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Literature data on compounds both well- and poorly-absorbed in humans were used to build a
statistical pattern recognition model of passive intestinal absorption. Robust outlier detection
was utilized to analyze the well-absorbed compounds, some of which were intermingled with
the poorly-absorbed compounds in the model space. Outliers were identified as being actively
transported. The descriptors chosen for inclusion in the model were PSA and AlogP98, based
on consideration of the physical processes involved in membrane permeability and the
interrelationships and redundancies between available descriptors. These descriptors are quite
straightforward for a medicinal chemist to interpret, enhancing the utility of the model.
Molecular weight, while often used in passive absorption models, was shown to be superfluous,
as it is already a component of both PSA and AlogP98. Extensive validation of the model on
hundreds of known orally delivered drugs, “drug-like” molecules, and Pharmacopeia, Inc.
compounds, which had been assayed for Caco-2 cell permeability, demonstrated a good rate of
successful predictions (74-92%, depending on the dataset and exact criterion used).

Introduction

The primary goal of the drug discovery and develop-
ment process is to find a molecule possessing both good
pharmacodynamic and good pharmacokinetic proper-
ties. Ideally, a new drug should be efficacious and
selective, target-tissue(s)-specific, and orally-absorbed,
cause minimal or no adverse effects due to metabolite
activity or toxicity, and be distributed/excreted in such
a fashion as to permit dosage once a day. Successful
optimization of all these properties is an extremely
challenging task. It is a goal that the pharmaceutical
industry has had difficulty in reaching, as demonstrated
by the high failure rates for lead compounds (>90-99%)
during the development process. Only 50% of com-
pounds fail in preclinical development, leaving many
unsuitable compounds to progress into expensive clinical
testing.1 Considering that various sources estimate over
80% of compounds for which an IND has been filed fail
before reaching NDA status, and considering that
approximately 85% of the average total cost of an
approved drug ($350-500+ million) is incurred after
clinical testing has commenced, these many failures are
very costly, indeed.1-4

Recently, considerable, and clearly long-overdue, in-
terest has focused on the discovery stage assessment of
pharmacokinetic properties (absorption, distribution,
metabolism, excretion/ADME5) of compounds, as well
as their pharmacological activity.3,6-15 Good ADME/
toxicity properties are just as critical as therapeutic
activity. As one survey found,16 50.4% of development
failures among 319 new chemical entities produced by
seven pharmaceutical companies over a 21-year span
were due to ADME/toxicity problems and occurred
during clinical trials. The successful design of a maxi-

mally active compound will result in the waste of
hundreds of millions of dollars per approved drug if the
compound is nonselective, poorly orally-absorbed, meta-
bolically unstable, rapidly excreted, or toxic or will not
distribute into the target tissues. The pharmaceutical
industry has therefore shown strong, widespread inter-
est in the “fail fast, fail cheap” concept.

Various plans have been proposed to design molecules
to have good ADME/toxicity properties. In an excellent
discussion, Tarbit and Berman13 present one feasible
method: “The ability to screen combinatorial libraries
of known chemical properties through high-capacity
ADME screens, which model specific physiological pro-
cesses of absorption, metabolism, and so on, will produce
large amounts of data that will significantly aid the
development of ‘predictive’ computational models. These
models can then be used ‘on line’ to test compound
structures and thereby aid in the design of optimized
compound libraries prior to synthesis.” Provided these
data are of high quality, i.e., the data are sufficiently
accurate and precise, are obtained under consistent and
appropriate experimental conditions, and the com-
pounds analyzed cover the entire chemical space ex-
plicitly related to each property of interest, the like-
lihood of constructing a reasonably useful model should
be fairly high. Not only should new compounds created
using combinatorial techniques be analyzed, but exist-
ing drugs and many “drug-like” compounds also should
be screened extensively using these same methods and
conditions, to provide consistent and comparable refer-
ence data. Care must be taken, for predictive compu-
tational models are constrained by a harsh reality -
good statistical methods cannot save bad data or insuf-
ficient quantities of good data, and poor statistical
methods can distort or even lead to completely errone-
ous conclusions despite being derived from copious
amounts of the best data. Furthermore, the best form
of a computational model is one which informs and aids
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the chemical intuition of the medicinal chemist, and to
accomplish those aims the model must be as under-
standable and easy to use as possible. A medicinal
chemist will have difficulty learning from or making the
best use of an incomprehensible “black box” and will be
less likely to trust such a model implementation.

Although the pharmaceutical industry is at an early
stage in developing ADME/toxicity models, a consider-
able amount of work has already been performed. One
area of concentrated and visible effort has been in the
computational prediction of oral absorption. Oral bio-
availability is one of the most desirable attributes of a
new drug, and the first step in attaining oral bioavail-
ability is to achieve good oral absorption. Despite the
present lack of large amounts of high-quality data from
HTS ADME screening, significant progress has been
made in the computational modeling of oral absorption.
This paper describes the development and validation of
a passive intestinal absorption (PIA) model which is
novel in several respects when compared to previously
published work and was designed to be easy to use and
interpret.

