
A figure comparing the three types of
enzyme inhibitors and how they work
in regards to substrate binding sites
and inhibitors binding sites.

An enzyme binding site that would normally bind substrate can
alternatively bind a competitive inhibitor, preventing substrate
access. Dihydrofolate reductase is inhibited by methotrexate which
prevents binding of its substrate, folic acid. Binding site in blue,
inhibitor in green, and substrate in black. (PDB: 4QI9 (https://www.rc
sb.org/structure/4QI9) )

Enzyme inhibitor
An enzyme inhibitor is a molecule that binds to an enzyme and
decreases its activity. By binding to enzymes' active sites, inhibitors
reduce the compatibility of substrate and enzyme and this leads to the
inhibition of Enzyme-Substrate complexes' formation, preventing the
catalysis of reactions and decreasing (at times to zero) the amount of
product produced by a reaction. It can be said that as the
concentration of enzyme inhibitors increases, the rate of enzyme
activity decreases, and thus, the amount of product produced is
inversely proportional to the concentration of inhibitor molecules.
Since blocking an enzyme's activity can kill a pathogen or correct a
metabolic imbalance, many drugs are enzyme inhibitors. They are
also used in pesticides. Not all molecules that bind to enzymes are
inhibitors; enzyme activators bind to
enzymes and increase their enzymatic
activity, while enzyme substrates bind
and are converted to products in the
normal catalytic cycle of the enzyme.

The binding of an inhibitor can stop a
substrate from entering the enzyme's
active site and/or hinder the enzyme from
catalyzing its reaction. Inhibitor binding
is either reversible or irreversible.
Irreversible inhibitors usually react with
the enzyme and change it chemically
(e.g. via covalent bond formation). These
inhibitors modify key amino acid
residues needed for enzymatic activity. In
contrast, reversible inhibitors bind non-
covalently and different types of
inhibition are produced depending on
whether these inhibitors bind to the
enzyme, the enzyme-substrate complex,
or both.

Many drug molecules are enzyme
inhibitors, so their discovery and
improvement is an active area of research
in biochemistry and pharmacology.[1] A
medicinal enzyme inhibitor is often
judged by its specificity (its lack of
binding to other proteins) and its potency
(its dissociation constant, which indicates the concentration needed to inhibit the enzyme). A high specificity
and potency ensure that a drug will have few side effects and thus low toxicity.

Enzyme inhibitors also occur naturally and are involved in the regulation of metabolism. For example,
enzymes in a metabolic pathway can be inhibited by downstream products. This type of negative feedback
slows the production line when products begin to build up and is an important way to maintain homeostasis in

https://en.wikipedia.org/wiki/File:The_three_types_of_enzyme_inhibition_of_non-competitive_inhibition,_competitive_inhibition,_and_end-product_inhibition.svg
https://en.wikipedia.org/wiki/File:DHFR_methotrexate_inhibitor.svg
https://en.wikipedia.org/wiki/Competitive_inhibitor
https://en.wikipedia.org/wiki/Dihydrofolate_reductase
https://en.wikipedia.org/wiki/Methotrexate
https://en.wikipedia.org/wiki/Folic_acid
https://en.wikipedia.org/wiki/Protein_Data_Bank
https://www.rcsb.org/structure/4QI9
https://en.wikipedia.org/wiki/Molecule
https://en.wikipedia.org/wiki/Enzyme
https://en.wikipedia.org/wiki/Enzyme_activity
https://en.wikipedia.org/wiki/Pathogen
https://en.wikipedia.org/wiki/Metabolism
https://en.wikipedia.org/wiki/Pesticide
https://en.wikipedia.org/wiki/Enzyme_activator
https://en.wikipedia.org/wiki/Enzyme_assay
https://en.wikipedia.org/wiki/Substrate_(biochemistry)
https://en.wikipedia.org/wiki/Active_site
https://en.wikipedia.org/wiki/Catalysis
https://en.wikipedia.org/wiki/Reversible_reaction
https://en.wikipedia.org/wiki/Covalent_bond
https://en.wikipedia.org/wiki/Amino_acid
https://en.wikipedia.org/wiki/Non-covalent_interactions
https://en.wikipedia.org/wiki/Enzyme
https://en.wikipedia.org/wiki/Medication
https://en.wikipedia.org/wiki/Biochemistry
https://en.wikipedia.org/wiki/Pharmacology
https://en.wikipedia.org/wiki/Specificity_(biochemistry)
https://en.wikipedia.org/wiki/Dissociation_constant
https://en.wikipedia.org/wiki/Adverse_drug_reaction
https://en.wikipedia.org/wiki/Toxicity
https://en.wikipedia.org/wiki/Metabolism
https://en.wikipedia.org/wiki/Metabolic_pathway
https://en.wikipedia.org/wiki/Negative_feedback
https://en.wikipedia.org/wiki/Homeostasis


