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Abstract 

The frequency of chance correlation using partial least squares 
(PLS) has been measured experimentally for variously dimen- 
sioned data, comprising either completely random numbers, 
random numbers containing a perfect correlation within, and 
CoMFA field descriptors. This frequency, much lower than that 
for stepwise multiple regression, is maximal for datasets in 
which the number of descriptors equals the number of com- 
pounds, and surprisingly decreases indefinitely as the number 
of descriptors becomes much greater than the number of 
compounds. However, perfect correlations involving descrip- 
tor subsets are not detected by PLS if the number of irrelevant 
descriptors is excessive. In CoMFA applications, the probabil- 
ity of chance correlation is usually negligible. For example with 
21 compounds a crossvalidated r2 value greater than 0.25 will 
occur by chance in less than 5% of trials. 

Abbreviations and Symbols: PLS, Partial Least Squares analy- 
sis; MR, Multiple Regression; S-MR, Stepwise Multiple 
Regression; CoMFA, Comparative Molecular Field Analysis; 
I$,, crossvalidated r-squared 
Key words: Partial least squares, chance correlation, stepwise 
regression, CoMFA, cross validation 

1 Introduction 

Because many important sets of chemical observations cannot 
be adequately described by existing theory, researchers often 
seek semi-empirical models in which such important but 
uncontrolled observations (dependent variables) may be pre- 
dicted as a linear function of more accessible (independent) 
variables. In the field of medicinal chemistry such models are 
called quantitative structure-activity relationships or QSAR. 
The reliability of the conventional tool for generating such 
models, multiple regression (MR), is well-established for 
situations where the candidate independent variables are much 
fewer in number than the sets of observations (e.g., Hansch 
analysis). However, in the very common situation in which the 
candidate independent variables are numerous, the MR tech- 
nique can only consider small subsets of these independent 
variables, usually selected by a stepwise technique. When the 
candidate variables are interrelated, the subset models are very 
sensitive to small data value changes and are unreliable 
predictors. On the other hand, as the variables become less 
interrelated, the MR models resulting from stepwise selection 
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are increasingly likely to be artifactual or chance correlatioris, 
phenomenologically meaningless and useless for prediction. 

Commonly the significance of an MR model is estimated by 
calculating its F-ratio (ratio of “explained” to “unexplained” 
variance in the dependent variable, weighted by the number of 
parameters used to derive the model) and consulting a 
statistical table to find the probability that a correlation as good 
or better might arise by chance.The suspicion that this classical 
F-test greatly underestimates the true probability of chance 
correlation when stepwise selection precedes a final model led 
Topliss and collaborators [l, 21 to investigate this probability 
directly by simulation studies. They repeatedly filled an array 
with randomly generated numbers, then applied a standard 
stepwise MR algorithm to generate the best linear equation 
relating one column to some subset of the others. Of course, in 
this situation any “good” correlations must be artifactual. As 
feared, the frequency of such chance correlations was found to 
be much higher than might have been expected either intui- 
tively, or as measured by the F-test. For example,within tables 
of random numbers comprising ten rows and ten independent 
variables, more than half the runs yielded an r2 of at least 0.5. 
Another intuitive expectation - that increasing the number of 
candidate variables always increases the frequency of chance 
correlation - was confirmed. 

Klopman and Kalos (31 observed that real sets of independent 
variables tend to be collinear and thus to contain fewer 
opportunities for chance correlations than do random num- 
bers. To assess the probability of chance correlation while 
retaining the distribution properties of “real data”, they 
suggested randomly interchanging the dependent variable 
values. Numerous interchanges would destroy the “true” 
structure-activity relationship, so that the vast majority of any 
correlations observed would be a chance arrangement among 
values which in fact are not related. A few examples using 
stepwise MR suggested that their CASE structural descriptors 
could be used in large number without the very high risk of 
chance correlation found by Topliss, if additional rules-of- 
thumb about F-ratios for adding new independent variables 
were postulated. 

Partial least squares (PLS) is an important new technique [4] 
which seeks such linear models by repeated operations on all of 
the independent variables together, rather than by successively 
including individual variables. Functionally PLS is a superset of 
MR, in that PLS can produce the same results as MR wherever 
MR is applicable. But in contrast with MR, PLS allows any 
number of variables, in either the dependent or the indepen- 
dent block, and is most useful and stable when the variables 
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within either block are intercorrelated. The PLS algorithm is 
described further in the Discussion. 

The complexity of a PLS model is determined by crossvalida- 
tion [5] after each of the repeated operations. Crossvalidation, 
a computationally intensive but simple and direct technique for 
assessing the predictive utility of a model, also known as 
jackknifing or leave-l(n)-out, involves rederiving a model after 
omitting one or more randomly chosen observations, predict- 
ing the omitted dependent values from the model and the 
omitted independent values, and iterating until every observa- 
tion has been omitted and predicted just once, accumulating 
the prediction errors. A crossvalidated rz value (?',) is com- 
puted from the equation: 

?&, = (SD - Press)/SD 

where SD is the sum of the 'squared deviations of each 
dependent value from the mean of all dependent values, and 
Press is the sum of the squared deviations between the actual 
and predicted dependent values computed during the cross 
validation runs. Such a I&, is quite analogous to the familiar 
classical r*, but measures the predictive ability of a model rather 
than its data-fitting-ability. A r& value of zero indicates that 
the model predictions have an average error no better than 
uselessly "predicting" any unknown dependent value to be the 
mean of the known values. A 4. less than zero indicates that 
the average error of prediction is greater than the standard 
deviation of the original dependent values, a predictive 
performance which is worse than useless. 