Existing Computational Models for PIA

The problem of predicting PIA has been approached
in a variety of ways recently.17 Lipinski et al.18 devel-
oped a popular, simple, and descriptive univariate
model, called the “Rule of 5,” by analyzing a set of 2287
compounds having United States Adopted Name (USAN)
or International Nonproprietary Name (INN) designa-
tions. They chose to analyze compounds with USAN/
INN designations because such designations are typi-
cally applied for prior to entry into phase II clinical
trials, meaning that these compounds had satisfactorily
completed phase I clinical trials, which evaluate safe
dosage level and include assessments of ADME/toxicity
properties. Upper bounds for property distributions
were determined for properties related to lipophilicity,
size, and hydrogen bonding (H-bonding), based on the
90th percentile (approximately) of the property distribu-
tions. In this model, compounds are considered less
likely to be permeable when ClogP > 5, or molecular
weight (MW) > 500, or the number of H-bond donors >
5, or the number of H-bond acceptors > 10, and to have
particularly poor permeability if two of these bounds are
exceeded. Ghose et al.19 performed a similar descriptive
analysis of 6454 compounds they considered drug-like
by therapeutic class in the Comprehensive Medicinal
Chemistry database and identified 80th percentile
ranges for AlogP (-0.4-5.6), MW (160-480), molar
refractivity (40-130), and number of atoms (20-70).
These models have the benefits of being easy to use and
interpret, but they do not take into account the interac-
tions between descriptors, and while they are based
upon large datasets, those datasets are only approxi-
mately related to absorption: i.e., a compound which
has a USAN/INN designation is likely to be reasonably
well-absorbed, but we do not know exactly how well-
absorbed.

Several researchers have examined the effect of
H-bonding on permeability using dynamic polar surface
area (PSAd).20 PSAd was computed as the van der Waals
surface area of all nitrogen and oxygen atoms, plus their
attached hydrogen atoms, Boltzmann averaged over

each of the low-energy conformers of a molecule. PSAd
was shown to have a strong, inverse sigmoidal relation-
ship (r2 ) 0.94) with percent human intestinal absorp-
tion (FA) for a set of 20 molecules whose PSAd covered
the range 53.1-242.1 Å2.20 The sigmoidal relationship
predicts FA < 10% for PSAd > 139 Å.2 Lipophilicity
(ClogP ranging from -8.09 to 3.29 for the 20 molecules)
had a much poorer relationship to FA (r2 ) 0.34), and
no relationship was found with nonpolar surface area.
Later work concluded that differences in the “simulated”
environment (vacuum, chloroform, and water) had little
effect on PSAd.21 Clark22 reviewed the historical use of
polar surface area (PSA) in the modeling of solvation
and partition processes and demonstrated that using a
single, low-energy conformer to compute PSA performed
equally as well as the PSAd method and has the
advantage of being far faster to compute. Kelder et al.23

computed the PSA values for a set of 1590 orally
administered non-CNS drugs which reached at least
phase II clinical trials, and the published histogram
shows only a small fraction of those compounds have
PSA > 150 Å.2 The combination of dynamic nonpolar
surface area (NPSAd) and PSAd has also been used to
fit a sigmoidal model to the Caco-2 cell permeability of
12 oligopeptide derivatives (r2 ) 0.96) and to predict the
permeability of 7 more oligopeptide derivatives.24 While
a relationship of PSA to permeability has been demon-
strated, the models usually do not take into account the
effects of other descriptors. Also, the datasets used to
build the PSA models are so small that, although a wide
range of PSA was covered, the entire chemical space
related to PIA is likely not covered.

More complex multivariate models, incorporating both
linear and nonlinear relationships, have been used to
model passive intestinal absorption. Camenisch et al.25

used a sigmoidal relationship to model the effects of MW
and lipophilicity (log D at pH 7.4) on the Caco-2 cell
permeability for 36 compounds. Their results suggest
as log D decreases from 3.66 to -4.5, there is a sigmoidal
decrease in Caco-2 permeability. The shape of the
sigmoid was dependent on MW. Further theoretical
work by the same group concluded that pH effects may
be ignored because donor and acceptor compartments
often have the same pH in Caco-2 cell permeability
studies. They considered the pH finding to support their
earlier conclusion of a MW dependence of the sigmoidal
lipophilicity-permeability relationship.26

Van de Waterbeemd et al.27 constructed a series of
linear models containing H-bonding and MW terms, and
the combination of MW and Cad (a sum of free energy
H-bond donor and H-bond acceptor factors) best fit the
Caco-2 cell permeability for 17 compounds (r2 ) 0.883).
Norinder et al.28 used partial least-squares (PLS) re-
gression to model the same dataset using MolSurf
descriptors (which include log P, polarizability, numbers
and strengths of H-bond acceptor nitrogen and oxygen
atoms, number of H-bond donor atoms) with good
results (r2 ) 0.935) for the training set. PLS regression
using MolSurf descriptors was also applied29 to the
dataset modeled by Palm et al.20 producing a linear
model (r2 ) 0.916) from similar descriptor selections. A
neural network approach using a genetic algorithm for
descriptor selection was used to quantitatively predict
human intestinal absorption.30 As the authors pointed
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out,30 the complex interrelationships in the neural
network make it difficult to gauge the contribution of
an individual descriptor. While this paper used a larger
dataset than most other papers (86 compounds), the
inclusion of actively transported compounds and a
skewed bias toward well-absorbed compounds have been
criticized by Clark.22

