 
excess phospholipids 
accumulate within cells.  
Drug-induced phospholipidosis 
occurs with many cationic 
amphiphilic drugs.

as it is changing less over time in launched oral drugs 
than other properties (fIG. 1). Lipophilicity plays a domi
nant role in promoting binding to unwanted drug targets 
(fIG. 3). Lipophilic bases can cause cardiovascular toxico
logical effects by binding to the HerG (human ethera
gogorelated potassium channel protein; also known as 
KCNH2) ion channel35 and tissue toxicity by promoting 
cellular phospholipidosis36. But median current compounds 
from medicinal chemistry programmes conducted in 
leading pharmaceutical companies have cLogP values 
that have increased by ~1.5 log units relative to oral drugs 
launched from 1983–2007, and by ~1 log unit relative to 
the most recently discovered oral drugs. In addition, 30% 
of the patented compounds from the four companies in 

this study have cLogP values >5 (the ruleoffive cutoff).  
All these data suggest that the highly lipophilic com
pounds being made in many drug discovery programmes 
today carry increased risks of developmental attrition. 

Ligand efficiency (Le) is an important new concept, 
which estimates the efficiency of a binding interaction 
with respect to the magnitude of ligand physical prop
erties, most notably size (equation 1)37. we propose 
maximizing the minimally acceptable lipophilicity per 
unit of in vitro potency, or ligandlipophilicity efficiency 
(LLe, equation 2)37, as a more important objective for 
lead generation and optimization programmes.

Le = pIC50 (or pKi) ÷ number of heavy atoms (1)
LLe = pIC50 (or pKi) – cLogP (or LogD) (2)

Figure 7 | ccr5 as an example. Representative structures and physical properties of published chemokine (C-C) 
receptor 5 (CCR5) antagonists based on a common phenylpropylpiperidine pharmacophore 1 from Pfizer31, 
AstraZeneca32, Merck33, and GlaxosmithKline (GsK)34. The mean and median values of clogP (a) and molecular mass 
(b) abstracted from the GVK Bio database for all the companies patented CCR5 receptor antagonists containing 
pharmacophore 1. The numbers of phenylpropylpiperidine compounds and the proportion this represents of the 
companies’ total CCR5 patented compounds are: AstraZeneca 1,069, 87%; GlaxosmithKline 690, 46%; Merck 2,467, 
82%; and Pfizer 309, 78%. Error bars are standard errors of the mean. Comparing companies gives the following 
statistically significant paired differences (student’s t test, p values <0.05, see supplementary information s5 (box), 
panels 25,26): clogP: all comparisons p <0.0001, except GlaxosmithKline versus Merck, not significant. Molecular 
mass: all comparisons, p <0.0001.
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The average oral drug with cLogP ~2.5 and potency 
in the range ~1–10 nM suggests an LLe target of ~5–7 
or greater. High in vivo potency has advantages: when 
the total dose in humans is low, adventitious compound
related toxicity is less of an issue38. In essence, the goal for 
optimization is to increase potency without increasing 
lipophilicity at the same time.

The differences between companies in this study 
are intriguing, and are important because the patented 
compound physicochemical profiles, and any potential 
resulting development risks, are likely to be reflected in 
the companies’ pipelines. It is perhaps not surprising that 
the company with the lowest compound molecular mass 
and cLogP is Pfizer, in which the rule of five originated1,2 
and where propertybased design has been practised for 
some time22,39,40.

Identification of the lead compound, or chemical 
starting point, for a drug discovery programme has been 
highlighted recently as a critically important activity,  
reflected by lead generation strategies being widely 
implemented in the pharmaceutical industry41–46. In 
particular, the concepts of leadlikeness47 and fragment
likeness37,48 that followed druglikeness propose that it is 
advantageous to use small, hydrophilic molecules to start 
drug discovery projects. This allows the processes of 
chemical optimization, which frequently increase physi
cal properties13,17,47,49,50, to work within druglike space. 
Perhaps these strategic developments, which clearly 
emphasise ‘small is beautiful,’ have yet to be fully accepted 
or implemented? Medicinal chemists will additionally 
be influenced by other factors in their decisionmaking: 

their and their colleague’s knowledge and experience51, 
their intuition and creativity52, their use of relevant pre
dictive tools39,40, their ability to handle vastly increased 
data flow53 and even their prejudice54. Pursuit of different 
molecular targets does not seem to provide an obvious 
explanation for the differences between companies, as 
the overall trends are similar in current major target 
classes and in a single compound class (fIGs 6,7). Local 
cultures, policies (or lack of them), disease strategies, 
approaches to obtaining intellectual property, as well 
as specific project objectives and the drive for shorter 
drug discovery timelines, will also influence compound 
selection and optimization tactics. 

Conclusion
Physicochemical properties in smallmolecule drug 
discovery are completely under the control of medicinal 
chemists and can easily be calculated before chemical 
synthesis. with judicious selection of lead compounds 
and constant monitoring of physical properties (especially 
lipophilicity) during optimization, medicinal chemists 
have an opportunity to help alleviate the appalling attri
tion rates, estimated at 93–96% (Ref. 55), in clinical drug 
development. A 5% improvement in attrition would 
double the output of new medicines: we suggest this 
might be achieved simply by lowering lipophilicity. It 
is time the medicinal chemistry community used its 
undoubted creative ability to better control physical 
properties, and to tackle the threat of compoundrelated 
toxicological attrition67. Failing to seek better compound 
quality would be irresponsible.
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