Intuitively, the crossvalidation technique integral to PLS would 
seem to reduce substantially the probability of chance correla- 
tion relative to MR. However the probability surely is not 
reduced to zero [6] .  For example, if a second column of random 
numbers happens to exactly duplicate a first column, the 
perfect, though chance, correlation observed would also be 
confirmed by crossvalidation. 

The chance correlation issue is of special importance because 
of the increasing usage of the Comparative Molecular Field 
Analysis (CoMFA) technique [7], in which PLS is used to relate 
hundreds or thousands of variables describing the steric and 
electrostatic fields surrounding a molecule to a property such as 
biological activity, for as few as ten compounds. Even though 

the CoMFA correlations in practice often have predictive 
utility, a level of concern about chance correlation remains, 
considering the results of Topliss. (A previous study of chance 
correlation in CoMFA [8] considered only the effect of 
randomizing the independent variables - the molecular fields - 
by perturbing the orientations of one or more compounds.) 

We therefore decided to directly assess the probability of 
chance correlation using PLS with crossvalidation, by simula- 
tion studies similar to those of Topliss and coworkers, as a 
function of the dimensionality of the columns (variables, 
observations) and rows (cases). We also investigated the 
probability of diluting a true correlation, by adding many 
columns of random data to a small number of perfectly 
intercorrelated columns. Finally, because CoMFA variables are 
much more intercorrelated than are random numbers, we 
directly examined chance correlation within the three success- 
ful CoMFA studies [7, 9, 101 both by interchanging correct 
dependent variable values and also by generating random 
dependent variable values. 

While these studies were being assembled for publication, we 
became aware of similar studies being undertaken by Wakeling 
and Morris [ll]. Except for a few interpretative details, it is 
reassuring that these independent studies using a different 
implementation of PLS yield results identical t o  those 
described below. 

2 Methods 

The PLS algorithm, the one included in the QSAR module of 
the Sybyl software, had been validated by the reproduction of 
previously published PLS results and of MR results from other 
commercial software such as SAS (since the Sybyl version of 
PLS transforms the PLS solution back into the original 
measurement space, its output is directly comparable with 
MR). Its crossvalidation procedure is complete, that is, each 
crossvalidation run starts with the initial input data. All studies 
were carried out within Syby15.3 or Sybyl5.5 on an Iris GT-240 
or ESV workstation, procedures being automated by means of 
the Sybyl-Programming Language (SPL). 

Each of a series of data tables of different sizes was repeatctllv 
filled with uniformly distributed random numbers in the raiigc 

Table 1. 'Dimensions of tables containing random numbers only. 

4+ of Rows +k of Independent Variables 

5 3h 5b LO' 15 20 25 30 35 40 45 50 100 150 200" 300" 
10 3b 10" 15b 20 25 30 35 40 45 50 100 150 200.1 3W' 
15 3 5 loh 20b 25 30 35 40 45 50 100 150 200' 300" 
20 3" 5h 10 15h 20h 25 30 35 40 45 50 100 150 200" 
25 20' 25" 30' 35" 
30 25$ u)" 35, 
35 30" 35' 4(r 

Table refilled and analyzed 200 times. All others refillcd and analyzed loo0 timcs. 
May bc compared directly with rcsults from stepwise MR [2]. 
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0.0 to 1.0 [12].The rows of a table correspond to “observations“ 
or, in QSAR, “compounds”; the columns correspond to 
independent variables. One additional column of random 
numbers served as the dependent or target variables.The sizes 
of the various tables studied and the number of trials for each 
size are summarized in Table 1. Since it was noted for smaller 
tables that the highest frequencies of high ?w values occur 
when the number of rows in the table equals the number of 
independent variables, the larger tables of 25,30, and 35 rows 
were generated only with a similar number of columns. 
Because all values were drawn from a population of uniform 
mean and standard deviation, no scaling was applied to any of 
the numbers before analysis. 

For each table, PLS analysis was carried out by performing full 
crossvalidation (leave-I-out) for each successive component, 
until all possible components had been extracted.The value 
recorded for an analysis was the highest observed with any 
number of components (which might be higher than the r&, 
value usually reported by PLS, because conventionally PLS 
halts at the first maximum in r’,). Then the table was refilled 
with a new set of random numbers and the PLS analysis 
repeated. This procedure was repeated 1000 times for each 
table with less than 150 columns and 200 times for larger tables, 
whilst recording the number of times the r&, exceeded the 
0.00,0.05,0.10,0.25,0.50, and0.80thresholdsand theaverage 
and maximum of all positive values. 