Three even more complex models and their analyses
are of particular interest. (1) Human jejunal perme-
ability was well-predicted (r2 ) 0.98, q2 ) 0.96) for a
small training set of 13 compounds. These compounds
were selected for diversity when compared against 138
common drugs using a PLS model which selected only
ClogP, H-bond donor count, and single-conformer PSA
from 18 descriptors.31 Interestingly, log D values at pH
5.5, 6.5, and 7.4 were not selected for inclusion in the
best model. A bi-plot of the first two principal compo-
nents (explaining 67% of the variance of 14 descriptors)
for all 158 compounds examined (mostly common drugs)
could not separate compounds known to be actively
transported from passively transported compounds, and
the linear model predicted much lower jejunal perme-
ability than was measured for known actively trans-
ported compounds. (2) Models that used combinations
of hydrophilic and hydrophobic factors best-explained
membrane partitioning as measured by chromatography
using phospolipid stationary phases on a set of 20
D-optimally designed tetrapeptides.32 One model sug-
gests that negative charge contributes to poor partition-
ing, while positive charge had a nonsignificant effect.
Molecular volume and molecular surface area both had
strong positive contributions to partitioning, but this
size effect was considered to be due to the correlation
between MW and lipophilicity. (3) A focused combina-
torial optimization library of 449 compounds was de-
signed to meet absorption related constraints (the rule
of 5 and PSA < 140 Å2), and those constraints greatly
improved absorption as measured by Caco-2 cell perme-
ability, while the percentage of compounds more active
than a target molecule was simultaneously successfully
optimized.33 The first two models provide contradictory
results for the importance of charge effects, and the
third model, which does not consider charge effects,
demonstrates that the simultaneous optimization of
activity and absorption using univariate property con-
straints provides good results.

Rationale for the Current Work

While there has been considerable research on the
computational modeling of PIA, there are several areas
in which we felt improvements might be made. Specif-
ically, we thought that it would be possible to build a
better computational model for PIA by (1) focusing more
on the multivariate nature of the problem and how we
choose to describe the factors influencing PIA and (2)
using much larger datasets which are (a) specifically
related to PIA (as much as possible) and (b) contain
more accurate and precise information.

To build a comprehensive computational model for
PIA, we must choose which properties to use to describe
a molecule, based on our understanding of the physical
processes governing absorption. The properties of lipo-
philicity, hydrophilicity, size, and degree of ionization
are generally regarded as the most crucial factors affect-

ing the passive intestinal absorption of a molecule,34-38

and existing computational models incorporate one or
more of these factors in some fashion.

According to the fluid mosaic model,39 the structure
of a cell membrane is considered to be an interrupted
phospholipid bilayer capable of both hydrophilic and
hydrophobic interactions. Transcellular passage through
the membrane lipid/aqueous environment is viewed as
the predominant pathway for passive absorption of
lipophilic compounds, while low-molecular-weight (<200),
hydrophilic compounds make use of the water-filled
channels of the tight junctions between membrane cells
(paracellular transport).36,37,40 For this reason, lipophi-
licity has been considered a key property for activity in
drug design for many years41-43 and is a common
property used to estimate the membrane permeability
of a molecule. Lipophilicity is often measured as the log
of the partition coefficient between n-octanol and water
(log P). A variety of methods44 can estimate log P
computationally with good results. The relationship
between log P and permeability is nonlinear, with drops
in permeability at both low and high log P. These
nonlinearities are theorized to be due to (1) the inability
of weakly lipophilic compounds to penetrate the lipid
portion of the membrane and (2) the excessive partition-
ing of strongly lipophilic compounds into the lipid
portion of the membrane and their subsequent inability
to pass through the aqueous portion of the mem-
brane.38,43,45-47

Conradi et al.36 consider lipophilicity by itself to be
inadequate for the estimation of a solute’s ability to
penetrate a membrane barrier. Instead, they argue that
both hydrophobic effects and H-bonding forces must be
considered, rather than just lipophilicity. The H-bonding
ability (hydrophilicity) of a molecule has long been
known to be an important property for membrane
permeation,48,49 and more recent models using PSA to
estimate H-bonding ability have demonstrated a non-
linear relationship between PSA and permeability, with
permeability declining sigmoidally as PSA increases.20

While log P is generally used to estimate a compound’s
lipophilicity, the fact that log P is a ratio raises a
concern about the use of log P to estimate hydrophilicity
and hydrophobicity, in our view. This is because the use
of a ratio by itself causes a loss of information. For
example, a log P of 2.0 merely specifies that the
concentration of a compound in n-octanol is 100-fold that
in water, but it cannot tell you the actual concentration
in either solvent. Thus, a second piece of information,
such as provided by some measure of H-bonding, e.g.,
PSA, is necessary to provide the frame of reference.

Camenisch et al.37 recently reviewed the effect that
the degree of ionization has on membrane permeability.
According to the pH-partition theory, only the un-
ionized form of a compound may cross a cell membrane.
However, Palm et al.50 demonstrated that for com-
pounds whose fraction un-ionized was less than 10%, a
state which would be common for a large number of
drugs over the pH range encountered during intestinal
absorption, the ionized form contributes significantly to
permeability across Caco-2 cell membranes. As dis-
cussed by these authors,37,50 a number of examples exist
where membrane permeability is greater than would be
expected from pH-partition theory.

Drug Absorption via Multivariate Statistics Journal of Medicinal Chemistry, 2000, Vol. 43, No. 21 3869



To estimate the general effect of charge on a mol-
ecule’s absorption, we performed a qualitative analysis
of the well-absorbed (WAbs) dataset (199 compounds
with absorption g 90%, fully described below). pKa
values were collected from a medicinal chemistry text51

or computed using commercial software (ACD/pKa DB
v4.0, Advanced Chemistry Development, Inc., Toronto,
Canada) for all compounds in the WAbs dataset. The
fraction ionized was computed for each compound at pH
values of 5, 7.4, and 8, and compounds were classified
according to whether they were less than 10% un-
ionized for each pH value, similar to the method used
by Palm et al.50 At pH values of 5, 7.4, and 8, the
percentages of compounds less than 10% un-ionized
were 60.8%, 61.8%, and 55.8%, respectively. This quali-
tative analysis of a reasonably large dataset lends
support to the conclusion of Palm et al.50 that the
contribution of the ionized form to absorption is signifi-
cant and suggests that further work is required to better
understand the effects of molecular charge on absorp-
tion. Due to the field’s lack of understanding of the full
effects of charge on absorption, we decided to not include
charge as an explicit factor in our modeling effort and
thus considered only lipophilicity, hydrophilicity, and
size.

