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21.1 INTRODUCTION

It is less frequent for drug manufacturers and researchers to pay much attention to the
development of drugs having poor pharmacokinetic profiles, because the processes associ-
ated with both the development as well as the discovery of drugs are considered to be
highly costly, which is economically inefficient in the perception of drug developers and
researchers as well (Boobis et al., 2002). Recently, an observable increase has been reported
regarding the application of new industrial and academic models that are being relied on
the study of drug’s pharmacokinetic properties including absorption, distribution, metabo-
lism, excretion, and toxicity (ADMET) (Fig. 21.1) (Ekins et al., 2000). Limitations in the

FIGURE 21.1 A scheme that represents a description of the ADME pharmacokinetic parameters of the drug
and how these parameters affect the drug after oral administration.
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development of new drugs were shown to be caused by the undesirable pharmacokinetic
properties of these drugs, therefore, it has been increasingly demanded to evolve new
approaches that are able to predict drugs’ ADMET properties (Balakumar et al, 2017b;
Butina et al., 2002; Mody et al., 2014; Tekade, 2014, 2015; Choudhury et al., 2016).

The development of ADMET prediction techniques took place in 1863, which was con-
cerned with the traditional determination of the effect of drugs solubility on the toxicity.
Later on, attention was paid for the study of ADMET more specifically, which started by
measuring drugs aqueous solubility in addition to an in vitro testing (Dearden, 2007). A
successful drug development has to involve respectable ADMET properties in addition to
the good efficacy. The employment of new technologies in the prediction of drugs
ADMET properties has taken drug development operations to a higher level. In the past
early decades, computerized prediction techniques were shown to be applied along with
in vivo as well as in vitro tests to facilitate drug discovery and development approaches
(Moroy et al., 2012). In silico techniques have been introduced to the fields of development
and discovery of drugs as a tool that predicts drug’s ADME properties at the early stages
(Boobis et al., 2002).

ADMET data is considered as an essential part of discovering and developing new
drugs. Both in vitro as well as in vivo models provide parameters regarding drugs’
ADMET properties, which in turn can be used to predict drugs’ behavior after administra-
tion. ADMET parameters determine whether drug candidates are to be advanced, held, or
terminated (Zhang et al., 2012). Preclinical data of drugs’ ADMET properties play a role in
the assessment of drugs targeting after administration since pharmacokinetic profiles can
be estimated based on drugs ADMET data. Parameters including the absorption rate, the
deposition, and the metabolism of the drug within the targeted organ are being taken into
consideration when assessing drugs’ exposure in the targeted site of action (Zhuang and
Lu, 2016). In order to develop drugs with desired properties and optimal dosing regimens,
it is very essential to determine the pharmacokinetic properties of these drugs, including
their ADMET (Hop, 2012a,b). Due to various risk factors associated with the development
and discovery of drugs along with the time-consuming processes involved, in vivo models
were conducted to reduce the expected undesired properties of drugs in the preclinical
stages before introducing them to the market (Bohnert and Prakash, 2012).

Nowadays, drug developers are facing serious challenges to develop more efficient as
well as cost-effective drugs as compared to the existing therapies, therefore, a need to opti-
mize physicochemical properties including their bioactivities and the ADMET properties
as well have arisen in order to develop drugs with the least adverse effects (Peach et al.,
2012). Other properties that are taken into account when predicting the behaviors of
newly-developed drugs are related to the size of doses and their frequencies as well.
These properties include drugs’ bioavailability, oral absorption, clearance, volume of dis-
tribution, as well as the penetration through the blood�brain barrier (BBB) (van de
Waterbeemd and Gifford, 2000). One of the most important properties that has to be well-
optimized is the relative solubility of drug substances since both toxicity and drug design
are significantly dependent on it. Various problems were shown to be associated with
poorly soluble drugs, which were reported to cause serious uptake problems as well as
problems during manufacturing and storage (Hewitt et al., 2009). The metabolic stability
of drugs is also considered as a crucial issue that drug developers have to pay great
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attention to because development process success or failure is greatly dependent on the
metabolism profile of these drugs (Peach et al., 2012).

21.2 OVERVIEW OF THE DEVELOPMENT OF
ADMET PREDICTION MODELS

There are various factors that should be taken into consideration when developing an
in silico ADMET prediction model. The characteristics of the model to be developed
depend mainly on the application purposes of the model, for example, the degree of pre-
diction accuracy varies depending on the required prediction speed of the model. In gen-
eral, the higher prediction accuracy the model possesses, the more time-consuming the
model is, because of the more calculations required for the prediction process (Bergström,
2005). Thus, it is important to clearly define the application purposes of the model to be
developed in order to adjust it accordingly. In general, simple models that are fast in cal-
culations are employed at stages where a high number of molecules requires quick assess-
ment of their ADMET properties, while at more advanced stages in the drug development
process, models with a high degree of prediction accuracy are required for the assessment
of the ADMET properties (Ekins et al., 2000). Another important factor is to decide
whether the model will be specific for a certain project where usually similar molecules
are present or whether it will be a global model that is used for the prediction of structur-
ally diverse molecules. Based on the required characteristics of the model, the selection of
a proper set of descriptors to be used in the model and which statistical methods to apply
can be determined to fit the purpose of the model to be developed (Hop, 2012a,b).

21.2.1 Descriptors

Molecular descriptors can be defined as mathematical representations of molecules’
properties that are generated by algorithms. The numerical values of molecular descriptors
are used to quantitatively describe the physical and chemical information of the molecules.
An example of molecular descriptors is the LogP which is a quantitative representation of
the lipophilicity of the molecules, it is obtained by measuring the partitioning of the mole-
cule between an aqueous phase and a lipophilic phase which consists usually of water/n-
octanol. Molecular descriptors can be useful in performing similarity searches in molecular
libraries, as they can find molecules with similar physical or chemical properties based on
their similarity in the descriptors’ values. The molecular descriptors are used in ADMET
prediction models to correlate the structure�property relationship to help in predicting
the ADMET properties of molecules based on their descriptors values (Khan and sylte,
2007).