In  order to study the effect of noise on PLS detection of perfect 
correlations, 10-row tables were generated in which each 
dependent variable value was defined to be the sum of one or 
more independent variable values.Thus the dependent variable 
was perfectly correlated with one or more independent varia- 
bles combined, but uncorrelated (except by chance) with most 
of the independent variables considered by PLS. (However. 
note that these correlating independent variables are still 
generated randomly and thus are not themselves intercorre- 
lated.) The table dimensions and number of repetitions are 
shown inTable 3. PLS analysesof each table were performed as 
described above. 

For the direct assessment of chance correlation in CoMFA, 
three representative CoMFA data sets were selected, including 
21,37, and 74 compounds (rows).The biological activity values 
were scrambled by performing (2.5 X # compounds) inter- 
changes of randomly selected pairs of rows. PLS was per- 
formed under “standard” CoMFA crossvalidation conditions 
(five crossvalidation groups, extraction of five components, 
omission of any independent variables whose variance was less 
than 2.0, and “CoMFA STD” scaling of independent variables 
so that the total variance of steric and electrostatic field values 
was equal). The rh value recorded was the highest value 
reached before any decline in 8, value (the usual convention 
in PLS) .The scrambling-then-PLS cycle was repeated 400 times 
for the 21-compound data set and 200 times for the other two, 
the distribution of rh values being recorded as in the previous 
studies. A second study of the 21-compound dataset used as 
“dependent variable” values random numbers uniformly dis- 
tributed between 0.0 and 1.0, with the same PLS condi- 
tions, repeated 400 times. 

3 Results 

The results of the purely chance correlation experiments are 
summarized in Table 2. For each table dimension studied (+ 
rows X + independent variables) are given: the percentage of 
times the &exceeded the various thresholds; the average rb; 
and the maximum &.There are three main conclusions from 
these experiments. 

1. Despite the stochastic nature of the process which generated 
these data,Table 2 shows clearly (by scanning the sub-table 
corresponding to some number of rows) that the probability 
of obtaining a ?, of practical interest (greater than 0.25, 
for example) tends to be highest when the number of 
independent variables is equal to the number of columns. 

2. In particular, and counter to expectations based on experi- 
ence with MR,Table 2 demonstrates that the probability of 
chance correlation becomes negligible if the number of 
independent variables sufficiently exceeds the number of 
rows. For example,with a table of ten rows analyzed by PLS, 
to accept a result as significant at the 95% level of 
confidence one would need (conservatively): 
0 More than 150 independent variables if the observed 

0 Either less than about 5 or more than 20 independent 

0 Any number of independent variables if the observed 

3. Finally, as would be expected, the frequency of chance 
correlation for any given number of independent variables 
declines rapidly as the number of rows increases (for 
example, all values in the first row of Table 2, beginning with 
“5 3”, are higher than the corresponding values in the first of 
the rows of Table 2 that begins with “10”). 

was 0.25 or greater; 

variables if the observed ?w was 0.5 or greater; 

?w is 0.8 or more. 

These three conclusions are perhaps most evident when the 
data are graphed. For example, Figure 1 is a three-dimensional 
graph showing the frequency of a r&, greater than 0.25 as a 

40% 

20% 

0% 

/ 

n ” 
100 200 300 

Figure 1. Frequcncy of a chance correlation with a r&, value greater 
than 0.25, as a function of the numbers of rows and columns containing 
random data. using PLS.The figure is bascd on  data inTable 1. Sce the 
text for further discussion. 
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Table 2. Results from PLS analysis of tables containing random numbers only 

# Rows # Indepdt % of r&,: Average Largest 

> 0.00 >0.05 > 0.10 > 0.25 > 0.50 > 0.80 
Variables Positive tW ?cv 

5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 

10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
25 

3 
5 

10 
15 
20 
25 
30 
35 
40 
45 
50 

100 
150 
200 
300 

3 
5 

10 
15 
20 
25 
30 
35 
40 
45 
50 

100 
150 
200 
300 

3 
5 

10 
15 
20 
25 
30 
35 
40 
45 
50 

100 
150 
200 
300 

3 
5 

10 
15 
20 
25 
30 
35 
40 
45 
50 

100 
150 
200 
20 

28.3 
28.3 
25.9 
24.7 
25.1 
26.9 
24.9 
25.4 
23.7 
23.0 
24.0 
19.8 
14.3 
10.0 
8.2 

20.4 
23.6 
33.7 
32.7 
33.4 
35.1 
32.7 
36.1 
36.0 
34.6 
36.4 
33.0 
31.6 
27.6 
21.8 
15.6 
16.3 
23.3 
30.1 
32.4 
27.5 
29.0 
30.9 
32.0 
31.3 
33.1 
31.4 
29.6 
30.2 
31.4 
12.4 
13.3 
17.8 
21.4 
24.3 
25.5 
26.8 
26.5 
28.0 
26.8 
25.0 
29.8 
30.7 
30.3 
18.5 

27.0 
27.1 
23.7 
22.2 
22.7 
23.7 
22.8 
22.4 
21.6 
19.8 
20.8 
15.2 
10.7 
6.6 
5.3 

18.5 
21.3 
31.4 
29.9 
29.9 
31.3 
28.8 
31.8 
31.4 
29.1 
31.1 
25.9 
23.6 
20.6 
13.5 
12.4 
13.2 
19.8 
26.4 
27.5 
24.3 
25.8 
27.5 
27.5 
26.8 
26.5 
26.6 
21.2 
22.6 
20.0 
9.0 
9.9 