Dataset Construction

The quality and quantity of data are of paramount concern.
Most published models for passive intestinal absorption have
been constructed from small-sized datasets which in many
cases do not cover the entire chemical space associated with
the property of absorption, as measured by factors deemed
relevant, e.g., lipophilicity (log P). Consequently, we considered
assembling a large set of data on compound absorption or
permeability from the literature. Two types of data are readily
available: the reported percent intestinal absorption, generally
in humans, and the permeability of compounds as measured
by the in vitro Caco-2 cell permeability assay.52,53 Modeling
human absorption data is obviously the best approach, because
it is the actual property we are interested in predicting in
silico, but use of human absorption data has the drawback that
only a small amount of new data can be added for validation
and model improvement purposes as time passes, due to the
difficulties and costs of obtaining human intestinal absorption
data. On the other hand, Caco-2 cell permeability assays have
the advantage of greatly increased throughput (comparatively)
and lower cost and have also been shown to have reasonable
correlation with human absorption.55 Unfortunately, consider-
able inter- and intralaboratory variability exists in Caco-2 cell
permeability measurements. Artursson et al.52 discussed the
sources of variability in Caco-2 cell permeability assays and
compared four calibration curves between percent human
absorption and Caco-2 cell permeability, finding high inter-
laboratory variability; the curves were shifted relative to one
another by approximately 0.25-1.75 log apparent permeability
units. To assess intralaboratory variability, we randomly
surveyed published Caco-2 cell permeability studies and found
five studies which reported information on mean and standard
deviation values for replicate measurements.54,56-59 The aver-
age percent relative standard deviations (100 × standard
deviation ÷ mean, %RSD) for the five studies were 5.6%,
<10%, 10.3%, 12.7%, and 28.3%. We concluded that the inter-
and intralaboratory variabilities were too high to combine
published Caco-2 cell permeabilities from different sources to
form one large dataset.

Use of in vivo human passive absorption data carries the
same risk of high variability. Decades worth of data collected
using different experimental methods and under different
conditions are very likely not comparable, except at the
extremes. The variability observed in Caco-2 cell permeability

assays suggests that our ability to precisely measure passive
intestinal absorption in vivo is equally limited. Well- and
poorly-absorbed compounds should be easily separated by a
statistical pattern recognition model, despite the likely high
variability in measurement. To quantitatively predict differ-
ences in the percent absorption for compounds whose mea-
sured percent absorptions are similar (within 10-20%, roughly)
would be far more difficult, because of numerous reports in
the literature that lipophilicity (log P) and H-bonding ability
(PSA) are nonlinearly related to permeability and hence
percent absorption. This suggests that we should not build a
quantitative model for passive absorption unless we have
highly precise data. The observed nonlinearities are steep
drops in absorption/permeability, and if our measurements of
absorption/permeability are poor, the measurement impreci-
sion limits the possible fit of a nonlinear quantitative model
for data in those regions of sharp change.

Consequently, we decided to model passive intestinal ab-
sorption using a statistical pattern recognition method applied
to a large set of literature data of compounds with high (g90%)
and low (<30%) human percent intestinal absorption. Valida-
tion was performed using various literature derived datasets
and Caco-2 cell permeability assay results for compounds
developed internally at Pharmacopeia, Inc. The six datasets
are described in detail below.

The Datasets. 1 and 2. Well-Absorbed (WAbs) and
Poorly-Absorbed (PAbs) Compounds Datasets. A list of
compounds with good and poor absorption were compiled from
a variety of literature sources.20,30,60-65 The WAbs dataset
contains 199 compounds described in the literature as having
absorption g 90% or an oral bioavailability g 90% (which
implicitly requires an absorption of at least 90%). The PAbs
compound dataset contains 35 compounds described as having
an absorption < 30%. Discrepancies between absorption values
listed in different sources were examined to determine if
bioavailability had been reported instead of absorption or if
other factors were causing the discrepancy, e.g., formulation
effects or food-drug interactions. If the discrepancy could not
be resolved, the compound in question was not included. Active
transport mechanisms were not taken into account in the
creation of these two datasets but were considered in the
analysis below. Quaternary amines were excluded from the
PAbs datset.

3. Comprehensive Medicinal Chemistry (CMC) Dataset.
The CMC Database (CMC 3-D 99.1, MDL Information Sys-
tems, Inc., San Leandro, CA) contains 7577 entries and was
used to select compounds deemed to be drug-like by thera-
peutic category (class). Following published methodologies,19,66