The molecular descriptors that are used in ADMET models can be classified as being
one-dimensional (1D), two-dimensional (2D), or three-dimensional (3D) descriptors based
on the level of molecular representation required for calculating the descriptor. The 1D
descriptors are the simplest type of molecular descriptors, these represent information that
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are calculated from the molecular formula of the molecule, which includes the count and
type of atoms in the molecule and the molecular weight.

The 2D descriptors are more complex than the 1D descriptors, usually, they represent
molecular information regarding the size, shape, and electronic distribution in the molecule.
Calculating the 2D descriptors depends mainly on the database size, and the calculation of
parts of a molecule in which the data is missing could largely result in a false result.

The 3D descriptors describe mainly properties that are related to the 3D conformation
of the molecule, such as the intramolecular hydrogen bonding. Examples of descriptors
obtained from calculations involving the 3D structure of the molecules are the polar and
nonpolar surface area (PSA and NPSA, respectively). More advanced calculation like
quantum mechanics calculations can be used to obtain 3D descriptors that describe the
valence electron distribution in the molecules (Bergström, 2005).

21.2.2 Datasets

The development of a successful ADMET prediction model requires an accurate dataset
that is suitable for use in the model. The number of the compounds and the structural
diversity in the datasets determines whether the model will be developed as a “local
model,” where it is used for the prediction for a relatively similar class of compounds, or
it will be a “global model” that can be used for the prediction of a different classes of com-
pounds. Local models are generally used during advanced stages in the drug development
process, because these models are specific to a class of similar molecules. While the global
model are beneficial for use when a high number of compounds are present such as in the
initial stages of drug development (Norinder and Bergström, 2007).

21.2.3 Statistical Methods

There are several statistical methods that are usually used in the development of
ADMET prediction models. In the simplest form, a single descriptor is used for the predic-
tion of a process, but generally, several descriptors are used for enhancing the prediction
accuracy. Usually, multivariate data analysis (MVA) is used in this approach which
includes multiple linear regression analysis (MLR) and multiple nonlinear regression anal-
ysis (MNLR). The partial least square (PLS) method represents a more advanced approach
and is generally applied when there is a high number of variables and few observations in
the dataset. This method is usually used in the development of drug absorption predic-
tions models. It is also utilized in the quantitative structure�property relationships
(QSPRs) (Hou et al., 2009).

21.2.4 Model Validation

Before an ADMET prediction model is used, it is important to validate the prediction
ability of the model. One method that is usually applied for the model validation purpose,
is to intentionally not include a portion of the dataset in the model and to use it as a test
for the validation of prediction ability of the model following the model development.
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Another method is to use an external dataset for testing the predictability of the model,
this will validate the ability of the model to predict external datasets that are not part of
the development. One problem associated with the process of model validation, is the
overfitting of the model. It is necessary to avoid overfitting of the model in order to obtain
a model that has useful prediction ability and can be used for the prediction of ADMET
properties of external molecules that are not included in the datasets used during the
model development (Norinder and Bergström, 2007).

21.3 IN SILICO PREDICTION OF PHYSICOCHEMICAL AND
PHARMACOKINETIC PROPERTIES

Increasing studies have been conducted to describe the relationship between the physi-
cochemical properties and the biological behavior of drug therapies. Physicochemical
properties of drugs are manipulated by optimizing the changes in the chemical structures
and their effects on the behavior as well (Wenlock and Barton, 2013). The resultant effect
of a certain administered drug is due to the molecular recognition between both the drug
(ligand) and its target (site of action). The spatial rearrangement of the ligand’s atoms and
how they interact with the target are responsible for the pharmacological activity of the
drug. Such interactions and the dynamics, energetics, and structure associated can be char-
acterized by computational approaches of chemistry. There are a number of physicochemi-
cal properties on which the biological behavior of the drug depends, such properties
include water solubility, partition coefficient (LogP), melting point (MP), boiling point
(BP), as well as the bioconcentration factor (BCF). On the other hand, various pharmacoki-
netic properties are shown to be affected by these physicochemical properties, and these
include the drug’s bioavailability, transfer, permeability, and others (Zang et al., 2017).
Indirectly, physicochemical properties of the drug were reported to have an impact on the
interpretation of the drug’s pharmacokinetic properties during the early stages of discov-
ery. Therefore, the utilization of in silico computational tools has taken place to predict
both the drugs’ physicochemical properties and their effect on the drugs’ behavior after
administration. (Wenlock and Barton, 2013)

21.3.1 In Silico Prediction of Physicochemical Properties

21.3.1.1 Lipophilicity

Lipophilicity, most commonly referred to as the LogP, represents the ratio at equilib-
rium of the concentration of a compound between two phases, an oil and a liquid phase
(Bohnert and Prakash, 2012). Lipophilicity is a physicochemical parameter that has to be
widely taken into account when developing new drugs since it has been reported to have
a significant influence on various pharmacokinetic properties such as the absorption, dis-
tribution, permeability, as well as the routes of drugs clearance (van de Waterbeemd and
Gifford, 2000; Prajapati et al., 2009; Tekade et al., 2009a, b; Dwivedi et al., 2013). It has
been increasingly demanded to develop drugs with high lipophilicity in order to fulfill the
required selectivity and potency of drugs. Such demands have basically arisen as a result
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of the lipid nature of biological targets. For example, neurotransmitter pathway targets,
anatomical targets, and/or the intracellular targets necessitate the binding of agonists with
a respectable lipophilic nature to achieve the desired action (Bergström et al., 2016).