14.2 
17.6 
20.1 
22.0 
22.4 
23.2 
23.5 
23.3 
20.7 
23.6 
23.4 
21.9 
14.5 

25.8 
26.3 
22.2 
19.7 
19.7 
20.2 
19.5 
18.4 
18.0 
17.0 
16.7 
10.7 
7.3 
3.6 
2.6 

16.5 
18.1 
28.3 
27.5 
26.2 
27.0 
24.2 
27.8 
26.7 
24.6 
26.2 
20.5 
15.5 
13.8 
6.6 
9.8 

11.0 
16.2 
23.0 
23.9 
21.0 
22.3 
23.3 
23.6 
22.6 
21.4 
19.9 
15.9 
14.9 
11.2 
6.6 
7.3 

10.8 
13.7 
17.6 
18.8 
18.1 
20.3 
19.6 
20.2 
16.7 
18.3 
16.3 
14.4 
10.5 

20.6 
21.1 
16.9 
14.4 
12.8 
12.5 
11.3 
10.1 
10.2 
8.7 
8.4 
4.0 
2.1 
0.9 
0.1 
9.5 

12.0 
20.6 
18.2 
17.4 
16.4 
14.9 
16.7 
15.2 
14.2 
12.1 
6.5 
3.2 
1.7 
0.4 
4.1 
4.7 
9.9 

15.6 
14.5 
11.3 
12.1 
12.5 
12.3 
12.1 
11.5 
6.0 
3.4 
2.5 
1.1 
1.0 
2.3 
4.4 
7.3 

10.6 
9.9 
9.5 

11.1 
9.6 
9.3 
7.7 
5.9 
4.1 
2.2 
5.0 

15.0 
12.3 
8.0 
6.1 
4.6 
4.8 
3.0 
2.6 
2.8 
1.3 
1.7 
0.2 
0.1 
0.0 
0.0 
2.8 
3.7 
9.7 
6.4 
5.9 
3.7 
2.6 
3.5 
2.1 
2.1 
1.2 
0.0 
0.0 
0.0 
0.0 
0.5 
0.9 
3.3 
6.7 
5.2 
2.4 
2.8 
2.5 
1.6 
1.2 
0.9 
0.2 
0.0 
0.0 
0.0 
0.0 
0.1 
0.5 
2.5 
3.5 
2.4 
1.8 
1.6 
1.6 
1.6 
0.8 
0.0 
0.1 
0.0 
1 .o 

I .2 
4.1 
1.8 
0.3 
0.5 
0.3 
0.0 
0.2 
0.1 
0.1 
0.0 
0.0 
0.0 
0.0 
0.0 
0.3 
0.8 
2.3 
0.7 
0.1 
0.1 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.3 
0.9 
0.3 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.3 
0.5 
0.2 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

0.150 
0.132 
0.098 
0.081 
0.072 
0.076 
0.066 
0.061 
0.061 
0.052 
0.051 
0.029 
0.019 
0.010 
0.007 
0.056 
0.068 
0.124 
0.103 
0.098 
0.091 
0.080 
0.091 
0.084 
0.078 
0.074 
0.051 
0.038 
0.031 
0.018 
0.028 
0.031 
0.059 
0.092 
0.086 
0.066 
0.069 
0.073 
0.071 
0.066 
0.066 
0.049 
0.036 
0.034 
0.027 
0.015 
0.019 
0.031 
0.047 
0.063 
0.060 
0.056 
0.060 
0.059 
0.057 
0.048 
0.045 
0.040 
0.034 
0.032 

