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1 Introduction: Basic Principles and Workflow
of Predictive QSAR Modeling

Rapid development of information and communication
technologies during the last few decades has dramatically
changed our capabilities of collecting, analyzing, storing
and disseminating all types of data. This process has had a
profound influence on the scientific research in many disci-
plines, including the development of new generations of
effective and selective medicines. Large databases contain-
ing millions of chemical compounds tested in various bio-
logical assays such as PubChem[1] are increasingly available
as online collections (recently reviewed by Oprea and Trop-
sha;[2] see also recent commentary by Williams et al.[3]). In
order to find new drug leads, there is a need for efficient
and robust procedures that can be used to screen chemical
databases and virtual libraries against molecules with
known activities or properties. To this end, Quantitative
Structure-Activity Relationships (QSAR) modeling provides
an effective means for both exploring and exploiting the
relationship between chemical structure and its biological
action towards the development of novel drug candidates.

The QSAR approach can be generally described as an ap-
plication of data analysis methods and statistics to develop-
ing models that could accurately predict biological activi-
ties or properties of compounds based on their structures.
Any QSAR method can be generally defined as an applica-
tion of mathematical and statistical methods to the prob-
lem of finding empirical relationships (QSAR models) of the
form Pi = k’(D1, D2,…,Dn), where Pi are biological activities
(or other properties of interest) of molecules, D1, D2,…,Dn

are calculated (or, sometimes, experimentally measured)
structural properties (molecular descriptors) of compounds,
and k’ is some empirically established mathematical trans-
formation that should be applied to descriptors to calculate
the property values for all molecules (Figure 1). The goal of
QSAR modeling is to establish a trend in the descriptor
values, which parallels the trend in biological activity. In es-
sence, all QSAR approaches imply, directly or indirectly, a
simple similarity principle, which for a long time has provid-

ed a foundation for the experimental medicinal chemistry :
compounds with similar structures are expected to have
similar biological activities. The detailed description of
major tenets of QSAR modeling is beyond the scope of this
paper; the overview of many popular QSAR modeling tech-
niques including statistical and datamining techniques as
well as approaches to descriptor calculations could be
found in many reviews and monographs, e.g. ,[4, 5]). Here, we
comment on most critical general aspects of model devel-
opment and, most importantly, validation that are especial-
ly important in the context of using QSAR models for virtu-
al screening. Most of our discussion captures trends that
the author has either observed or contributed to in the last
20 years of active research in the field. Additional important
information concerning both common errors as well as es-
tablished practices in the QSAR modeling field can be
found in other critical essays on the subject, e.g. , by Stouch
et al.[6] and Dearden et al.[7]

Our experience in QSAR model development and valida-
tion has led us to establish a complex strategy[8] that is
summarized in Figure 2. It describes the predictive QSAR
modeling workflow focused on delivering validated models
and ultimately, computational hits that should be ultimate-
ly confirmed by the experimental validation. We start by
carefully curating chemical structures and, if possible, asso-
ciated biological activities to prepare the dataset for subse-
quent calculations. This issue of assessing and addressing
data accuracy has not been properly addressed in the liter-
ature and we discuss some aspects of this critical compo-
nent of the workflow below. Then, a fraction of compounds
(typically, 10–20 %) is selected randomly as an external eval-
uation set (a more rigorous n-fold external validation proto-
col can be employed when the dataset is randomly divided
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into n nearly equal parts and then n�1 parts are systemati-
cally used for model development and the remaining frac-
tion of compounds is used for model evaluation). The
Sphere Exclusion protocol implemented in our laborato-
ry[9, 10] is then used to rationally divide the remaining subset
of compounds (the modeling set) into multiple training
and test sets that are used for model development and val-
idation, respectively (alternative rational approaches for di-
viding the modeling set into diverse and representative
training and test sets could be devised as well). We employ
multiple QSAR techniques based on the combinatorial ex-
ploration of all possible pairs of descriptor sets and various
supervised data analysis techniques (combi-QSAR) and
select models characterized by high accuracy in predicting

both training and test sets data. The model acceptability
thresholds are typically characterized by the lowest accept-
able value of the leave-one-out cross validated R2 (q2) for
the training set and by conventional R2 for the test set; our
default values are 0.6 for both q2 and R2. All validated
models are finally tested in an ensemble using the external
evaluation set. The critical step of the external validation is
the use of applicability domains (AD), which is defined
uniquely for each model used in consensus (ensemble) pre-
diction of the external set. If external validation demon-
strates the significant predictive power of the models we
employ them for virtual screening of available chemical da-
tabases (e.g. , ZINC[11]) to identify putative active com-
pounds and work with collaborators who could validate
such hits experimentally.