a cell. Other cellular enzyme inhibitors are proteins that specifically bind to and inhibit an enzyme target. This
can help control enzymes that may be damaging to a cell, like proteases or nucleases. A well-characterised
example of this is the ribonuclease inhibitor, which binds to ribonucleases in one of the tightest known
protein–protein interactions.[2] Natural enzyme inhibitors can also be poisons and are used as defenses against
predators or as ways of killing prey.
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Reversible inhibitors attach to enzymes with non-covalent interactions such as hydrogen bonds, hydrophobic
interactions and ionic bonds. Multiple weak bonds between the inhibitor and the active site combine to
produce strong and specific binding. In contrast to substrates and irreversible inhibitors, reversible inhibitors
generally do not undergo chemical reactions when bound to the enzyme and can be easily removed by dilution
or dialysis.

There are four kinds of reversible enzyme inhibitors. They are classified according to the effect of varying the
concentration of the enzyme's substrate on the inhibitor.[3][4][5]
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Types of inhibition. This classification was introduced by W.W.
Cleland.[6]

In competitive inhibition, the
substrate and inhibitor cannot
bind to the enzyme at the same
time, as shown in the figure on
the right. This usually results from
the inhibitor having an affinity for
the active site of an enzyme
where the substrate also binds;
the substrate and inhibitor
compete for access to the
enzyme's active site. This type of
inhibition can be overcome by
sufficiently high concentrations of
substrate (Vmax remains
constant), i.e., by out-competing
the inhibitor. However, the
apparent Km will increase as it
takes a higher concentration of
the substrate to reach the Km
point, or half the Vmax.
Competitive inhibitors are often
similar in structure to the real
substrate (see examples below).
In uncompetitive inhibition, the
inhibitor binds only to the
substrate-enzyme complex. This
type of inhibition causes Vmax to
decrease (maximum velocity
decreases as a result of
removing activated complex) and
Km to decrease (due to better
binding efficiency as a result of
Le Chatelier's principle and the
effective elimination of the ES complex thus decreasing the Km which indicates a higher
binding affinity).
In non-competitive inhibition, the binding of the inhibitor to the enzyme reduces its activity but
does not affect the binding of substrate. As a result, the extent of inhibition depends only on the
concentration of the inhibitor. Vmax will decrease due to the inability for the reaction to proceed
as efficiently, but Km will remain the same as the actual binding of the substrate, by definition,
will still function properly.
In mixed inhibition, the inhibitor can bind to the enzyme at the same time as the enzyme's
substrate. However, the binding of the inhibitor affects the binding of the substrate, and vice
versa. This type of inhibition can be reduced, but not overcome by increasing concentrations of
substrate. Although it is possible for mixed-type inhibitors to bind in the active site, this type of
inhibition generally results from an allosteric effect where the inhibitor binds to a different site
on an enzyme. Inhibitor binding to this allosteric site changes the conformation (i.e., tertiary
structure or three-dimensional shape) of the enzyme so that the affinity of the substrate for the
active site is reduced.

These types can also be distinguished by the effect of increasing the substrate concentration [S] on the degree
of inhibition caused by a given amount of inhibitor. For competitive inhibition the degree of inhibition is
reduced by increasing [S], for noncompetitive inhibition the degree of inhibition is unchanged, and for
uncompetitive (also called anticompetitive) inhibition the degree of inhibition increases with [S].[7]
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Kinetic scheme for reversible enzyme inhibitors

Reversible inhibition can be described quantitatively in terms of the inhibitor's binding to the enzyme and to
the enzyme-substrate complex, and its effects on the kinetic constants of the enzyme. In the classic Michaelis-
Menten scheme below, an enzyme (E) binds to its substrate (S) to form the enzyme–substrate complex ES.
Upon catalysis, this complex breaks down to release product P and free enzyme. The inhibitor (I) can bind to
either E or ES with the dissociation constants Ki or Ki', respectively.

Competitive inhibitors can bind to E, but not to
ES. Competitive inhibition increases Km (i.e.,
the inhibitor interferes with substrate binding),
but does not affect Vmax (the inhibitor does not
hamper catalysis in ES because it cannot
bind to ES).
Uncompetitive inhibitors bind to ES.
Uncompetitive inhibition decreases both Km'
and 'Vmax. The inhibitor affects substrate
binding by increasing the enzyme's affinity for
the substrate (decreasing Km) as well as
hampering catalysis (decreases Vmax).
Non-competitive inhibitors have identical
affinities for E and ES (Ki = Ki'). Non-
competitive inhibition does not change Km
(i.e., it does not affect substrate binding) but
decreases Vmax (i.e., inhibitor binding
hampers catalysis).
Mixed-type inhibitors bind to both E and ES,
but their affinities for these two forms of the
enzyme are different (Ki ≠ Ki'). Thus, mixed-
type inhibitors interfere with substrate binding
(increase Km) and hamper catalysis in the ES
complex (decrease Vmax).