On the other hand, suitable drug formulations have to reflect a good aqueous solubility
as well as an acceptable degree of lipophilicity in order to assess the best oral absorption
along with the required deposition and activity. Therefore, automatic computational mea-
surements of aqueous solubility, lipophilicity, as well as the degree of ionization have
been applied and integrated in the discovery stages of drugs (van de Waterbeemd and
Gifford, 2000). Due to the observable importance of lipophilicity parameter and its role in
understanding the pharmacokinetic properties of drug candidates, a persistent need for
accurate and precise in silico models for the prediction of lipophilicity has arisen. More
specifically, models that predict the log P have been used and noticed to facilitate the pro-
cess of drug design which in turn has aided in the development of other prediction
approaches based on multiple fragments and atoms (Wenlock and Barton, 2013).

21.3.1.2 Hydrogen Bonding

Hydrogen bonding is considered the driving factor that plays an obvious role in the
partitioning of the biologically active compounds. Hydrogen bonding reflects the interac-
tion between the H-bond (HB) acceptor target and the H-bond (HB) donor compound or
vice versa (Schwöbel et al., 2011). Hydrogen bonding capacity of bioactive substances has
been reported to have a role in the determination of these substances permeability across
the biological membranes. Furthermore, it was proven that in order for a compound to
cross a biological membrane, hydrogen bonds have to be broken with the drug’s aqueous
environment. Therefore, it is relatively unfavorable for a compound to make many hydro-
gen bonds since that would inversely affect the degree of permeability and the absorption
as well (van de Waterbeemd and Gifford, 2000). Various studies have represented the rela-
tionship between hydrogen bonding and the quantitative structure�activity relationships
(QSAR)-based models. Therefore, it has been possible to quantify the strength of hydrogen
bonds, which in turn is considered as an essential step in the structure-based stage of drug
design (Schwöbel et al., 2011; Balakumar et al., 2017a).

21.3.1.3 Solubility

Aqueous solubility is a fundamental property that is nearly involved in every stage of
drug development due to its role in the determination of drug uptake, transfer, and elimi-
nation from the body (Balakin et al., 2006; Prajapati et al., 2009; Kurmi et al., 2010; Kayat
et al., 2011). Intrinsic solubility can be defined as the drug’s thermodynamic solubility at a
pH value where the drug is found to be completely in the unionized form (Bergström
et al., 2016). Drugs’ efficiency is primarily dependent on their aqueous solubility, therefore,
drugs with poor solubility or low dissolution rates will be eliminated before entering the
blood circulation and hence without giving the required pharmacological activity (Balakin
et al., 2006; Jain and Tekade, 2013; Ghanghoria et al., 2016; Soni et al., 2016). The number
of poorly soluble drugs has increased recently, and problems of poor absorbability, food
effects, and the lack of pharmacokinetic linearity have appeared as well (Kuentz and
Imanidis, 2013). Sufficient solubility data have been shown to significantly facilitate the
development of drugs. In some cases, it is difficult to find drugs with the proper solubility
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profile, hence, possible computational approaches can be used to predict the solubility and
improve the absorption of drugs as well (Lüder et al., 2007). The solubility of chemical
compounds is influenced by two important factors, namely, the lipophilicity and the tight-
ness of the crystalline structure, and it should be noted that both parameters are related to
the solubility in an inverse relationship (Bohnert and Prakash, 2012).

Although the solubility as a parameter is not always considered as an ADMET prop-
erty, however, it is proven as a key factor in the determination of a drug’s oral absorption.
In other words, compounds having poor solubility in the gut will have low permeability
and hence bad absorption as a result. This has motivated scientists to pay much attention
to the prediction of a drug’s solubility as an important factor during the process of drug
development in the last few years (Clark, 2005). Despite the significant role of the solubil-
ity during different stages of drug development, yet observable deficiencies are shown
regarding the consistent and reliable data needed for the prediction on a drug’s solubility
(Wenlock and Barton, 2013).

Computational models for the prediction of solubility on the basis of the molecular
structure are usually achieved by MVA, and such models include the PLS, ANN, SVR, as
well as RF (Bergström et al., 2016). A recent in silico study has demonstrated a useful
computational methodology that is capable of predicting how the solid-state of materials
is affecting the solubility. It is expected that this method in addition to other methods
working on the same principles of molecular and quantum mechanics will have more
potential in the future, and are expected to provide predictions with more accuracy. These
methodologies are also expected to accurately predict the properties of crystal lattice and
how they impact the solubility and dissolution rate of drugs, accordingly (Bergström et al.,
2016).

21.3.1.4 Permeability

Permeable drugs primarily cross biological barriers including the intestinal epithelial
and the BBB by the mechanism of passive diffusion, where substances are transported by
the effect of a concentration gradient. Basically, there are two types of passive diffusion,
one is the paracellular transport while the other is the transcellular transport mechanism;
other drugs are being transported by either the carrier-mediated or the P-pg mediated
transport (Fig. 21.2) (Hou et al., 2006). Drug permeability is described by the hydrogen
bonding parameter as mentioned in various studies, and the majority of results have
shown that less importance is associated with hydrogen bond (HB) acceptor descriptors
when predicting the permeability of the human intestinal epithelium (Refsgaard et al.,
2005). Several in silico models were introduced to accurately predict drugs’ membrane per-
meability according to their lipophilicity profiles, the molecular size, H-bonding capacity,
and the PSA as well. In silico prediction models were shown to make the development of
new drug candidates a less time-consuming process (Balimane et al., 2000).

21.3.2 In Silico Prediction of Drug Absorption

Gastrointestinal absorption of drug substances is considered to be a complex mecha-
nism (Fig. 21.3) due to several factors that are classified mainly into the physiological
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effects, the physicochemical effects, and the formulation effects (Fig. 21.4). Therefore, the
prediction of drugs’ absorption has been a major obstacle that used to face researchers and
developers of drug candidates (Boobis et al., 2002). The absorption of orally administered
drugs is basically characterized by one of three mechanisms that include the facilitated dif-
fusion, the passive diffusion, and the active transport, depending on factors such as the
particle size and the diffusion coefficient of the drug as well. Absorption can be

FIGURE 21.2 Schematic representation of the types of drug transport across the biological membranes includ-
ing the paracellular and transcellular passive diffusion in addition to carrier-mediated and the P-gp-mediated
transport.