Thus, models resulting from the predictive QSAR model-
ing workflow (Figure 2) can be used to prioritize the selec-
tion of chemicals for the experimental validation. In fact, it
is increasingly critical to include experimental validation as
the ultimate assertion of the model-based prediction. We
note that the focus on experimental validation shifts the
emphasis on ensuring good (best) statistics for the model
that fits known experimental data towards generating test-
able hypotheses about purported bioactive compounds.
Thus, the output of the modeling has exactly same format
as the input, i.e. , chemical structures and (predicted) activi-
ties making model interpretation and utilization completely
seamless for medicinal chemists. Some of our application
studies demonstrating the ability of models to identify
computational hits that were subsequently validated exper-
imentally are described below. We now discuss specific pro-
cedures (best practices) that should be followed within
each individual component of the workflow.
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Figure 1. The process of QSAR model development.
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2 Best Practices for Key Elements of QSAR
Modeling Workflow

In this section we discuss specific protocols and procedures
that in our experience should be followed to enable the
development of reliable and predictive QSAR models. The
discussion follows the path of the workflow summarized in
Figure 2, from data preparation to model development and
validation to application of models for external prediction
and virtual screening.

2.1 The Importance of Chemical Data Curation in QSAR
Modeling

Molecular modelers typically analyze data generated by
other (experimental) researchers. Consequently, when it
comes to the experimental data quality they are always at
the mercy of the data providers. Practically any cheminfor-
matics study entails the calculation of chemical descriptors
that are expected to accurately reflect intricate details of
underlying chemical structures. Obviously, any error in the
structure translates into either inability to calculate descrip-
tors for erroneous chemical records or into erroneous de-
scriptors ; this outcome makes the models developed with
such incomplete or inaccurate descriptors either restricted
only to a fraction of formally available data or, what is even
worse, making the models inaccurate. A recent study[12]

showed that on average there are two structural errors per
each medicinal chemistry publication with an overall error
rate for compounds indexed in the WOMBAT database[13] as
high as 8 %. In another recent study,[14] the authors investi-
gated several public and commercial databases to calculate
their error rates: the latter were ranging from 0.1 to 3.4 %
depending on the database. As both data and data models
as well as the body of scholarly publications in cheminfor-

matics continue to grow it becomes increasingly important
to address the issue of data quality that inherently affects
the quality of models.

How significant is the problem of accurate structure rep-
resentation as it concerns the adequacy and accuracy of
cheminformatics models? There appears to be no systemat-
ic studies on the subject in the published literature. Howev-
er, even a few recent reports indicate that this problem
should be given very serious attention. For instance, recent
benchmarking studies by a large group of collaborators
from six laboratories[15, 16] have clearly demonstrated that
the type of chemical descriptors has much greater influ-
ence on the prediction performances of QSAR models than
the nature of the model optimization techniques. Further-
more, in another recent seminal publication[14] the authors
clearly pointed out the importance of chemical data cura-
tion in the context of QSAR modeling. They have discussed
several illustrative examples of incorrect structures generat-
ed from either correct or incorrect SMILEs using commercial
software. They also tried to determine the error rate in sev-
eral known databases and evaluate the consequences of
both random and systematic errors for the prediction per-
formance of QSAR models. Their main conclusions were
that small structural errors within a dataset could lead to
significant losses in predictive abilities of QSAR models. At
the same time they further demonstrated that manual cura-
tion of structural data leads to substantial increase in
model predictivity.[14]