we initially eliminated compounds in the following classes:
radiopague and contrast agents, disinfectants, spermicides,
wetting agents, flavorings, pharmaceutical aids, surgical aids,
dental, surfactants, sunscreen and ultraviolet screens, pre-
servatives, aerosols, chelating agents, insecticides, astringents,
herbicides, solvents, laxatives, sweeteners, adhesives, den-
tistry, veterinary, buffers, and scabicides. We then examined
the classes of the remaining 6273 compounds to see if further
culling was warranted, because the CMC database is updated
several times each year. After further review, a number of the
remaining classes were considered non-drug-like and com-
pounds in the following classes were also removed: antacids,
alcohol denaturants, alkalizing agents, ammonium detoxi-
cants, bases for collodion, blood substitutes and blood volume
determinations, body imaging, calcium supplements and cal-
cium replenishers, caustics, avian, chlorinating agents, poul-
try, complexing agents, detergents, diagnostic aids, emulsions
and emulsifiers, indicators, MRI agents, potassium-removing
resins, prosthetic aids, replenishers, rodenticides, tooth dis-
coloration inhibitors, oleaginous vehicles, supplements, pH
sensing agents, radioactive and radioprotective agents, repel-
lents (arthropod), topical, swine, and hematinic and antiane-
mic agents. Compounds containing X and Li atom entries, as
well as several entries with structural problems, were also
eliminated, leaving 5836 compounds which were deemed
reasonably drug-like by therapeutic category.
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4. USAN/INN Dataset. This dataset contains 8504 com-
pounds extracted from the World Drug Index (WDI, March
1998, Derwent Information, London, U.K.) which have either
USAN (United States Adopted Name, 7572 compounds) or INN
(International Nonproprietary Name, 6489 compounds) des-
ignations.

5. Physician’s Desk Reference (PDR) Dataset. A list of
438 drugs which are marketed in orally available forms
(tablets, capsules, caplets, and liquid suspensions) was com-
piled from a thorough search of the PDR Electronic Library,65

a searchable database of the Physician’s Desk Reference. While
the CMC and USAN/INN datasets represent approximate
measures of drug-likeness, the PDR compounds are all orally
delivered and represent a more exact standard for comparing
absorption potential.

6. Pharmacopeia Compounds. Pharmacopeia, Inc.’s dis-
covery and lead optimization efforts include the use of a
standard Caco-2 cell permeability assay, performed as apical-
to-basolateral transport experiments in the absence of P-
glycoprotein inhibition.54,67-71 The dataset is composed of 446
compounds selected from various programs at Pharmacopeia,
Inc. for determination of apparent Caco-2 cell permeability
(Papp, nm/s) in accordance with program requirements. Struc-
tural information is confidential. Upon the basis of the Papp

values determined experimentally for standard compounds,
compounds with Papp < ∼34 nm/s are considered likely to be
poorly-absorbed (<30%) and compounds with Papp > ∼100 nm/s
are considered likely to be well-absorbed (>90%).

Calculations. Structures were converted to neutral form,
where necessary, to facilitate property calculation. Structures
were OFF energy-minimized using Cerius2 4.0 versions ccI and
ccJ (Molecular Simulations, Inc., San Diego, CA), with the
minimization terminating after 1000 iterations using the
default “high-convergence” settings. Descriptors were also
computed in Cerius2 using default settings, unless otherwise
specified. PSA was calculated as the van der Waals surface
area of oxygen and nitrogen atoms, including any attached
hydrogen atoms, with the modified Jurs-TPSA descriptor in
Cerius2 (polar atoms option set to N,O and probe radius set to
0 Å). AlogP72 was computed using the Cerius2 4.0 AlogP98
descriptor. Statistical models were created using MATLAB 5.3
(The Mathworks, Inc., Natick, MA) and Cerius2 4.0. pKa values
were computed using ACD/pKa DB v4.0 (Advanced Chemistry
Development, Inc., Toronto, Canada).

Descriptors. Upon the basis of our examination of the
relevant literature, the most appropriate factors to consider
in a passive absorption model are lipophilicity, hydrophilicity,
and size. We chose AlogP98, PSA, and MW as variables to
measure these factors. All three factors are interrelated, and
the correlations of the chosen variables with each other must
be taken into account when building a model. Therefore, we
computed all three descriptors for the CMC dataset, autoscaled
each descriptor to remove the effect of unequal variances,73

and analyzed the autoscaled CMC dataset with principal
component analysis (PCA)74,75 to assess the numbers of inde-
pendent contributions to the variance of the dataset. Despite
the potential pitfalls of assigning physical meaning to the
abstract, orthonormal linear combinations of the original
variables which are called principal components (PCs),76 it is
revealing that the first two PCs account for 96.64% of the
variance in the autoscaled CMC dataset.

Figure 1 is a set of bi-plots of the CMC dataset plotting (A)
MW vs AlogP98, (B) MW vs PSA, and (C) AlogP98 vs PSA.
MW is shown to have a hyperbolic bounded relationship with
AlogP98, with the lower limit of MW increasing at both
negative and positive extremes of AlogP98. For the majority
of the compounds, MW increases with increasing AlogP98.
Closer inspection shows that for AlogP98 > 0, MW trends
upward with increasing AlogP98, and this trend reverses
abruptly at AlogP98 ) 0, where MW begins to trend upward
with decreasing AlogP98. MW is shown to generally increase
with PSA and has a lower bound which increases as PSA
increases. AlogP98 generally decreases as PSA increases.

The large amount of the variance explained by the first two
PCs (96.64%) in the CMC dataset and the obvious inter-
relationships shown in the bi-plots in Figure 1 indicate that
one of the descriptors is likely redundant, i.e., containing
information identical or very similar to that contained by the
other two descriptors. It is well-known that the size of a
molecule is related to log P.77 For PSA to increase, the number
of nitrogen and oxygen atoms (and any attached hydrogen
atoms) must by definition increase as well, thereby increasing
the MW of the molecule. Furthermore, nitrogen and/or oxygen
atoms have a negative contribution to log P,72 depending on
topology, indicative of their H-bonding ability and preference
for an aqueous environment, which is the factor PSA is used
to estimate. Therefore, we concluded that MW was the
redundant descriptor.