FIGURE 21.3 A scheme representing the complex mechanism associated with oral drug administration that
involves the contribution of several body organs.
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determined by various techniques, and in some cases, it can be described in the terms of
either the permeability or the solubility of the drug (Lamberti et al., 2016). There have
been various in silico models for the prediction of oral absorption that were used along
with models of in vivo and in vitro prediction technologies. In silico models have been
applied to evaluate the influence of gastric pH on the exposure of drugs of weak bases,
and in other cases, these models were used to predict the bioavailability, gastric acid func-
tion, and the risks associated (Saxena et al., 2015).

21.3.3 In Silico Prediction of Intestinal Permeation

Recently, several technologies have been introduced to the field of drug development,
which in turn have resulted in a large number of drugs having unfavorable characteristics
that include the higher lipophilicity, poor solubility, as well as the high molecular weight
of these drugs as compared to the conventional ones. Thus, the improvement of prediction
methodologies that are considered to be able to predict parameters, such as the intestinal
permeability, has become a need. Generally, a sigmoidal relationship has been reported to
be between the intestinal permeability and the lipophilicity of the drug substance, which
means that the absorbability of a drug having a low molecular weight or not having a sig-
nificant metabolism is usually governed by the intestinal permeability that is achieved by
the mechanism of passive diffusion (Chaturvedi et al., 2001). Computational modeling
techniques have provided the assessment of intestinal permeability of drugs under devel-
opment before being synthesized by a procedure that is considered to be fast and inexpen-
sive as well. Models including the basic models, the PSA, the fast PSA, in addition to
other complex models are now used to predict the intestinal permeability—an essential
part of drug discovery and development (Egan and Lauri, 2002).

21.3.4 In Silico Prediction of Drug Distribution

The pharmacokinetic profile of a drug substance is determined by various parameters
including tissue distribution. Therefore, in order to accurately predict the in vivo

FIGURE 21.4 Major factors influencing the complexity of the absorption mechanism after a drug’s oral
administration, which include the physicochemical, physiological, and formulation factors.
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pharmacokinetic profile of a drug, the tissue distribution parameter has to be predicted
during the drug development process. The prediction of tissue distribution has been also
reported to facilitate the prediction of the pharmacodynamic properties and the toxicody-
namics as well (Boobis et al., 2002). The prediction of drug distribution throughout the
body is basically divided into three main areas of examination, which are the BBB perme-
ability, the volume of distribution (VD), and the plasma protein binding (PPB). All of the
three areas have an observable role in the determination of drug suitable regimens, the
effective plasma concentration, and the permeability across the BBB, which in turn helps
in predicting CNS targets, side effects, and non-CNS therapies as well (Lombardo et al.,
2003). Nowadays, several methods are being used to predict drugs’ tissue distribution,
and the prediction can be achieved by examining either the volume of distribution of
drugs at the steady state or the tissue:plasma ratios (Boobis et al., 2002).

21.3.4.1 In Silico Prediction of PPB

The PPB of drugs can affect both the pharmacokinetics and pharmacodynamics of
drugs since generally, it is accepted that only the unbound (free) fraction of the drug is
active, it is important to estimate the PPB of drug candidates. The most important protein
involved in the binding with drugs in plasma is the human serum albumin, which can
bind to a wide variety of endogenous and exogenous molecules. There have been various
in silico models developed to predict the interaction of molecules with the human serum
albumin. Many of these models are based on the available 3D crystal structures of albumin
which can be utilized in performing docking studies to predict the binding of molecules
with albumin (Moroy et al., 2012; Vallianatou et al., 2013; Balakumar et al., 2010). There
have been also QSPR models developed based on the available data of various ligands
that are known to bind to albumin (Ghafourian and Amin, 2013; Zhivkova and
Doytchinova, 2012; Li et al., 2011). Other major proteins that also have the ability to bind
with drugs in plasma are the alpha1-acid glycoprotein and lipoproteins, which have
received less attention with regard to prediction models developed in comparison with
the human serum albumin.

21.3.5 In Silico Prediction of Drug Metabolism

Drug metabolism has been recently estimated as one of the major parameters that has
shown to be taken into serious consideration during the discovery, development, and
design of drug candidates. Metabolic consideration has been integrated into the process of
active drugs’ development in order to make the development a less costly process that is
not time-consuming. Various aspects of drugs’ metabolism are being optimized during the
early stages of development that include the chemistry, biochemistry, toxification and
detoxification mechanisms, and metabolic interactions, in addition to the physicochemical
properties and the changes associated with them (Testa et al., 2005). Some research reports
stated that drugs’ metabolism is the most difficult parameter to predict as compared to
other pharmacokinetic parameters because the process of metabolism is a very complex
process that involves various enzymatic activities that vary among individuals due to dif-
ferent genetic factors. Different computational (in silico) models were successfully applied
to estimate relative predictions regarding the metabolism of some drugs.
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A number of aspects are being optimized during the assessment of a drug’s metabolism
profile at the early stages, and these aspects include the metabolic routes, stability, and
interactions along with the kinetics of metabolizing enzymes as well. These aspects were
shown to be essential for the selection of the suitable drug candidates during the develop-
ment and discovery of pharmaceutical drugs (Pelkonen et al., 2005). The cytochrome P450
(CYP) is considered to be the most influential enzyme in the drug metabolism, which led
to the development of many models such as QSAR for the prediction of the metabolism of
molecules by the CYP enzyme. These models are improving as more data regarding the
CYP isoforms and ligands that bind to them are becoming more available, in addition to
the data regarding the inhibitors of the enzyme, homology modeling of isoforms of this
enzyme has also been useful in the development of prediction models. Another enzyme
involved in the metabolism of drugs is the UGT enzyme, but in contrast with CYP, less
advanced models are available for the prediction of the metabolism of molecules by this
enzyme because of less data available regarding the substrates and isoforms of UGT
(Khan and Sylte, 2007).