Although there are obvious compelling reasons to be-
lieve that chemical data curation should be given a lot of
attention, it is also obvious that for the most part the basic
steps to curate a dataset of compounds have been either
considered trivial or ignored even by experts. For instance,
in an effort to improve the quality of publications in the
QSAR modeling field the Journal of Chemical Information

Figure 2. Predictive QSAR modeling workflow.
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and Modeling published a special editorial highlighting the
requirements to QSAR papers that should be followed
should the authors consider publishing their results in the
journal ;[17] however, no special attention was given to data
curation. There have been several recent publications ad-
dressing common mistakes and criticizing faulty practices
in QSAR modeling field;[7, 18, 19] however, these papers have
not explicitly described and discussed the importance of
chemical record curation for developing robust QSAR
models.

Generally speaking, since the models of chemical data
may only be as good as the data itself there is a pressing
need to develop and systematically employ standard chem-
ical record curation protocols that should be helpful in the
pre-processing of any chemical dataset. Recently, we have
integrated several protocols in a standardized chemical
data curation strategy[20] that in our opinion, should be fol-
lowed at the onset of any molecular modeling investiga-
tion. The simple, but important, steps for cleaning chemical
records in a database include the removal of a fraction of
the data that cannot be appropriately handled by conven-
tional cheminformatics techniques, e.g. , inorganic and or-
ganometallic compounds, counterions, salts and mixtures;
structure validation; ring aromatization; normalization of
specific chemotypes; curation of tautomeric forms; and the
deletion of duplicates. It is also critical to visualize and
manually inspect at least a fraction of chemical data that
go into model development to detect structures that for
some reasons escaped the automatic curation steps de-
scribed above.

It is important to realize that most of these structure cu-
ration steps do not depend on the level of chemical struc-
ture representation, i.e. , 2D or 3D, with possible exception
of instances when a dataset includes chiral compounds.

Obviously, if standard descriptors are calculated from 2D
representation of chemical structure, e.g. , by chemical
graphs, such as most of molecular connectivity indices,[21]

then any pair of enantiomers or diastereoisomers will be
formally recognized as duplicates. If specific chiralities for
such pairs of compounds are known along with com-
pounds’ activities, descriptors taking chirality into account
should be used, and all isomers should be retained in the
dataset. If, however, chirality information is unavailable,
only one compound, usually with the highest (or mean) ac-
tivity should be retained, and chirality-sensitive descriptors
should not be used.

There are different tools available for dataset curation.
For example, Molecular Operating Environment (MOE) from
CCG[22] includes Database Wash tool. It allows changing
molecules’ names, adding or removing hydrogen atoms, re-
moving salts and heavy atoms, even if they are covalently
connected to the rest of the molecule, and changing or
generating the tautomers and protomers (cf. the MOE
manual for more details). Various database curation tools
are included in ChemAxon[23] as well. If commercial soft-
ware tools such as MOE are unavailable (notably, the Chem-
Axon software is free to academic investigators), one can
use standard UNIX/LINUX tools to perform some of the da-
taset cleaning tasks. It is important to have some freely
available molecular format converters such as OpenBa-
bel,[24] or MolConverter from ChemAxon.[23]

Figure 3 illustrates major elements of the data curation
workflow discussed in more detail in our recent paper.[20]

This protocol is enabled by accessible software tools; most
of them are publicly available and free-for-academic-use
(from ChemAxon,[23] OpenEye,[25] OpenBabel,[24] ISIDA,[26] HiT
QSAR,[27] Hyleos[28])), but some are commercial (from Molec-
ular Networks,[29] CCG,[22] CambridgeSoft[30]).

Figure 3. Workflow for chemical data curation.
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It is more difficult to spot the errors in biological data
since there are no obvious technical approaches similar to
chemical record curation that can be used in this case.
However, rigorously derived QSAR models could be indeed
used to identify compounds for which predictions consis-
tently disagree with experimental observations and that are
likely to be annotated with erroneous biological testing re-
sults. Our recent studies provide specific examples demon-
strating that the use of cheminformatics approaches
helped spotting gaps or errors in biological annotations of
toxic compounds.[20, 31]