This conclusion contradicts the results of Camenisch et
al.25,26 who found a MW dependence of the sigmoidal lipophi-
licity-permeability relationship in their data. However, the
demonstrated relationships of MW to both PSA and log P, the
sigmoidal relationship between PSA and permeability,20 and
the known physical importance of H-bonding and lipophilicity
to membrane permeation38,43,45,46,48,49 all support the conclusion
that log P (AlogP98) and PSA are the most relevant descrip-
tors. This then suggests that MW is simply providing some
information regarding H-bonding ability in the log D-based
model proposed by Camenisch et al.25,26 The use of PSA to
provide a reference point for log P simply equates to using a
more exact measure for the reference point.

Modeling

As discussed, we consider a pattern recognition model
to be the most appropriate type of model for this
problem, given the available quantity and quality of
data. The simplest type of pattern recognition model
answers the following question: Is a new molecule
similar to some class of molecules of interest? Use of
standard multivariate methods also permits us to take
into account the effect that one variable may influence
the permissible boundaries of another variable; see
Rencher78 for an excellent discussion.

The initial pattern recognition model is shown in
Figure 2. The WAbs and PAbs compounds were plotted
against AlogP98 vs PSA. A 95% confidence ellipse for
the WAbs dataset was also computed and plotted. The
95% confidence ellipse represents the region of chemical
space where we can expect to find well-absorbed com-
pounds (g90%) 95 out of 100 times, if certain statistical
assumptions have not been violated. The confidence

Figure 1. Three bi-plots of the CMC dataset for (A) MW vs
AlogP98, (B) MW vs PSA, and (C) AlogP98 vs PSA, demon-
strating the interrelationships between MW and the other two
descriptors.
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ellipse was computed using Hotelling’s T2.78,79 The
confidence ellipse takes into account the interactions
(correlations) between the descriptors and would be a
circle if the descriptors AlogP98 and PSA were totally
uncorrelated for these compounds. As Figure 2 shows,
there is overlap between a number of the well-absorbed
compounds and the poorly-absorbed compounds. To
investigate the cause(s) of this overlap, we employed a
robust outlier detection method.

Barnett and Lewis80 define an outlier as “an observa-
tion (or subset of observations) which appears to be
inconsistent with the remainder of that set of data.”
Standard multivariate techniques for detecting outliers
in multivariate data are unreliable, and robust tech-
niques have been developed to address this problem.
Egan and Morgan81 comprehensively reviewed the
extant methods for detecting multivariate outliers and
developed the robust smallest-half volume (SHV) method
for multivariate outlier detection. The SHV is conceptu-
ally simple, faster to compute than other robust tech-
niques, and robust for data having up to 25-45%
outliers. The result of the application of the SHV outlier
detection method to the WAbs dataset is shown in
Figure 3, where a 99.9% confidence ellipse, based on the
50% of compounds in the WAbs dataset selected by SHV
as being the most similar to each other, was overlaid
on the plot in Figure 3. WAbs compounds outside the

99.9% robust confidence ellipse, ordered by their ap-
proximate Mahalanobis distances, per Egan and Mor-
gan,81 were selected for closer examination.

As stated earlier, we did not consider active transport
mechanisms when assembling the WAbs dataset. Either
active transport mechanisms82 caused compounds to be
well-absorbed when they lay commingled with poorly-
absorbed compounds in the region of AlogP98-PSA
space or some other factor (e.g., charge) needs to be
included in the model. Considerable evidence was found
in the literature to support the hypothesis that active
transport mechanisms were the cause. Ten of the
outliers are antibacterial agents which are known to be
actively transported: amoxicillin, cefaclor, cefadroxil,
cefamandole, cefazolin, cefprozil, cephalexin, cephra-
dine, doxycycline, and minocycline.82-87 Evidence also
exists for the involvement of carrier-mediated transport
in the absorption of methotrexate and L-leucovorin,88-91

as well as L-dopa.92 Three glycosides (digitoxin, digoxin,
and gitoxin) were identified as outliers in the dataset
and are also actively transported.93,94 Finally, rifampin
was identified as an extreme outlier, which is interest-
ing because one study has shown rifampin to pass
efficiently in both directions through Caco-2 cells in a
concentration-dependent, nonsaturable fashion, and the
researchers concluded that this is suggestive of passive
diffusion down a concentration gradient.95 However,
rifampin is a large, polar antimycotic (MW ) 822, PSA
) 211.9), and similar compounds are poorly-absorbed,
suggesting that rifampin may be actively transported
via a nonsaturable mechanism. Tsuji and Tamai’s82

review of active-transport mechanisms and substrates
was used to check the entire WAbs dataset to determine
if any other compounds were actively transported. Also,
the compilation of p-glycoprotein (pGp) efflux substrates
assembled by Seelig96 was used to cross-check the PAbs
dataset for pGp efflux substrates; only 1 of the 35
compounds (doxorubicin, a pGp inducer) included in the
PAbs dataset was listed. Figure 4 plots the well-
absorbed compounds identified as being actively trans-
ported with a different marker style to delineate them
from all other compounds. The 95% and 99% confidence
ellipses were computed for the WAbs dataset, excluding
actively transported compounds. Note: The 99% confi-

Figure 2. WAbs and PAbs compounds plotted on PSA-
AlogP98 axes with a standard 95% confidence ellipse.

Figure 3. WAbs and PAbs compounds plotted on PSA-
AlogP98 axes with the standard 95% confidence ellipse and
the robust 99.9% confidence ellipse derived from SHV.