21.3.6 In Silico Prediction of Drug Excretion

Excretion refers to the process by which the body gets rid of the waste/toxic products.
The drug excretion process can be achieved by either the kidney and/or the liver where
drugs are eliminated in the form of urine or bile, respectively. The most important factor
that determines the proper drug removal mechanism is the molecular weight, where sub-
stances of relatively small molecular weights are mainly removed through urine (Lamberti
et al., 2016). Despite the fact that almost all drug substances are excreted out of the body,
very little interest has been paid to the prediction of drugs’ excretion parameters.
However, since drugs of the second phase of metabolism usually exist in the unchanged
form and hence the lack the pharmacodynamic activity, much considerable interest was
observed regarding the prediction of phase metabolites excretion. Passive excretion can be
predicted based on some approaches that include the flow rate, lipophilicity, protein bind-
ing, and the pKa value. After the prediction of a drug’s excretion profile, collected infor-
mation have to be integrated into a predictive model that provides a complete model
describing the behavior of the substance during the different stages of drug discovery and
development (Boobis et al., 2002).

21.3.7 In Silico Prediction of Toxicity Profile

The assessment of drugs toxicity is considered as a critical issue to which developers
and researchers have to pay much attention. Conventionally, toxicity was tested by using
laboratory animals. In recent improvements, new approaches have been conducted for tox-
icity optimization, which have been reported to minimize the risks of animal toxicity test-
ing by the replacement with much safer alternatives (Alves et al., 2017). In silico toxicology
generally refers to predictive science and toxicology computational techniques provide
toxicity databases that make it possible to perform QSAR modeling. There are
various reasons that stand behind the importance of in silico prediction of drugs toxicity,
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such as the increasing demand to reduce animal testing, as well as the more
suitable toxicity prediction that can be obtained by the use of computational approaches
(Toropov et al., 2014). In silico prediction methods that are specialized for the prediction of
drugs’ toxicity can be classified into methods that predict the systemic toxicity and the
other methods specifically predict the toxicity for a certain organ. However, other in silico
models that are concerned with predicting the carcinogenicity as well as the genotoxicity
are considered to be more complicated (Roncaglioni et al., 2013).

21.3.8 In Silico Prediction of Biological Activity Spectra

The term of biological activity spectrum (BAS) can refer to the compound’s intrinsic
property that can be represented by various physicochemical and physiological mechan-
isms of action, pharmacological effects, as well as certain toxicities, such as mutagenicity,
teratogenicity, carcinogenicity, and embryotoxicity. Biological activity has been observed
to be significantly influenced by the structural properties of the compound. Rapid in silico
prediction of the molecular properties along with the biological activity have been
achieved recently by developing prediction approaches based on the analysis of the
QSAR. In order to assess a successful QSAR modeling, it is essential to pay a great atten-
tion to the biological measurements, hence accuracy, as well as precision during such anal-
ysis, has been widely taken into account (Nantasenamat et al., 2010). Various biological
activities were firstly predicted by the PASS computer program which in turn is based on
the “biological activity spectrum” concept. However, prediction of biological activities by
PASS provides a theoretical estimation regarding the biological potential of the studied
compound. It has been reported that about 3750 kinds of activities were accurately pre-
dicted by the latest version of PASS program. Furthermore, by the year of 2007, PASS was
shown to be capable of predicting more than 3300 kind of biological activities, hence, pro-
viding huge data regarding the new biological activities (Lagunin et al., 2010).

21.3.9 In Silico Prediction of Active Transport of Drug

The optimization of drugs’ transporters has to be included as an important part of any
ADME modeling procedure. Transporters are found almost everywhere in the body, in
addition to their substrates that were reported to overlap with many drugs, which makes
it very essential to predict a drug’s transport in the early stages of drug discovery. Various
models were developed to predict the effect of transporters on the disposition of drugs
which include parameters of drug absorption, distribution, and excretion. The incorpo-
ration of transporters prediction programs provides more accuracy while predicting the
disposition behavior of drugs (Chang and Swaan, 2006).

21.3.9.1 P-glycoprotein (P-gp)

P-glycoprotein is a transmembrane glycoprotein that is directly encoded by the human
ABCB1 gene. It is responsible for the efflux of many harmful compounds inside the cell to
the extracellular space, but on the other hand, it also effluxes many drugs out of the cells
which can substantially reduce or demolish the activity of many drugs. The crystal structure
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of P-glycoprotein revealed that it has a very large ligand binding site which in turn allows
many ligands to bind at different positions within the same binding site. P-glycoprotein pro-
cess of active transport functions differently based on the type of cell. Fig. 21.5 represents
different body tissues where active transport by P-gp takes place (Desai et al., 2013). In the
past, various homology modeling techniques were used to characterize the structure of
P-gp. However, a large number of computational modeling techniques that act by the princi-
ple of 2D-QSAR and 3D-QSAR in addition to techniques of molecular docking and pharma-
cophore modeling have been developed for the prediction of P-gp substrates or inhibitors
(Chen et al., 2012). Due to the significant impact of P-gp on ADMET and the effect of its
efflux pump on the transport of various drug substances, that in turn has shown a signifi-
cant change in these substances’ pharmacokinetics in addition to the multidrug resistance
effect, numerous scientific investigations have been taken into consideration in order to opti-
mize the molecular attributes needed for the understanding of the interactions between P-
gp and the substrates of a drug’s small molecules (Gombar et al., 2004). In recent studies,
docking models were developed on human P-gp to provide a description regarding the
structure-based relationship of P-gp binding sites (Moroy et al., 2012).