1.000 
0.992 
0.942 
0.850 
0.920 
0.898 
0.745 
0.895 
0.882 
0.882 
0.795 
0.571 
0.522 
0.435 
0.357 
0.902 
0.964 
0.985 
0.922 
0.817 
0.851 
0.793 
0.741 
0.750 
0.715 
0.653 
0.463 
0.429 
0.395 
0.320 
0.657 
0.673 
0.878 
0.974 
0.885 
0.766 
0.724 
0.683 
0.653 
0.611 
0.640 
0.586 
0.449 
0.383 
0.321 
0.476 
0.597 
0.776 
0.875 
0.996 
0.888 
0.782 
0.742 
0.781 
0.647 
0.594 
0.469 
0.534 
0.394 
0.625 
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Table 2 continued. Results from PLS analysis of tables containing random numbers only 
~~~ ~ 

# Rows # Indepdt % of l&: 

Variables 
> 0.00 

25 25 17.0 
25 30 23.5 
25 35 22.0 
30 25 20.0 
30 30 20.5 
30 35 20.0 
35 30 15.5 
35 35 20.5 
35 40 17.5 

>0.05 > 0.10 

15.5 15.0 
19.0 11.5 
18.0 14.0 
14.0 10.0 
14.5 11.0 
14.5 11.0 
10.0 7.0 
15.5 11.5 
11.0 8.0 

> 0.25 > 0.50 > 0.80 

Average 
Positive 
tcv 

Largest 

r’cv 
7.5 
7.0 
8.0 
4.5 
4.0 
4.5 
2.5 
4.0 
4.5 

1.5 
0.0 
1.0 
1.5 
1.0 
0.5 
0.5 
1 .o 
0.5 

0.0 
0.0 
0.0 
0.0 
0.5 
0.0 
0.0 
0.0 
0.0 

0.041 
0.039 
0.044 
0.033 
0.033 
0.032 
0.022 
0.032 
0.025 

0.649 
0.444 
0.536 
0.649 
0.868 
0.550 
0.684 
0.711 
0.509 

function of the number of rows and number of independent 
variables in the data table. The lines connect results for tables 
having equal numbers of rows. Particularly striking are the 
presence of a maximum in each of the lines and the steady 
decline in the frequency of chance correlation as the number of 
independent variables becomes very large. The decline in 
chance correlation as the number of rows increases is most 
easily appreciated by comparing the heights of the left end- 
points of each of the lines (the apparent jump between 20 and 
25 rows is because the smallest number of independent 
variables studied here changed from 3 to 20). 

A direct comparison of the risk of chance correlation between 
PLS and stepwise MR is also desirable. There were thirteen 
table dimensions common to both our PLS study and the 
stepwise MR study by Topliss and Edwards [2], each noted with 
a (b) in Table 1. Figures 2 and 3 plot the risk of chance 
correlation from stepwise MR against that for PLS over the 
thirteen common table sizes as two relevant indices, the mean 
classical r2 and the frequency of observing a classical r2 greater 
than 0.5. In these plots, the desirable region of low risk values is 
that closest to the origin. (Notice that the PLS and stepwise- 
MR axes are scaled differently, so that “equi-risk” lines have 

I 0 

O.( 

0.00 0.10 0.20 

Figure2. Comparison of the mean rz value derivcd by stcpwise 
multiple regression with the mean ?a value from PLS, for sclccted 
combinations of rows and columns containing random data. The figure 
is based on data from Reference 2 and Table 1. See the text for further 
discussion. 

slopes of around 10 degrees rather than 45 degrees).The arrows 
connect tables having the same number of rows and point 
toward increasing numbers of independent variables. 

Figures 2 and 3 show that, for all comparable table dimensions, 
the risk of chance correlation is much greater with stepwise MR 
than with PLS. For example, with 15 rows and 20 independent 
variables (the point at the tip of the arrow labelled 15), Figure 3 
shows that the frequency of obtaining a classical r2 greater than 
0.5 by chance with stepwise MR is 75% (y coordinate of that 
point), about fifteen times as often as the frequency of 5% for 
I&, with PLS ( x coordinate of the same point). 

The results of the experiments in which the dependent variable 
values equalled the sum of one to three independent variables 
are shown inTable 3. Because these tables intentionally contain 
a perfect correlation, the important question here is “can the 
noise introduced by some larger number of unrelated indepen- 
dent variables prevent PLS from recognizing a ‘true’correlation 
present?” Table 3 shows that this risk certainly cannot be 
ignored. For example, the second row of the table shows that if 
there is one perfectly correlating column amid nine unrelated 
columns, PLS will report a correlation with a I&, of 0.80 or 

2 
S-MR, %r 0.50 

100% 1-1 
1 15 

1 20 Y L O  

“ I  

0% 10% 
0.50 

Figure 3. Comparison of the frcqucncy of rz values greater than 0.5 
derived by stepwise multiple regression with the  frequency of sW va- 
lues greater than 0.5 from PLS, for selected combinations of rows and 
columns containing random data. The figure is based on data from 
Reference 2 and Table I. See the text for further discussion. 
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Table 3. PLS results from diluting tables containing a perfect correlation with random values 

# Cots, sum # Indepdt % of I&: Average Largest 
Correlates Variables Positive 

> 0.50 > 0.80 & & > 0.00 > 0.05 > 0.10 > 0.25 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 

5 
10 
15 
20 
25 
30 
35 
40 
45 
50 

100 
150 
200” 
3w 

3 
5 

10 
15 
20 
25 
30 
35 
40 
45 
50 

100‘ 
150 
2W 
300” 

5 
10 
15 
20 
25 
30 
35 
40 
45 
50 

1W 
15@? 
2 w  
3 w  

100.0 
97.7 
90.6 
83.4 
79.1 
73.9 
70.7 
68.4 
66.1 
64.6 
52.7 
46.0 
40.3 
35.6 

100.0 
100.0 
97.7 
89.5 
81.7 
77.5 
69.1 
68.8 
66.8 
66.4 
62.4 
52.5 
44.5 
36.8 
33.2 
99.9 
97.3 
87.7 
81.8 
75 .O 
70.2 
69.9 
68.6 
65.9 
61.9 
50.9 
43.2 
41.9 
38.5 

100.0 
97.5 
88.7 
80.7 
74.9 
70.4 
66.7 
64.6 