When an enzyme has multiple substrates, inhibitors can show different types of inhibition depending on which
substrate is considered. This results from the active site containing two different binding sites within the active
site, one for each substrate. For example, an inhibitor might compete with substrate A for the first binding site,
but be a non-competitive inhibitor with respect to substrate B in the second binding site.[8]

As noted above, an enzyme inhibitor is characterised by its two dissociation constants, Ki and Ki', to the
enzyme and to the enzyme-substrate complex, respectively. The enzyme-inhibitor constant Ki can be measured
directly by various methods; one extremely accurate method is isothermal titration calorimetry, in which the
inhibitor is titrated into a solution of enzyme and the heat released or absorbed is measured.[9] However, the
other dissociation constant Ki' is difficult to measure directly, since the enzyme-substrate complex is short-lived
and undergoing a chemical reaction to form the product. Hence, Ki' is usually measured indirectly, by
observing the enzyme activity under various substrate and inhibitor concentrations, and fitting the data[10] to a
modified Michaelis–Menten equation

Quantitative description of reversible inhibition

Measuring the dissociation constants of a reversible inhibitor
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where the modifying factors α and α' are defined by the inhibitor concentration and its two dissociation
constants

Thus, in the presence of the inhibitor, the enzyme's effective Km and Vmax become (α/α')Km and (1/α')Vmax,
respectively. However, the modified Michaelis-Menten equation assumes that binding of the inhibitor to the
enzyme has reached equilibrium, which may be a very slow process for inhibitors with sub-nanomolar
dissociation constants. In these cases, it is usually more practical to treat the tight-binding inhibitor as an
irreversible inhibitor (see below); however, it can still be possible to estimate Ki' kinetically if Ki is measured
independently.

The effects of different types of reversible enzyme inhibitors on enzymatic activity can be visualized using
graphical representations of the Michaelis–Menten equation, such as Lineweaver–Burk plots, Eadie-Hofstee
plots or Hanes-Woolf plots. For example, in the Lineweaver–Burk plots at the right, the competitive inhibition
lines intersect on the y-axis, illustrating that such inhibitors do not affect Vmax. Similarly, the non-competitive
inhibition lines intersect on the x-axis, showing these inhibitors do not affect Km. However, it can be difficult
to estimate Ki and Ki' accurately from such plots,[11] so it is advisable to estimate these constants using more
reliable nonlinear regression methods, as described above.

Traditionally reversible enzyme inhibitors have been classified as competitive, uncompetitive, or non-
competitive, according to their effects on Km and Vmax. These different effects result from the inhibitor binding
to the enzyme E, to the enzyme–substrate complex ES, or to both, respectively. The division of these classes
arises from a problem in their derivation and results in the need to use two different binding constants for one
binding event. The binding of an inhibitor and its effect on the enzymatic activity are two distinctly different
things, another problem the traditional equations fail to acknowledge. In noncompetitive inhibition the binding
of the inhibitor results in 100% inhibition of the enzyme only, and fails to consider the possibility of anything
in between.[12] The common form of the inhibitory term also obscures the relationship between the inhibitor
binding to the enzyme and its relationship to any other binding term be it the Michaelis–Menten equation or a
dose response curve associated with ligand receptor binding. To demonstrate the relationship the following
rearrangement can be made:

Reversible inhibitors
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This rearrangement demonstrates that similar to the Michaelis–Menten equation, the maximal rate of reaction
depends on the proportion of the enzyme population interacting with its substrate.

fraction of the enzyme population bound by substrate

fraction of the enzyme population bound by inhibitor

the effect of the inhibitor is a result of the percent of the enzyme population interacting with inhibitor. The only
problem with this equation in its present form is that it assumes absolute inhibition of the enzyme with inhibitor
binding, when in fact there can be a wide range of effects anywhere from 100% inhibition of substrate turn
over to just >0%. To account for this the equation can be easily modified to allow for different degrees of
inhibition by including a delta Vmax term.

or

This term can then define the residual enzymatic activity present when the inhibitor is interacting with
individual enzymes in the population. However the inclusion of this term has the added value of allowing for
the possibility of activation if the secondary Vmax term turns out to be higher than the initial term. To account
for the possibly of activation as well the notation can then be rewritten replacing the inhibitor "I" with a
modifier term denoted here as "X".