21.3.9.2 Breast Cancer Resistance Protein (BCRP)

Breast cancer resistance protein represents a polytopic transport protein of the plasma
membrane that has a molecular weight of 75 kDa that was detected in solid tumors, drug-
resistant cells, and hematological malignancies. BCRP has been reported to be highly
expressed by body organs that are directly involved in a drug’s absorption, distribution,
and elimination, such organs include the small intestine, the blood�brain barrier, as well
as the liver and kidney, respectively (Rosenberg et al., 2010). Therefore, since BCRP is
observably involved in several clinical cases, it has become of a great value to develop
new techniques that are cost-effective and helps to evaluate drug transport. Such techni-
ques aim to predict the pharmacokinetic properties of drug candidates in addition to pre-
dicting their efficacy, tissue levels, and safety as well. The development of in silico
techniques is considered as one of the most important prediction techniques regarding
BCRP substrates. Recent studies have conducted a new model for predicting the structure
and the activity of almost 25 flavonoid analogs. This in silico model has confirmed specific
requirements for BCRP structure (Chang and Swaan, 2006).

21.3.9.3 Nucleoside Transporters

Nucleoside transporters are known to transport the analogs of both synthetic nucleo-
sides and those from natural sources that are mainly acting as anticancer agents (Chang
and Swaan, 2006). Nucleoside transporters are considered as a significant issue when
developing anticancer and antiviral agents because nucleotide transporters were reported
to transport a wide variety of nucleoside-based agents. Basically, there are three main
types of intestinal nucleoside transporters, which are CNT1, CNT2, and ENT2 (Billat et al.,
2017). In silico QSAR models have provided an observation that CNT2 has shown the high-
est selectivity among the other types, whereas ENT1 have accounted for the broadest inhi-
bition specificity. Recent studies have provided an assessment regarding the transport
activity of almost 33 nucleoside analogs (Chang and Swaan, 2006).
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FIGURE 21.5 Three schematic representations that show some of body organs including (A) kidney, (B) brain,
and (C) live,r respectively, where P-gp transporter is localized.
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21.3.9.4 Human Peptide Transporter (hPEPT1)

The hPEPT1 refers to an oligopeptide transport system that has a considerably low
affinity and a high capacity and is basically expressed in the kidney and the intestine and
has been reported to affect both the absorption and the excretion of therapeutic agents
(Chang and Swaan, 2006). SLC15A1 is the gene that is responsible for encoding the
hPEPT1 which in turn determines the influx action of di- and tri-peptides. hPEPT1 has
also shown a capability transporting peptide-like drugs such as angiotensin-converting
enzyme (ACE) inhibitors and beta-lactam antibiotics in addition to transporting drugs that
were shown to be coupled to certain amino acids such as valacyclovir (Billat et al., 2017).
A pharmacophore model has been constructed to predict the transport requirements of
hPEPT1. The model has been shown to be based on three substrates of high affinity that
are the enalapril, Bestatin, and Gly-Sar. This model has demonstrated the application of
in silico methods while providing high potential for database screening (Chang and
Swaan, 2006).

21.3.9.5 Human Apical Sodium-Dependent Bile Acid Transporter (hASBT)

The hASBT is a highly efficient and a highly capable transporter that is shown to be
expressed on the intestinal apical membrane. hASBT improves drug absorption by provid-
ing additional targets via an assessment of the absorption of bile acids and their analogs
(Chang and Swaan, 2006). ASBT system is mainly concerned with small poorly intestinally
absorbed molecules or molecules targeting the liver. Delivering these molecules orally via
ASBT has been improved currently for small molecules but transporting macromolecules
is as yet unexplored (Al-Hilal et al., 2014). Two models have been conducted for ASBT,
which are the simplified transport model and the elaborate transport model. These models
have provided tracking of the protein’s conformational changes in a way that allows it to
follow the Na1 ions movement, and computational models are then combined to the mod-
els to provide additional structural information (Alhadeff et al., 2015).

21.3.9.6 Organic Cation Transporters (OCTs)

OCT refers to one of the most abundant transporters of the liver. OCTs are considered
as poly-specific membrane transporters that act by mediating the hepatic uptake of hydro-
philic compounds that are small and positively charged including dopamine, serotonin,
and histamine. In addition to the endogenous transportation function of OCT, it has been
also observed to act as a drug transporter that has the capability to transport a wide range
of various prescription drugs such as antidiabetic agents and opioid analgesics as well
(Chen et al., 2017). There are three main species of OCTs, which are OCT1, OCT2, and
OCT3. A pharmacophore model was developed for human OCT1 which provides sugges-
tions regarding the transport requirements of OCT1. Two- and three-dimensional QSAR
models have emerged and illustrated the in silico modeling discriminating sensitivity of
similar transporters (Chang and Swaan, 2006).

21.3.9.7 Organic Anion Transporting Polypeptides (OATPs)

OATP refers to a member of the superfamily of the solute carrier that is localized at the
basolateral membrane of hepatocytes. OATP acts by mediating the hepatic uptake of both
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endogenous as well as some important clinical compounds. Although OATPs were basi-
cally observed in hepatocytes, other observations have reported that they sometimes pres-
ent in other extrahepatic cancer tissues including those of the colon, breast, pancreas, and
prostate (Nagai et al., 2012). OATPs were also shown to influence a drug’s plasma concen-
tration via the active transport across various tissue membranes. Presently, more than 11
human OATPs have been identified, and recently, successful meta-pharmacophore models
of OATP1B1 have been developed (Chang and Swaan, 2006).