2.2 Dataset Size and Balancing

The number of compounds in the dataset for QSAR studies
should not be too small, or, for practical reasons, too large.
The upper limit is often defined by the computer and time
resources available for building QSAR models using the se-
lected methodologies. For example, for k-nearest neighbors
(kNN) QSAR approach frequently practiced in our laborato-
ry, the maximum number of compounds in the training set
(i.e. compounds used to build QSAR models) may not
exceed about ca. 2000 due to the inefficiency of the ap-
proach when processing large datasets. When a dataset in-
cludes more compounds, several approaches can be imple-
mented: (i) select a diverse subset of compounds; (ii) cluster
a dataset and build models separately for each cluster; (iii)
sometimes, in case of classification or category QSAR when
compounds belong to a small number of activity classes or
categories (e.g. , active and inactive), it is possible to ex-
clude many compounds from model development. The dif-
ference between classes and categories is that in contrast
to classes, categories can be ordered. Examples of classes
are given by ligands of different receptors ; and examples
of categories are sets of compounds that are described as
very active, moderately active, and inactive.

The lower limit of the number of compounds in the data-
set is also defined by several factors. For example, in most
cases as part of model validation schemes we divide the
dataset into three subsets: training, test and external evalu-
ation sets (see additional discussion below). Training sets
are used in model development, and if they are too small,
chance correlation and overfitting become major problems
not allowing one to build truly predictive models. While it
is impossible to give an exact minimum number of com-
pounds in a dataset for which building reliable QSAR
models is feasible, some simple ideas described here may
help. We suggest that in case of continuous response varia-
ble (activity) the number of compounds in the training set
should be at least 20, and about 10 compounds should be
in each of the test and external evaluation sets, so the total
minimum number of compounds should be no less than
40. In case of classification or category response variable,
training set should contain at least about 10 compounds of
each class, and test and external evaluation sets should
contain no less than five compounds for each class. So,

there should be at least 20 compounds of each class. The
best situation is when the number of compounds in the
dataset is between these two extremes: about 150–300
compounds in total, and in case of classification or catego-
ry QSAR approximately equal number of compounds of
each class or category.

There are also requirements for activity values. In case of
continuous response variable, the total range of activities
should be at least five times higher than the experimental
error. No large gaps (that exceed 10 %–15 % of the entire
range of activities) are allowed between two consecutive
values of activities ordered by value. In case of classification
or category QSAR, there should be at least 20 compounds
of each class or category; preferably, the number of com-
pounds in all classes or categories should be approximately
the same. However, many existing datasets are imbalanced
or biased (i.e. sizes of different classes or categories are dif-
ferent). In these cases, special approaches should be used
to equalize the number of compounds in different classes
or categories.

Indeed, in many datasets, the counts of compounds that
belong to different classes or categories are significantly
different (there could be several times and even orders of
difference). Usually, active compounds constitute a smaller
class and inactive compounds a larger class (which is practi-
cally always the case for datasets resulting from large scale
HTS studies). Active compounds (typically binding to a cer-
tain biological target) belong to a relatively small number
of structural classes. On the other hand, compounds includ-
ed in the larger class (i.e. inactive compounds) can be very
diverse: some of them can belong to the same structural
classes as active compounds, while other compounds
(often, the majority of them) have very different structures
highly dissimilar from those included in the smaller class.
So they cover a large area in the descriptor space relative
to the active compounds which are much more similar to
each other. In these cases, direct development of predictive
QSAR models using entire datasets is difficult, if not impos-
sible. Indeed, training and test sets reflect the composition
of the entire dataset, in which almost all compounds are in-
active, so the modeling and validation will be biased
toward correct prediction of the larger class. Thus, reducing
the number of compounds included in the larger class is
necessary. This can be achieved easily by calculating the
distance (or similarity) matrix between compounds belong-
ing to different classes followed by excluding compounds
of the larger class that are dissimilar beyond certain thresh-
old from those of the smaller class. Ideally, after excluding
dissimilar compounds of the larger class, the number of re-
maining compounds of this class should be more or less
equal to the number of compounds of the smaller class.
Classification QSAR models are developed then only for
compounds that remain in the balanced dataset. In other
words, the modeling subset will not include compounds of
the (initially) larger class that were excluded by the proce-
dure as more dissimilar to the smaller class than the re-
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maining molecules of the (initially) bigger class. This ap-
proach makes it more challenging to achieve a successful
QSAR model that discriminates, say, active compounds
from most chemically similar inactive compounds; there-
fore we consider it inherently more robust over alternative
approaches reported in the literature when random sam-
ples of the bigger class are used to create balanced data-
sets for classification modeling.