While this terminology results in a simplified way of dealing with kinetic effects relating to the maximum
velocity of the Michaelis–Menten equation, it highlights potential problems with the term used to describe
effects relating to the Km. The Km relating to the affinity of the enzyme for the substrate should in most cases
relate to potential changes in the binding site of the enzyme which would directly result from enzyme inhibitor
interactions. As such a term similar to the one proposed above to modulate Vmax should be appropriate in most
situations:[13]

The mechanism of partially competitive inhibition is similar to that of non-competitive, except
that the EIS complex has catalytic activity, which may be lower or even higher (partially
competitive activation) than that of the enzyme–substrate (ES) complex. This inhibition typically
displays a lower Vmax, but an unaffected Km value.[14]

Uncompetitive inhibition occurs when the inhibitor binds only to the enzyme–substrate
complex, not to the free enzyme; the EIS complex is catalytically inactive. This mode of
inhibition is rare and causes a decrease in both Vmax and the Km value.[14]

Substrate and product inhibition is where either the substrate or product of an enzyme
reaction inhibit the enzyme's activity. This inhibition may follow the competitive, uncompetitive
or mixed patterns. In substrate inhibition there is a progressive decrease in activity at high
substrate concentrations. This may indicate the existence of two substrate-binding sites in the
enzyme.[15] At low substrate, the high-affinity site is occupied and normal kinetics are followed.
However, at higher concentrations, the second inhibitory site becomes occupied, inhibiting the
enzyme.[16] Product inhibition is often a regulatory feature in metabolism and can be a form of
negative feedback.
Slow-tight inhibition occurs when the initial enzyme–inhibitor complex EI undergoes
isomerisation to a second more tightly held complex, EI*, but the overall inhibition process is
reversible. This manifests itself as slowly increasing enzyme inhibition. Under these conditions,
traditional Michaelis–Menten kinetics give a false value for Ki, which is time–dependent.[17]

The true value of Ki can be obtained through more complex analysis of the on (kon) and off (koff)
rate constants for inhibitor association. See irreversible inhibition below for more information.

Bi-substrate analog inhibitors are high affinity and selectivity inhibitors that can be prepared
for enzymes that catalyze bi-molecular reactions by capturing the binding energy of each
substrate into one molecule.[18][19] For example, in the formyl transfer reactions of purine
biosynthesis, a potent multi-substrate adduct inhibitor (MAI) to GAR TFase was prepared
synthetically by linking analogs of the glycinamide ribonucleotide (GAR) substrate and the N-
10-formyl tetrahydrofolate cofactor together to produce thioglycinamide ribonucleotide
dideazafolate (TGDDF),[20] or enzymatically from the natural GAR substrate to yield GDDF.[21]

Here the subnanomolar dissociation constant (KD) of TGDDF was greater than predicted
presumably due to entropic advantages gained and/or positive interactions acquired through
the atoms linking the components. MAIs have also been observed to be produced in cells by
reactions of pro-drugs such as isoniazid [22] or enzyme inhibitor ligands (e.g., PTC124) [23] with
cellular cofactors such as NADH and ATP respectively.

Special cases

Examples of reversible inhibitors
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TGDDF / GDDF MAIs where
blue depicts the
tetrahydrofolate cofactor
analog, black GAR or
thioGAR and red, the
connecting atoms.

Peptide-based HIV-1
protease inhibitor ritonavir

Nonpeptidic HIV-1 protease
inhibitor tipranavir

As enzymes have evolved to bind their substrates tightly, and most reversible
inhibitors bind in the active site of enzymes, it is unsurprising that some of
these inhibitors are strikingly similar in structure to the substrates of their
targets. Inhibitors of DHFR are prominent examples. Other example of these
substrate mimics are the protease inhibitors, a very successful class of
antiretroviral drugs used to treat HIV.[24] The structure of ritonavir, a protease
inhibitor based on a peptide and containing three peptide bonds, is shown on
the right. As this drug resembles the protein that is the substrate of the HIV
protease, it competes with this substrate in the enzyme's active site.

Enzyme inhibitors are often designed to mimic the transition state or
intermediate of an enzyme-catalyzed reaction. This ensures that the inhibitor
exploits the transition state stabilising effect of the enzyme, resulting in a
better binding affinity (lower Ki) than substrate-based designs. An example of
such a transition state inhibitor is the antiviral drug oseltamivir; this drug
mimics the planar nature of the ring oxonium ion in the reaction of the viral
enzyme neuraminidase.[25]

However, not all inhibitors are based on the structures of substrates. For
example, the structure of another HIV protease inhibitor tipranavir is shown
on the left. This molecule is not based on a peptide and has no obvious
structural similarity to a protein substrate. These non-peptide inhibitors can be
more stable than inhibitors containing peptide bonds, because they will not be
substrates for peptidases and are less likely to be degraded.[26]