21.3.9.8 BBB-Choline Transporter

Drugs that are intended to act on the central nervous system (CNS) typically face the BBB
as the key limiting factor for their permeation. The BBB determines whether the compound
is able to pass through the membrane or accumulate, and studies have shown that almost
more than 98% of therapeutic compounds accumulate at the BBB due to their hydrophilicity
or ionization (Geldenhuys et al., 2010). Since charged molecules are not able to pass the
BBB, an alternative method has evolved and is achieved by the native nutrient transporters
of the BBB, an example of such transporters includes the BBB choline transporter (BBB-
ChT). BBB-ChT has been reported for its ability to deliver choline molecules that are posi-
tively charged into the CNS to act as a precursor to the acetylcholine (Ach) transmitter. vari-
ous therapeutic applications have been observed for the BBB-ChT that include the treatment
of hypoxia, ischemia, traumatic brain injury, in addition to neurodegenerative disorders
such as Huntington’s and Alzheimer’s disease (Shityakov and Foerster, 2014).

Various computational methods have emerged for the in silico prediction of a drug’s
uptake into CNS. PLS methods are generally used for the determination of BBB perme-
ation. Both the ligand-based and the comparative modeling methods are considered as the
major methods that are used mainly for the development of in silico techniques for the
modeling of membrane transporters (Allen and Geldenhuys, 2006).

21.4 COMMERCIAL SOURCES FOR ADMET PREDICTION:
LIGHT ON RECENT TOOLS

As mentioned previously, the discovery and the development of new drugs are consid-
ered as costly and time-consuming processes. Therefore, various computational models
have been improved to evaluate experimental findings and to provide the proper sugges-
tions regarding the structures to be synthesized. Nowadays, in silico models are being
used to make the proper cost-effective decisions regarding drug development in a faster
and cheaper way before it is synthesized (Balakumar et al, 2017b; Liao et al., 2011).
Recently, an observable application of the computational models has been reported in sev-
eral disciplines. In silico drug discovery methods have been reported to help in identifying
the specific drug targets by using certain computational tools (Balakumar et al., 2017b).
In silico techniques can also provide information regarding the candidate molecules for the
development process, and can also check for various properties such as drug-likeness,
binding affinity, and binding characteristics (Maithri et al., 2017).

Computer-aided drug design (CADD) is a common computational technology that pro-
vides various computational tools regarding the storage, analysis, management, and
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modeling of various compounds. Different computer programs are provided by the
CADD that have facilitated the process of designing compounds with the desirable physi-
cochemical properties. In the recent few years, CADD have shown a significant role to cre-
ate computer programs that are able to establish huge pharmacological libraries with the
association of new algorithms that aid in the assessment of candidates’ potency as well as
selectivity (Song et al., 2009). There are other various modern technologies for computa-
tional drug development such as combinatorial chemistry, structure-based drug design
(SBDD), in silico ADMET screening, and virtual screening (Balakumar et al, 2017b).
Computer software and the tools involved have also gained wide popularity since infor-
mation obtained by these tools have provided a significant support to the experimental
data and are therefore considered as a complementary aspect to the experimental field
(Sharma et al., 2017). A list of the most widely used ADMET prediction software and their
applications is provided in Table 21.1 (Liao et al., 2011).

An example of a most commonly used software is QikProp (Schrodinger, Inc.) software.
It has the ability to generate and predict 50 molecular descriptors that define the ADMET
characteristics of molecules in order to assess the drug-likeness of molecules (QikProp,
2013). The ADMET properties generated by this software for the molecules are compared
with known properties of 95% marketed drugs that are orally available, then the proper-
ties of the molecules are classified based on a range of values in the software, for example,
the oral absorption of drugs has a range of 1%�100 % in the software, molecules with a
more than 80% oral absorption are classified as having good oral absorption while mole-
cules with less than 25% oral absorption are classified as having poor oral absorption
(Pran Kishore et al., 2012, 2014a, 2014b; Mamta et al., 2014.)

An example of the application of QikProp (Schrodinger, Inc.) software in silico predic-
tion of the ADMET properties of the several HIV protease inhibitors drugs is provided in
Table 21.2 (Pran Kishore et al., 2014b).

21.5 CHALLENGES AND FUTURE PERSPECTIVES OF IN SILICO
ADMET PREDICTION

Efforts are increasingly given to develop more applicable and precise ADMET predic-
tive models, though the main obstacle impeding the improvement of new models is basi-
cally related to the considerably little data that are available for the creation of durable
models that can predict for a wide variety of chemotypes. Therefore, in most cases, it is
considered to be unreasonable to expect the new ADMET models to have a performance
better than the preexisting models (Clark, 2005). Another obstacle has been reported as a
result of the fact that data have to be for the drug being developed and thus it is inapplica-
ble to use data that were previously collected (Burton, 2002). In the future, new better
active compounds may be discovered, which in turn may facilitate the development of
techniques that search for chemical similarities between various compounds. More sophis-
ticated computational techniques are expected to be developed if more active compounds
are discovered, including the techniques of pharmacophore modeling and docking
(Sharma et al., 2017; Balakumar et al., 2012; Balakumar et al, 2017b).
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21.6 CONCLUSIONS

In silico computational models are one of the fastest and newest approaches that are
involved in the process of drug discovery and development. Due to the accelerated devel-
opment in the field of pharmaceutics, an increasing demand has arisen regarding the
development of more reliable techniques for predicting the pharmacokinetic properties of
the new drug candidates as a way to reduce costs and the time that are usually associated
with the development of new drugs. The required data vary among the different stages of
drug development and preclinical data are considered as an essential requirement when
developing new drug candidates. Pharmacokinetic properties including the absorption,
distribution, metabolism, excretion, in addition to drug’s activity spectra, transport, and
toxicity, are considered as the most important properties that need to be predicted in the

TABLE 21.1 A List of the Most Widely Used ADMET Prediction Software and Their Application