Figure 4. Plot of WAbs and PAbs datasets on PSA-AlogP98
axes with well-absorbed compounds which were identified as
being actively transported represented as a separate class. The
95% and 99% (dotted) confidence ellipses, based on the
remaining compounds in the WAbs dataset, are also plotted.
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dence ellipse is bigger than the 95% confidence ellipse
because to increase the probability that the ellipse
contains more compounds, the space enclosed by the
ellipse must increase.

Inspection of Figure 4 reveals several interesting
features. The upper limit of PSA as defined by the 95%
confidence ellipse is 131.6 Å2, and the upper limit of PSA
as defined by the 99% confidence ellipse is 148.1 Å2; both
of these PSA limits are similar to those reported in the
literature for univariate PSA cutoffs.23,97 The 95%
confidence ellipse also defines an upper limit on AlogP98
(5.88) which decreases as PSA decreases, demonstrating
the interaction between the two descriptors. Poorly-
absorbed compounds hug the 95% confidence ellipse,
and there appears to be a sharp change in absorption
between the 95% and 99% confidence ellipses. This is
consistent with literature reports of significant nonlin-
earities in the univariate relationships between lipo-
philicity and H-bonding ability, as discussed above.

The model was tested on three literature datasets. For
the PDR dataset, 77.4% of the 438 orally delivered
compounds were inside the 95% confidence ellipse and
87.4% were inside the 99% confidence ellipse. Com-
pounds were examined and classified according to
literature sources on absorption as to whether they are
actively transported, moderately absorbed (30-90%
absorbed), or poorly-absorbed (<30% absorbed), or if no
precise determination has been made.20,30,60-65,82 All
compounds in the PDR dataset which were included in
the WAbs dataset were considered as a separate class.
Figure 5 plots the categorized PDR dataset and shows
that the majority of the compounds which are actively
transported or poorly to moderately absorbed are out-
side the region of chemical space considered to be
statistically similar to the region occupied by well-
absorbed compounds (g90% absorbed). A large majority
of compounds (88.6%) which could not be classified due
to lack of explicit literature values are inside the model’s
95% confidence ellipse. Excluding actively transported
compounds, 81.4% of the remaining compounds in the
PDR dataset were inside the 95% confidence ellipse and
90.1% of the remaining compounds in the PDR dataset
were inside the 99% confidence ellipse. One would
expect the majority of orally delivered drugs to be
predicted to be well-absorbed, and these results are an
excellent confirmation of that hypothesis.

Similar proportions of both the CMC and USAN/INN
datasets were predicted to be well-absorbed. For the
CMC dataset, 75.0% of the compounds are inside the
model’s 95% confidence ellipse and 83.5% of the com-
pounds are inside the model’s 99% confidence ellipse.
For the USAN/INN dataset, 74.3% of the compounds
are inside the 95% confidence ellipse and 82.9% of the
compounds are inside the 99% confidence ellipse. Figure
6 plots the CMC dataset on the PSA-AlogP98 axes with
the 95% and 99% confidence ellipses.

The CMC dataset also provides additional confirma-
tion that the information contained in MW is already
included in the PSA and AlogP98 descriptors. Figure 7
is a contour plot of MW on the PSA-AlogP98 axes for
the CMC dataset. At low PSA and high AlogP98, MW
is still only in the range 400-500, and at high PSA and
low AlogP98, MW is in the range 200-400; both MW
ranges are in the range generally considered acceptable
for small-molecule drug design.18 The 95% and 99%
confidence ellipses create acceptable hydrophilicity and
lipophilicity bounds individually on PSA and AlogP98,
where the MW ranges are still low. Moreover, the
confidence ellipses bound the interaction between
hydrophilicity and lipophilicity, at moderate PSA and
moderate AlogP98, where MW increases unacceptably,

Figure 5. Plot of the PDR dataset on PSA-AlogP98 axes with
the 95% and 99% (dotted) confidence ellipses from the model.

Figure 6. Plot of the CMC dataset on PSA-ALogP98 axes
with the model 95% and 99% (dashed) confidence ellipses also
shown.

Figure 7. Contour plot of MW on PSA-AlogP98 axes for the
CMC dataset. Model 95% and 99% (dotted) confidence ellipses
are shown.
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due to the relationship between MW and hydrophilicity
and lipophilicity.

The ability of the pattern recognition model to cor-
rectly classify known orally available and drug-like
compounds as well-absorbed is promising. However, the
poorly-absorbed compounds in the PAbs dataset have
high PSA and low AlogP98 values. Therefore, we
selected Pharmacopeia, Inc. compounds which covered
the more lipophilic region of chemical space and for
which Caco-2 permeability had been determined to
further validate the utility of the PSA-AlogP98 pattern
recognition model. Figure 8 plots the Papp surface,
smoothed using triangle-based cubic interpolation,
against PSA-AlogP98 with the relevant portions of the
model’s 95% and 99% confidence ellipses offset to make
them visible. Figure 8 clearly shows further experimen-
tal evidence of the sharp, nonlinear drop in permeability
as a function of both lipophilicity and hydrophilicity, as
estimated by PSA and AlogP98. When the Caco-2 cell
permeability data is assessed in terms of where the
compounds lie in the PSA-AlogP98 model space, the
usefulness of the model is apparent (Table 1): 61.8% of
the highly permeable compounds (Papp > 100 nm/s) are
inside the 95% confidence ellipse, and 91.5% of the
moderately to highly permeable compounds (Papp > 34
nm/s) are within the 99% confidence ellipse. Only 20.6%
of the poorly permeable compounds are inside the 95%
confidence ellipse. The permeability is mixed for the
compounds located between the 95% and 99% confidence
ellipses of the model, a region of sharp change in
permeability, based on all available evidence. Despite
the inherent error in the calculated AlogP98 values and
the moderate imprecision of the Caco-2 cell permeability
assay, the model performs reasonably well.