In drug design it is important to consider the concentrations of substrates to
which the target enzymes are exposed. For example, some protein kinase
inhibitors have chemical structures that are similar to adenosine triphosphate,
one of the substrates of these enzymes. However, drugs that are simple
competitive inhibitors will have to compete with the high concentrations of
ATP in the cell. Protein kinases can also be inhibited by competition at the
binding sites where the kinases interact with their substrate proteins, and most
proteins are present inside cells at concentrations much lower than the
concentration of ATP. As a consequence, if two protein kinase inhibitors both
bind in the active site with similar affinity, but only one has to compete with
ATP, then the competitive inhibitor at the protein-binding site will inhibit the
enzyme more effectively.[27]

Irreversible inhibitors usually covalently modify an enzyme, and inhibition can therefore not be reversed.
Irreversible inhibitors often contain reactive functional groups such as nitrogen mustards, aldehydes,
haloalkanes, alkenes, Michael acceptors, phenyl sulfonates, or fluorophosphonates. These nucleophilic groups
react with amino acid side chains to form covalent adducts. The residues modified are those with side chains
containing nucleophiles such as hydroxyl or sulfhydryl groups; these include the amino acids serine (as in
DFP, right), cysteine, threonine, or tyrosine.[28]

Irreversible inhibitors

Types of irreversible inhibition (covalent inactivation)
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Reaction of the irreversible inhibitor
diisopropylfluorophosphate (DFP) with a
serine protease

Kinetic scheme for irreversible inhibitors

Irreversible inhibition is different from irreversible enzyme
inactivation. Irreversible inhibitors are generally specific for one
class of enzyme and do not inactivate all proteins; they do not
function by destroying protein structure but by specifically
altering the active site of their target. For example, extremes of
pH or temperature usually cause denaturation of all protein
structure, but this is a non-specific effect. Similarly, some non-
specific chemical treatments destroy protein structure: for
example, heating in concentrated hydrochloric acid will
hydrolyse the peptide bonds holding proteins together, releasing
free amino acids.[29]

Irreversible inhibitors display time-dependent inhibition and their
potency therefore cannot be characterised by an IC50
value.[30][31] This is because the amount of active enzyme at a
given concentration of irreversible inhibitor will be different
depending on how long the inhibitor is pre-incubated with the
enzyme. Instead, kobs/[I] values are used,[32] where kobs is the
observed pseudo-first order rate of inactivation (obtained by
plotting the log of % activity vs. time) and [I] is the concentration
of inhibitor. The kobs/[I] parameter is valid as long as the inhibitor
does not saturate binding with the enzyme (in which case kobs =
kinact).

As shown in the figure to the right, irreversible inhibitors have a
short instance where they form a reversible non-covalent
complex with the enzyme (EI or ESI) and this then reacts to
produce the covalently modified "dead-end complex" EI* (an
irreversible covalent complex). The rate at which EI* is formed is
called the inactivation rate or kinact. Since formation of EI may
compete with ES, binding of irreversible inhibitors can be
prevented by competition either with substrate or with a second,
reversible inhibitor. This protection effect is good evidence of a
specific reaction of the irreversible inhibitor with the active site.

The binding and inactivation steps of this reaction are
investigated by incubating the enzyme with inhibitor and
assaying the amount of activity remaining over time. The activity will be decreased in a time-dependent
manner, usually following exponential decay. Fitting these data to a rate equation gives the rate of inactivation
at this concentration of inhibitor. This is done at several different concentrations of inhibitor. If a reversible EI
complex is involved the inactivation rate will be saturable and fitting this curve will give kinact and Ki.[33]

Another method that is widely used in these analyses is mass spectrometry. Here, accurate measurement of the
mass of the unmodified native enzyme and the inactivated enzyme gives the increase in mass caused by
reaction with the inhibitor and shows the stoichiometry of the reaction.[34] This is usually done using a
MALDI-TOF mass spectrometer. In a complementary technique, peptide mass fingerprinting involves
digestion of the native and modified protein with a protease such as trypsin. This will produce a set of peptides
that can be analysed using a mass spectrometer. The peptide that changes in mass after reaction with the
inhibitor will be the one that contains the site of modification.

Analysis of irreversible inhibition
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Chemical mechanism for irreversible inhibition of ornithine decarboxylase by
DFMO. Pyridoxal 5'-phosphate (Py) and enzyme (E) are not shown. Adapted
from[35]

Trypanothione reductase with the lower
molecule of an inhibitor bound irreversibly and
the upper one reversibly. Created from PDB
1GXF (http://www.rcsb.org/pdb/explore.do?str
uctureId=1GXF).