61.1 
58.5 
44.9 
36.1 
29.2 
24.9 

100.0 
100.0 
97.0 
87.9 
78.6 
74.1 
66.6 
64.7 
63.0 
61.8 
57.6 
45 .O 
33.8 
28.8 
22.7 
99.9 
97.0 
85.8 
79.5 
71.5 
67.3 
65 .O 
63.2 
60.7 
56.2 
44.2 
34.8 
31.2 
25.1 

100.0 
96.9 
86.6 
77.7 
70.7 
66.6 
61.5 
59.5 
55.5 
52.9 
35.3 
27.3 
18.9 
14.3 

100.0 
100.0 
96.4 
85.1 
75.1 
70.8 
61.5 
60.4 
58.5 
55.3 
50.7 
37.7 
25.6 
19.6 
14.2 
99.9 
96.1 
83.5 
76.0 
67.5 
62.8 
59.6 
56.4 
53.5 
50.3 
35.4 
28.0 
22.2 
15.1 

100.0 
94.9 
78.9 
64.2 
57.7 
51.4 
43.4 
43.0 
35.6 
33.8 
15.0 
7.8 
2.7 
0.9 

100.0 
100.0 
93.0 
76.1 
62.4 
55.9 
45.2 
43.5 
40.3 
38.8 
31.0 
15.4 
6.3 
2.6 
1.2 

99.9 
94.0 
74.0 
63.8 
54.6 
46.5 
41.6 
39.8 
36.5 
31.1 
15.6 
7.0 
4.2 
1.2 

100.0 
87.3 
56.7 
36.2 
25.4 
18.6 
13.4 
12.7 
8.9 
7.3 
0.5 
0.1 
0.0 
0.0 

100.0 
100.0 
86.0 
52.1 
35.1 
27.0 
16.8 
12.1 
12.3 
9.8 
7.1 
0.9 
0.1 
0.0 
0.0 

99.9 
85.3 
49.8 
37.1 
23.4 
18.3 
14.4 
9.3 
8.7 
4.7 
0.7 
0.1 
0.0 
0.0 

100.0 
55.4 
10.1 
2.8 
1.7 
0.2 
0.1 
0.1 
0.1 
0.0 
0.0 
0.0 
0.0 
0.0, 

100.0 
100.0 
55.1 
10.9 
2.4 
0.9 
0.3 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

99.9 
53.3 
11.8 
3.2 
0.8 
0.2 
0.1 
0.0 
0.1 
0.0 
0.0 
0.0 
0.0 
0.0 

1.OOO 
0.764 
0.491 
0.367 
0.312 
0.269 
0.229 
0.221 
0.191 
0.178 
0.096 
0.065 
0.046 
0.034 
1.OOO 
1.OOO 
0.745 
0.474 
0.358 
0.309 
0.245 
0.226 
0.213 
0.198 
0.168 
0.097 

0.045 
0.032 
0.999 
0.743 
0.461 
0.371 
0.293 
0.250 
0.223 
0.201 
0.190 
0.159 
0.094 
0.066 
0.052 
0.035 

0.061 

1.000 
0.998 
0.969 
0.924 
0.882 
0.847 
0.840 
0.844 
0.857 
0.730 
0.576 
0.536 
0.403 
0.399 
1 .Ooo 
1 .# 
1 .ooo 
0.984 
0.925 
0.906 
0.883 
0.757 
0.785 
0.774 
0.786 
0.593 
0.580 
0.415 
0.369 
1.000 
1 .Ooo 
0.974 
0.906 
0.872 
0.817 
0.857 
0.780 
0.813 
0.712 
0.668 
0.606 
0.429 
0.317 

~~ ~~~ ~~ ~ ~~ 

a Experiment repeated 200 times. All other experiments repeated lo00 times. 

better barely half of the time (55.4%). Even if one accepted 
correlations with a I&, of only 0.25 or better, the fifth row 
shows that one perfectly correlating variable amid twenty 
would be overlooked by PLS almost half the time. In contrast, 
stepwise MR would find all of the perfect correlations involving 
a single independent variable and almost all of those involving 
two or three independent variables. A second important and 
perhaps unexpected result in Table 3 is that the probability of 
PLS recognizing a ‘true’ correlation is not affected by the 
number of variables needed to completely express that corre- 
lation (for example, all values within the same columns of the 
rows labelled 1-10, 2-10, and 3-10 within Table 3 are essen- 
tially identical). 

The results of chance correlation studies with CoMFA appear 
inTable 4. Independent variables based on molecular fields are 
expected to be very much more collinear than random 
numbers, and so the central question is “Are the extensive 
results in Table2 for random numbers at all applicable to 
CoMFA variables, or indeed to any sets of collinear variables?” 
The first three rows of Table 4 describe experiments in which 
correct dependent variable values were randomly scrambled, 
and the last row an experiment identical to the first row except 
the dependent variable values simply were random numbers. 
Comparison of the first and last rows suggests that the method 
of generating random dependent variables does not affect the 
frequency of chance correlation. Comparison of the first three 
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Table 4. CoMFA results with randomized dependent variables 

Data Set =# Rows =# Ind Var + Tries Truer& %of&,: Largest 
Ref =# 4v 

171 

> 0.00 >0.05 >0.10 >0.25 >0.50 

21 105 400.1 0.696 20.0 14.3 10.3 4.5 0.3 0.677 
37 145 200‘ 0.417 15.0 8.5 3.0 0.0 0.0 0.215 

t101 74 156 2w 0.678 9.5 0.5 0.0 0.0 0.0 0.068 
[71 21 105 400b 0.696 17.3 14.0 10.0 3.0 0.5 0.517 

[91 

a The “biological data” were randomly interchanged actual values. 
The “biological data” were random values. 

lines shows, as expected, that more rows strongly reduces the 
frequency of chance correlation. To address the central ques- 
tion about the relevance of random number simulations to 
CoMFA, first notice that the maximum number of independent 
variables in crossvalidated CoMEA-based PLS is “on1y”about a 
hundred (column 3 of Table 4), rather than thousands, because 
around 90% of the lattice intersections have energy variances 
less than2.0 and are omitted.Thus either the first or last line in 
Table 4 may be compared with the line in Table 2 beginning 
with “20 100”. This comparison suggests that, if there is any 
difference between uncorrelated random numbers and corre- 
lated CoMFA field values in the frequency of chance correla- 
tions, chance correlation is more likely with random numbers. 
Are the CoMFA fields really much more intercorrelated than 
random numbers? One very satisfactory method for assessing 
intercorrelation of multivariate data is principal components 
analysis (PCA) (correlation coefficients, though often used for 
this purpose, measure only bivariate correlations and will not 
reveal substantial multivariate intercorrelations that may be 
present within multivariate data [13].) As an alternative to the 
determinant, and in the spirit of the F-ratio, we suggest as a 
“collinearity index”, the ratio of “variance explained by the 