Discussion and Conclusions

In this paper we described the development of a
general computational model for human passive intes-
tinal absorption. The descriptors chosen for inclusion
in the model were AlogP98 and PSA. This choice was
based on consideration of the physical processes in-
volved in membrane permeability and the fact that PSA
provides a reference point for AlogP98. It was critical
that PSA serve as a reference point for AlogP98 since
the latter descriptor is a ratio of lipophilicity to hydro-

philicity which contains no information on the absolute
measure of either factor. Larger datsets (several hun-
dred compounds or larger) were collected, so as to cover
as thoroughly as possible the chemical space related to
passive intestinal absorption (defined by PSA and
AlogP98). Due to the variability in published Caco-2 cell
permeability assay results, we used literature data on
compounds known to be well- and poorly-absorbed in
humans. Because of the categorical nature of the data,
we chose to use a statistical pattern recognition model.

The resultant model has several advantages. The
descriptors PSA and AlogP98 are physically meaningful
and easily related to structure, making them relatively
straightforward for a medicinal chemist to interpret.
Active transport and efflux mechanisms were accounted
for in the model-building process, greatly reducing the
potential for those mechanisms to bias the model.
Robust outlier detection enabled actively transported
compounds to be identified, and a check of relevant
literature found only one of the poorly-absorbed com-
pounds to be a known substrate for p-glycoprotein efflux.
The dataset used to build the model was sufficiently
large to provide good coverage of chemical space related
to passive intestinal absorption. The interaction be-
tween hydrophilicity and lipophilicity was also taken
into account and was necessary to discriminate between
well- and poorly-absorbed compounds. Extensive valida-
tion of the model on known orally delivered drugs, drug-
like molecules, and Pharmacopeia, Inc. compounds
which had been assayed for Caco-2 cell permeability
demonstrated a reasonably good rate of successful
predictions (74-92%, depending on dataset and crite-
rion).

This approach does, however, have a number of
drawbacks. Ideally, we would like a quantitative model
to more exactly handle the nonlinear relationships
between absorption and hydrophilicity and lipophilicity,
not a pattern recognition model which provides a yes/
no answer. Human absorption data was used to create
the model, and significant quantities of additional
human data would be very difficult to obtain. However,
assays such as the Caco-2 cell permeability assay can
provide additional information, provided the variability
issues are addressed. Several factors were not consid-
ered, including the effects of charge/dissociation and the
changes in conformation due to solvent interactions,
which may be significant, especially for particular series.
Solubility was only considered implicitly, in that the
WAbs dataset compounds had to be sufficiently soluble
to dissolve for absorption measurements to be made.
Calculated log P was included as a descriptor, and
calculated log P values have been shown by Ghose et
al.19 to have sufficient error (rmse 0.26-1.17 for ClogP,
rmse 0.39-0.75 for AlogP98, depending on number of
atoms) to distort the model predictions. This is because
permeability changes sharply in certain regions and the

Figure 8. 3-D smoothed surface of Caco-2 Papp on PSA-
AlogP98 axes for 446 Pharmacopeia, Inc. compounds with
higher lipophilicity. 95% and 99% confidence ellipses are offset
higher to make them visible.

Table 1. Percentages of 446 Pharmacopeia, Inc. Compounds in
Each of Three Permeability Categories vs Three Regions of the
Absorption Model

model region/Papp

<34 nm/s:
poor

34-100 nm/s:
moderate

100 nm/s:
high

inside 95% confidence ellipse 20.6% 29.5% 61.8%
95-99% confidence ellipse 38.7% 41.9% 29.7%
outside 99% confidence ellipse 40.6% 28.7% 8.5%
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reported errors for ClogP and AlogP98 are sufficient to
push the compounds outside the confidence ellipse(s) we
are using as boundaries for those regions of sharp
change.

Computational models for the prediction of ADME
properties have clearly generated significant interest,
due to their potential to greatly reduce both the time
and cost required to discover and develop a new drug.
Computational ADME models, such as the passive
intestinal absorption model described herein, will only
be useful if they can predict with reasonable accuracy
(70%+ correct) the ADME property of interest for a
broad range of compounds and provide insight into the
nature of the structure-property relationship. To ac-
complish this goal requires significant amounts of
accurate, precise, and consistent data obtained over
large regions of chemical space strongly related to the
ADME property of interest. Although there are large
quantities of experimental ADME observations in the
literature, the differences in experimental methodolo-
gies, inter- and intralaboratory variability, and focus of
those experiments on particular series of interest cause
the actual amount of information in the literature data
to be much lower than it appears to be, and far more
difficult to extract.

Regardless of how pharmaceutical companies ap-
proach computational ADME modeling (in-house, via
consortia,98 or through the purchase of third-party
software), the critical issue in modeling ADME proper-
ties is obtaining more and better data. Traditionally,
pharmaceutical companies have concentrated on the
project immediately at-hand, and systematic, compre-
hensive exploration of structure-ADME property rela-
tionships has simply not occurred. The use of small
datasets, in our opinion, runs multiple risks: (1) missing
a relationship because a region of chemical space simply
was not covered; (2) discovering a relationship but
missing interrelationships; and (3) not having enough
data to tell if an observed relationship (or interrelation-
ship) actually does exist or is merely an artifact of the
small sample size. Fully realizing the potentially enor-
mous benefits of computational ADME modeling will
require the collection of large experimental datasets
containing consistent, accurate, and precise ADME
properties.
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