Not all irreversible inhibitors
form covalent adducts with their
enzyme targets. Some reversible
inhibitors bind so tightly to their
target enzyme that they are
essentially irreversible. These
tight-binding inhibitors may
show kinetics similar to covalent
irreversible inhibitors. In these
cases, some of these inhibitors
rapidly bind to the enzyme in a
low-affinity EI complex and this
then undergoes a slower
rearrangement to a very tightly
bound EI* complex (see figure
above). This kinetic behaviour is
called slow-binding.[36] This
slow rearrangement after binding often involves a conformational change as the enzyme "clamps down"
around the inhibitor molecule. Examples of slow-binding inhibitors include some important drugs, such
methotrexate,[37] allopurinol,[38] and the activated form of acyclovir.[39]

Diisopropylfluorophosphate (DFP) is shown as an example of
an irreversible protease inhibitor in the figure above right. The
enzyme hydrolyses the phosphorus–fluorine bond, but the
phosphate residue remains bound to the serine in the active
site, deactivating it.[40] Similarly, DFP also reacts with the
active site of acetylcholine esterase in the synapses of
neurons, and consequently is a potent neurotoxin, with a
lethal dose of less than 100 mg.[41]

Suicide inhibition is an unusual type of irreversible inhibition
where the enzyme converts the inhibitor into a reactive form
in its active site. An example is the inhibitor of polyamine
biosynthesis, α-difluoromethylornithine or DFMO, which is
an analogue of the amino acid ornithine, and is used to treat
African trypanosomiasis (sleeping sickness). Ornithine
decarboxylase can catalyse the decarboxylation of DFMO
instead of ornithine, as shown above. However, this
decarboxylation reaction is followed by the elimination of a fluorine atom, which converts this catalytic
intermediate into a conjugated imine, a highly electrophilic species. This reactive form of DFMO then reacts
with either a cysteine or lysine residue in the active site to irreversibly inactivate the enzyme.[35]

Since irreversible inhibition often involves the initial formation of a non-covalent EI complex, it is sometimes
possible for an inhibitor to bind to an enzyme in more than one way. For example, in the figure showing
trypanothione reductase from the human protozoan parasite Trypanosoma cruzi, two molecules of an inhibitor
called quinacrine mustard are bound in its active site. The top molecule is bound reversibly, but the lower one
is bound covalently as it has reacted with an amino acid residue through its nitrogen mustard group.[42]

Special cases

Examples of irreversible inhibitors
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Robots used for the high-throughput
screening of chemical libraries to discover
new enzyme inhibitors

The structure of sildenafil (Viagra)

New drugs are the products of a long drug development
process, the first step of which is often the discovery of a new
enzyme inhibitor. In the past the only way to discover these
new inhibitors was by trial and error: screening huge libraries
of compounds against a target enzyme and hoping that some
useful leads would emerge. This brute force approach is still
successful and has even been extended by combinatorial
chemistry approaches that quickly produce large numbers of
novel compounds and high-throughput screening technology
to rapidly screen these huge chemical libraries for useful
inhibitors.[43]

More recently, an alternative approach has been applied:
rational drug design uses the three-dimensional structure of an
enzyme's active site to predict which molecules might be
inhibitors.[44] These predictions are then tested and one of these tested compounds may be a novel inhibitor.
This new inhibitor is then used to try to obtain a structure of the enzyme in an inhibitor/enzyme complex to
show how the molecule is binding to the active site, allowing changes to be made to the inhibitor to try to
optimise binding. This test and improve cycle is then repeated until a sufficiently potent inhibitor is
produced.[45] Computer-based methods of predicting the affinity of an inhibitor for an enzyme are also being
developed, such as molecular docking[46] and molecular mechanics.

Enzyme inhibitors are found in nature and are also designed and produced as part of pharmacology and
biochemistry. Natural poisons are often enzyme inhibitors that have evolved to defend a plant or animal
against predators. These natural toxins include some of the most poisonous compounds known. Artificial
inhibitors are often used as drugs, but can also be insecticides such as malathion, herbicides such as
glyphosate, or disinfectants such as triclosan. Other artificial enzyme inhibitors block acetylcholinesterase, an
enzyme which breaks down acetylcholine, and are used as nerve agents in chemical warfare.

The most common uses for enzyme inhibitors are as
drugs to treat disease. Many of these inhibitors target a
human enzyme and aim to correct a pathological
condition. However, not all drugs are enzyme inhibitors.
Some, such as anti-epileptic drugs, alter enzyme activity
by causing more or less of the enzyme to be produced.
These effects are called enzyme induction and inhibition
and are alterations in gene expression, which is
unrelated to the type of enzyme inhibition discussed
here. Other drugs interact with cellular targets that are
not enzymes, such as ion channels or membrane
receptors.