Software Developer

Free for

academia? Applications

ADMET Predictor Simulation Plus, Inc. No ADMET prediction

StarDrop Optibrium, Ltd No ADMET prediction

ADME Suite Advanced chemistry development, Inc. No ADME Prediction

Tox suite Advanced chemistry development, Inc. No Toxicity prediction

ADMEWORKS

Predictor

Fujitsu FQS No ADMET prediction

QikProp Schrodinger, Inc. No ADMET prediction

MetaDrug GeneGo, Inc. No Metabolism and toxicity

prediction

TOPKAT Accelrys, Inc. No Toxicity prediction

PASS Russian Academy of Medical Sciences No Toxicity prediction

METAPC

CASETOX

Multicase, Inc No Metabolism and toxicity

prediction

Meteor Derek

Nexus

Lhasa, Ltd No Metabolism and toxicity

prediction

Bioclipse Uppsala University, Sweden and

EuropeanBioinformatics Institute

Yes Metabolism prediction

HazardExpert CompuDrug, Ltd No Toxicity

Pro No Metabolism

MetabolExpert No Toxicity

ToxAlert No Metabolism

MEXAlert No Metabolism

RetroMex No Metabolism prediction
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early stages of drug development. There are various physicochemical properties that can
be predicted by the new models of in silico approaches, such as the lipophilicity, solubility,
hydrogen bonding, as well as the permeability across the biological membranes.

Various transporters have shown to contribute to some drugs’ activities, and hence,
affect their ADMET properties. Such transporters are summarized as P-glycoprotein,
breast cancer resistance protein, blood�brain barrier choline transporter, hPEPT1, OATP,
and OCTs. Nowadays, a wide variety of new commercial software tools for prediction
purposes are available including the CADD, combinatorial chemistry, SBDD, virtual
screening, and in silico ADMET screening. The few databases available for newly devel-
oped drugs and the inability to apply precollected data are still considered as challenges
for researchers and developers. In the future, more applicable and precise approaches are
expected to be developed providing higher accuracy and faster procedures.

Disclosures: There are no conflicts of interest and disclosures associated with the manuscript.

TABLE 21.2 Calculation of Various ADMET Properties of FDA Approved HIV Protease Inhibitors by Using
QikProp Module of Schrodinger Inc. (Pran Kishore et al., 2014b)

Molecules MWa SASAb
Donor

HBc
Accpt

HBd
QPlogP

o/we QPlogSf QPPCacog QPlogBBh #metabi

Human

oral

absorption

(%)j

Rule

of

fivek

Amprenavir 505.628 717.015 3.5 11.4 2.808 2 3.287 262.096 2 1.665 4 2 2

Darunavir 547.665 683.329 3.5 13.1 2.434 2 2.37 602.619 2 1.238 3 2 2

Lopinavir 628.81 862.674 4 9.45 5.1 2 5.092 1138.89 2 1.209 8 1 2

Atazanavir 718.892 1188.07 3.5 12.7 6.547 2 9.052 144.019 2 2.87 7 1 2

Indinavir 615.814 1032.85 4 13.9 2.659 2 3.787 13.036 2 1.291 10 1 2

Nelfinavir 567.785 813.164 4 9.95 4.012 2 4.096 306.217 2 0.257 5 2 3

Ritonavir 706.917 1155.15 4.25 10.95 6.16 2 8.447 82.874 2 2.774 9 1 1

Saquinavir 670.85 1047.99 5 13.7 2.503 2 4.006 7.492 2 2.346 7 2 2

Tipranavir 602.667 924.78 1 10.5 5.56 2 7.707 317.973 2 1.63 7 1 1

aMolecular weight.
bTotal solvent accessible surface area (SASA) in square angstroms using a probe with a 1.4 Å radius, range 95% of drugs (300.0�1000.0).
cEstimated number of hydrogen bonds that would be donated by the solute to water molecules in an aqueous solution, range 95% of drugs (0.0�6.0).
dEstimated number of hydrogen bonds that would be accepted by the solute from water molecules in an aqueous solution, range 95% of drugs (2.0�20.0).
ePredicted log of the octanol/water partition coefficient, range 95% of drugs (�2�6.5).
fPredicted log of aqueous solubility S (mol/L), range 95% of drugs (�6.5�0.5).
gCaco2 cell permeability in nm/s, range 95% of drugs (,25 poor, .500 great). Caco-2 cells are a model for the gut-blood barrier. QikProp predictions are for

non-active transport.
hPredicted brain/blood partition coefficient, range 95% of oral drugs (�3.0�1.2).
iNumber of likely metabolic reactions; range 95% of drugs (1�8).
jPredicted human oral absorption on 0 to 100% scale (. 80% is high and ,25% is poor).
kumber of violations of Lipinski’s rule of five. The rules are: mol_MW, 500, QPlogP o/w, 5, donor HB # 5, accpt HB# 10. Compounds that satisfy these

rules are considered druglike (the “five” refers to the limits, which are multiples of 5).
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ABBREVIATIONS

2D-QSAR two-dimensional quantitative structure�activity relationship
3D-QSAR three-dimensional quantitative structure�activity relationship
Ach acetylcholine
ADMET absorption, distribution, metabolism, excretion, and toxicity
BAS biological activity spectrum
BBB blood�brain barrier
BBB-ChT Blood�brain barrier choline transporter
BCF bioconcentration factor
BCRP breast cancer resistance protein
BP boiling point
CADD computer-aided drug design
CNS central nervous system
hASBT human apical sodium-dependent bile acid transporter
HB hydrogen bonding
hPEPT1 human peptide transporter
kDa kilodalton
LogP partition coefficient
MP melting point
OATPs organic anion transporting polypeptide
OCTs organic cation transporters
P-gp P-glycoprotein
PLS partial least squares
PPB plasma protein binding
PSA polar surface area
QSAR quantitative structure�activity relationship
QSPR quantitative structure�property relationship
SBDD structure-based drug design
VD volume of distribution
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