eigenvalues” to “variance unexplained by the eigenvalues”, 
when some standard proportion of the possible eigenvalues, 
say half, has been extracted. The suggested variance ratio is 
easily calculated as “cumulative YO variance explained”/( 100- 
“cumulative % variance explained”). For example, from the 
independent variable values in the 21-compound CoMFA 
analyses cited in Table 4, twenty eigenvalues can be extracted. 
The cumulative YO variance for the first 10 eigenvalues was 
96.5%; the “collinearity index” for these data is 
96.5/(100-96.5) = 27.6. For a conformant matrix of random 
numbers, the cumulative ‘YO variance after 10 eigenvalues was 
66.9%; its collinearity index is 66.9/(100-66.9) = 2.0. In a very 
highly collinear dataset (see reference 13) the collinearity index 
is 165.7. 

4 Discussion 

These empirical findings raise several interrelated questions for 
discussion: 

1) Why does PLS produce a relationship between number of 
independent variables and the probability of chance corre- 
lation which is bimodal,with a maximum when the number 
of independent variables equals the number of rows? 

More columns of randomly generated independent varia- 
bles certainly mean more chances for correlation with some 
dependent column. Why does PLS instead report fewer and 
fewer correlations as more independent variables than rows 
are added to a table? 
What are the practical implications of these findings for 
structure-activity correlation work, using either stepwise 
MR or PLS, and in particular for CoMFA analyses? 

The answers to the first two questions are intimately related to 
the behavior of the PLS algorithm. Qualitatively, PLS may be 
described as similar to principal components analysis (PCA). In 
both PCA and PLS, the fundamental operation is the repeated 
extraction of components, i.e., a linear combination of all 
variables under consideration,with each new component being 
orthogonal to any components previously,abstracted. But in 
PCA each new component includes only as much of the 
variance remaining in the variables as possible, whereas in PLS 
components are extracted, from both dependent and indepen- 
dent variable sets at the same time, in a way which expresses as 
much as possible of the variance which is common to those sets. 
When PLS extracts all mathematically possible components, 
the resulting linear equation is identical to that produced by 
MR using all possible independent variables. However, often 
the crossvalidation criterion limits the number of components 
to less than the maximum. 

Put differently and very roughly, each step (component extrac- 
tion) of PLS may be described as trying to correlate the 
dependent variable(s) with all the independent variables at 
once, in contrast with stepwise MR, which at each step 
identifies the one independent variable that best correlates 
with the dependent variable. 

Given this understanding of the PLS algorithm, one can 
imagine that there are two competing factors that determine 
whether or not a correlation is observed by PLS: 

1) The strength of the “signal”, i.e., the proportion of the 
variance in all of the independent variables together which 
correlates with variance in the dependent variable(s); 

2) The strength of the “noise”, i.e., the proportion of the 
variance in all of the independent variables together which 
does not correlate with variance in the dependent varia- 
ble(s). 

In  qualitative terms, PLS will succeed when the overall 
signal-to-noise ratio is high enough but fail when it is too low. 
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And in fact this is actually what was observed in the experi- 
ments summarized in Tables 3 and 4. As the “noise” resulting 
from additional random numbers increases, the probability 
that PLS detects the correlation which was intentionally always 
present steadily decreased. 

Why does the maximum created by these two opposing trends 
occur within purely random numbers when the numbers of 
independent variables equals the number of rows? Here we can 
offer only a very tentative direction for further investigation. It 
is perhaps significant that this maximum is also the smallest 
number of variables for which a perfect solution can always be 
obtained. In  classical numerical analysis terms, this situation is 
equivalent to a system of n linear equations in n unknowns, 
which is exactly soluble unless the system is degenerate (i.e., 
some of the independent variables are exactly linear interde- 
pendent,which for random numbers is very unlikely). Until this 
point, adding more independent variables of random numbers 
may increase the number of ways in which PLS might find a 
correlation with the dependent variable(s), just as in stepwise 
MR each new independent variable of random numbers 
represents a new opportunity for a correlation with the 
dependent variable. Beyond this point, the situation for 
stepwise MR does not change. But with PLS things are more 
subtle. Each new independent variable does still increase the 
number of possible unique solutions, very rapidly in fact 
because when, say, the fifth independent variable is added to a 
four-row table, there are suddenly five perfect solutions 
(involving independent variable sets 1,2,3,4; 1,2,3,5; 1,2,4,5; 
1.3.4.5; and 2,3,4,5) instead of only one. Perhaps it is this very 