Discovery and design of inhibitors

Uses of inhibitors

Chemotherapy
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The coenzyme folic acid (left) compared to the
anti-cancer drug methotrexate (right)

The structure of a complex between penicillin G
and the Streptomyces transpeptidase. Generated
from PDB 1PWC (http://www.rcsb.org/pdb/explore.
do?structureId=1PWC).

An example of a medicinal enzyme inhibitor is sildenafil
(Viagra), a common treatment for male erectile
dysfunction. This compound is a potent inhibitor of
cGMP specific phosphodiesterase type 5, the enzyme
that degrades the signalling molecule cyclic guanosine
monophosphate.[47] This signalling molecule triggers
smooth muscle relaxation and allows blood flow into the
corpus cavernosum, which causes an erection. Since the
drug decreases the activity of the enzyme that halts the
signal, it makes this signal last for a longer period of
time.

Another example of the structural similarity of some
inhibitors to the substrates of the enzymes they target is
seen in the figure comparing the drug methotrexate to
folic acid. Folic acid is a substrate of dihydrofolate
reductase, an enzyme involved in making nucleotides
that is potently inhibited by methotrexate. Methotrexate
blocks the action of dihydrofolate reductase and thereby
halts the production of nucleotides. This block of
nucleotide biosynthesis is more toxic to rapidly growing
cells than non-dividing cells, since a rapidly growing
cell has to carry out DNA replication, therefore
methotrexate is often used in cancer chemotherapy.[48]

Drugs also are used to inhibit enzymes needed for the
survival of pathogens. For example, bacteria are
surrounded by a thick cell wall made of a net-like polymer called peptidoglycan. Many antibiotics such as
penicillin and vancomycin inhibit the enzymes that produce and then cross-link the strands of this polymer
together.[49] This causes the cell wall to lose strength and the bacteria to burst. In the figure, a molecule of
penicillin (shown in a ball-and-stick form) is shown bound to its target, the transpeptidase from the bacteria
Streptomyces R61 (the protein is shown as a ribbon-diagram).

Antibiotic drug design is facilitated when an enzyme that is essential to the pathogen's survival is absent or
very different in humans. In the example above, humans do not make peptidoglycan, therefore inhibitors of
this process are selectively toxic to bacteria. Selective toxicity is also produced in antibiotics by exploiting
differences in the structure of the ribosomes in bacteria, or how they make fatty acids.

Enzyme inhibitors are also important in metabolic control. Many metabolic pathways in the cell are inhibited
by metabolites that control enzyme activity through allosteric regulation or substrate inhibition. A good
example is the allosteric regulation of the glycolytic pathway. This catabolic pathway consumes glucose and
produces ATP, NADH and pyruvate. A key step for the regulation of glycolysis is an early reaction in the
pathway catalysed by phosphofructokinase-1 (PFK1). When ATP levels rise, ATP binds an allosteric site in
PFK1 to decrease the rate of the enzyme reaction; glycolysis is inhibited and ATP production falls. This
negative feedback control helps maintain a steady concentration of ATP in the cell. However, metabolic
pathways are not just regulated through inhibition since enzyme activation is equally important. With respect to
PFK1, fructose 2,6-bisphosphate and ADP are examples of metabolites that are allosteric activators.[50]

Antibiotics

Metabolic control
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To discourage seed predators, pulses contain
trypsin inhibitors that interfere with digestion.

Physiological enzyme inhibition can also be produced by specific protein inhibitors. This mechanism occurs in
the pancreas, which synthesises many digestive precursor enzymes known as zymogens. Many of these are
activated by the trypsin protease, so it is important to inhibit the activity of trypsin in the pancreas to prevent
the organ from digesting itself. One way in which the activity of trypsin is controlled is the production of a
specific and potent trypsin inhibitor protein in the pancreas. This inhibitor binds tightly to trypsin, preventing
the trypsin activity that would otherwise be detrimental to the organ.[51] Although the trypsin inhibitor is a
protein, it avoids being hydrolysed as a substrate by the protease by excluding water from trypsin's active site
and destabilising the transition state.[52] Other examples of physiological enzyme inhibitor proteins include the
barstar inhibitor of the bacterial ribonuclease barnase.[53]

Many pesticides are enzyme inhibitors. Acetylcholinesterase (AChE) is an enzyme found in animals, from
insects to humans. It is essential to nerve cell function through its mechanism of breaking down the
neurotransmitter acetylcholine into its constituents, acetate and choline. This is somewhat unusual among
neurotransmitters as most, including serotonin, dopamine, and norepinephrine, are absorbed from the synaptic
cleft rather than cleaved. A large number of AChE inhibitors are used in both medicine and agriculture.
Reversible competitive inhibitors, such as edrophonium, physostigmine, and neostigmine, are used in the
treatment of myasthenia gravis and in anaesthesia. The carbamate pesticides are also examples of reversible
AChE inhibitors. The organophosphate pesticides such as malathion, parathion, and chlorpyrifos irreversibly
inhibit acetylcholinesterase.