rapid increase in the possible number of solutions which 
constitutes the amplified “noise” that so strongly lowers the 
frequency of chance correlation reported by PLS. 

In any case, these findings have very important implications for 
the practical data analyst, regardless of whether their cause is 
well understood theoretically. Heretofore the danger of chance 
correlation with stepwise MR, and the resulting need for 
“many more rows than independent variables”, has inhibited 
the intellectual development of QSAR. But we have shown 
above that, with PLS, chance correlation decreases as the 
number of irrelevant variables increases beyond the number of 
rows - at least with random numbers, and, from our CoMFA 
results, probably with correlated variables as well. In short, 
with PLS one can use as many independent variables as one 
likes, without increasing the danger of chance correlation. 
Perhaps CoMFA will be only the first of many new QSAR 
approaches which takes advantage of these differences in 
behavior between stepwise MR and PLS. 

The lower risk of chance correlation with PLS might seem to be 
offset by the greater risk of overlooking a “true” correlation, 
which we found to occur when that correlation involved a 
sufficiently small fraction of the total variance among the 
independent variables. As Table 3 shows, if a single column 
among a hundred irrelevant columns highly correlates with the 
dependent variable, PLS will probably not report that “fact”, 
whereas stepwise MR certainly will. However, Topliss et al. 
have already shown that such a “fact” would actually have a 
high risk of being a chance correlation. Of what practical use 
could such a dubious “fact” be? 

Nevertheless, this loss of sensitivity with PLS when “noise” is 
introduced into a “true” correlation does mean that the analyst 
should resist the temptation to add independent variables 
mindlessly. True, the risk of chance correlation does not 
increase, but the increased risk of overlooking a “real” 
correlation must also be recognized. 

In practice, the tendency for real sets of independent variable 
data to be intercorrelated reduces the possibility that PLS will 
overlook a consistent relationship between structure and 
activity. 

Finally, in the specific case of CoMFA, its practitioners should 
be greatly encouraged by the very low frequency of chance 
correlation found with molecular fields as the independent 
variables. In 400 trials with a data set of 21 compounds,Table 4 
shows that any rm of 0.25 or greater was found to be signifi- 
cant “at the 95% level”, and an ?cv value of 0.50 or greater is 
significant “at the 99% level’’. With as many as 74 compounds, 
for significance, even at the 99% level, an r& need be little 
more than positive. 

The tendency for PLS to be misled as irrelevant descriptors are 
added and the signal-to-noise ratio within the independent 
variables decreases is probably the reason for a CoMFA 
anomaly that concerns some researchers. CoMFA descriptors 
are field strength values evaluated on a 3-dimensional recti- 
linear lattice. It is generally expected that if the lattice spacing 
is decreased, the ?&, value should increase. However it more 
often happens that a rather coarse 2 Angstrom grid spacing 
produces a somewhat higher I& than does a 1 Angstrom 
spacing. The current results suggest a reason for this anomaly. 
Because most regions of 3D space have little relevance to the 
observed differences in biological activity, a uniform increase in 
lattice spacing increases the number of noise descriptors much 
more rapidly than those of signal, and so the value is de- 
graded. If this hypothesis is correct, better results should be 
obtained if lattice spacing is decreased only in those 3D regions 
which are found relevant to the biological activity (141. 
Preliminary studies with this strategy do indeed seem effective 
in improving ?&, from CoMFA studies. 

In the more general context of computer-aided drug design, 
these results confirm the growing belief that CoMFA provides 
one test of a proposed “alignment rule”, that is, a procedure for 
selecting conformations and orientations among a set of 
biological ligands. If the CoMFA r&, value is not positive, the 
ligands are not all aligned satisfactorily. These results suggest 
that the converse is also true; if the CoMFA ?- value is po- 
sitive, the alignment is a satisfactory one. However, there is no 
reason to believe that there is only one alignment rule which 
will produce a positive I&, value from a particular set of 
ligands, or even that the highest r’, value corresponds to the 
alignments most likely to actually bind to the receptor. 

5 Conclusion 

Perhaps paradoxically, CoMFA (or any QSAR approach based 
on the application of PLS with crossvalidation to data tables 
containing many more columns than rows) is extraordinarily 
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trustworthy. With data sets of a dozen or more compounds, 
virtually any I& value greater than 0.25 from CoMFA can be 
accepted as very unlikely to have resulted from chance 
correlation. However, there is instead some possibility that 
c O ~ ~  and similar pLs-based variable-intensive approaches 
can overlook a “true” correlation within a set of data. 
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