The herbicide glyphosate is an inhibitor of 3-phosphoshikimate 1-carboxyvinyltransferase,[54] other
herbicides, such as the sulfonylureas inhibit the enzyme acetolactate synthase. Both these enzymes are needed
for plants to make branched-chain amino acids. Many other enzymes are inhibited by herbicides, including
enzymes needed for the biosynthesis of lipids and carotenoids and the processes of photosynthesis and
oxidative phosphorylation.[55]

Animals and plants have evolved to synthesise a vast
array of poisonous products including secondary
metabolites, peptides and proteins that can act as
inhibitors. Natural toxins are usually small organic
molecules and are so diverse that there are probably
natural inhibitors for most metabolic processes.[56] The
metabolic processes targeted by natural poisons
encompass more than enzymes in metabolic pathways
and can also include the inhibition of receptor, channel
and structural protein functions in a cell. For example,
paclitaxel (taxol), an organic molecule found in the
Pacific yew tree, binds tightly to tubulin dimers and
inhibits their assembly into microtubules in the
cytoskeleton.[57]

Many natural poisons act as neurotoxins that can cause paralysis leading to death and have functions for
defence against predators or in hunting and capturing prey. Some of these natural inhibitors, despite their toxic
attributes, are valuable for therapeutic uses at lower doses.[58] An example of a neurotoxin are the
glycoalkaloids, from the plant species in the family Solanaceae (includes potato, tomato and eggplant), that are
acetylcholinesterase inhibitors. Inhibition of this enzyme causes an uncontrolled increase in the acetylcholine
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neurotransmitter, muscular paralysis and then death. Neurotoxicity can also result from the inhibition of
receptors; for example, atropine from deadly nightshade (Atropa belladonna) that functions as a competitive
antagonist of the muscarinic acetylcholine receptors.[59]

Although many natural toxins are secondary metabolites, these poisons also include peptides and proteins. An
example of a toxic peptide is alpha-amanitin, which is found in relatives of the death cap mushroom. This is a
potent enzyme inhibitor, in this case preventing the RNA polymerase II enzyme from transcribing DNA.[60]

The algal toxin microcystin is also a peptide and is an inhibitor of protein phosphatases.[61] This toxin can
contaminate water supplies after algal blooms and is a known carcinogen that can also cause acute liver
hemorrhage and death at higher doses.[62]

Proteins can also be natural poisons or antinutrients, such as the trypsin inhibitors (discussed above) that are
found in some legumes, as shown in the figure above. A less common class of toxins are toxic enzymes: these
act as irreversible inhibitors of their target enzymes and work by chemically modifying their substrate
enzymes. An example is ricin, an extremely potent protein toxin found in castor oil beans. This enzyme is a
glycosidase that inactivates ribosomes. Since ricin is a catalytic irreversible inhibitor, this allows just a single
molecule of ricin to kill a cell.[63]

Activity-based proteomics – a branch of proteomics that uses covalent enzyme inhibitors as
reporters to monitor enzyme activity.
Antimetabolite
Pharmacophore
Transition state analog
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Web tutorial on enzyme inhibition (https://web.archive.org/web/20070228044059/http://orion1.p
aisley.ac.uk/kinetics/Chapter_3/contents_chap3.html), Tutorial by Dr Peter Birch of the
University of Paisley, containing very clear animations
Symbolism and Terminology in Enzyme Kinetics (https://web.archive.org/web/2006062003200
6/http://www.chem.qmul.ac.uk/iubmb/kinetics/ek4t6.html#p6), Recommendations of the
Nomenclature Committee of the International Union of Biochemistry (NC-IUB) on enzyme
inhibition terminology
PubChem from NCBI (https://pubchem.ncbi.nlm.nih.gov/), Database of drugs and enzyme
inhibitors
BRENDA (http://www.brenda.uni-koeln.de/), Database of enzymes giving lists of known
inhibitors for each entry
Enzymes, Kinetics and Diagnostic Use (http://web.indstate.edu/thcme/mwking/enzyme-kinetic
s.html), On-line lecture concentrating on medical applications of enzyme inhibitors: by Dr.
Michael W. King of the IU School of Medicine
BindingDB (http://www.bindingdb.org/), a public database of measured protein-ligand binding
affinities.
Enzyme Inhibition Animated Exercise (http://www.wiley.com/college/pratt/0471393878/student/
animations/enzyme_inhibition/index.html) (tutorial + quizzes).
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