Alternative approaches that could help balancing data-
sets include undersampling of the bigger class[32, 33] or over-
sampling of the smaller class.[34] The extended discussion of
these approaches is beyond the scope of this review.

2.3 Detection and Removal of Outliers Prior to QSAR Studies

Success of QSAR modeling depends on the appropriate se-
lection of a dataset for QSAR studies. In a recent editorial
of the Journal of Chemical Information and Modeling, Mag-
giora[18] noticed that one of the main deficiencies of many
chemical datasets is that they do not fully satisfy the main
hypothesis underlying all QSAR studies: similar compounds
have similar biological activities or properties. Maggiora de-
fines the “cliffs” in the descriptor space where the proper-
ties change so rapidly, that, in fact adding or deleting one
small chemical group can lead to a dramatic change in the
compound’s property. In other words, small changes of de-
scriptor values can lead to large changes in molecular prop-
erties. Generally, in this case there could be not just one
outlier, but a subset of compounds whose properties are
different from those on the other “side” of the cliff. In other
words, cliffs are areas where the main QSAR hypothesis
(similar compounds have similar properties) does not hold.
So cliff detection is a major QSAR problem. In QSAR area,
many people were aware of these and other problems re-
lated to outlier detection, but have not yet paid a sufficient
attention to addressing them in automated QSAR proce-
dures.

There are two types of outliers we must be aware of: lev-
erage (or structural) outliers and activity outliers. Structural
outliers can be defined as singletons in a dataset clustered
using any of available techniques described in standard
statistical literature and activity outliers are essentially de-
fined as activity “cliffs” (see above). One should keep in
mind that both types of outliers can be real or due to
errors in structure representation or biological activity an-
notation but in any case, preserving outliers in a modeling
dataset will likely lead to model instability; the latter can
be manifested in significant differences in external predic-
tive power of models built with n-fold external validation
strategy. Thus, outliers should be removed before proceed-
ing with model development and analyzed separately for
possible errors; however, no current QSAR modeling tech-
niques provides a reliable approach to build models taking
outliers into account. Finding such approaches is one of
the challenges facing the field.

2.4 Critical Importance of Model Validation

In our important paper titled “Beware of q2 !”,[35] we have
demonstrated the insufficiency of the training set statistics
for developing externally predictive QSAR models and for-
mulated the main principles of model validation. Despite
earlier observations and warnings of several authors[36–38]

that high cross-validated correlation coefficient R2 (q2) is the
necessary, but insufficient condition for the model to have
high predictive power, many studies continue to consider
q2 as the only parameter characterizing the predictive
power of QSAR models. In this respect, we have shown[35]

that the predictive power of QSAR models can be claimed
only if the model was successfully applied for predicting
the external test set compounds, which were not used in
the model development.

Indeed, it is important to emphasize that the true predic-
tive power of a QSAR model can be established only
through model validation procedure which consists of pre-
diction of activities of compounds which were not included
in model building, i.e. , compounds in the test set. In con-
trast to the test set, compounds used for model building
constitute the training set. In many QSAR studies multiple
models are built and from them “best” models are selected,
which are defined as those based on the prediction statis-
tics for the test set. Thus, the test set is actually used to
select models. This use of the test set for model selection
practically negates the consideration of such routine as an
adequate external model validation. In fact, it does not
guarantee at all that models selected in this way will make
accurate predictions if used for chemical database mining
(i.e. predicting activities of compounds in truly external da-
tabase). In our workflow, to simulate the use of QSAR
models for database mining, a so called external evaluation
set is employed. It should consist of compounds with
known activities that are not included in either training or
test sets. External evaluation set can be selected randomly
from the entire initial dataset. In general, the size of the ex-
ternal evaluation set should be about 15 %–20 % of the
entire dataset. The remaining part of the dataset is called
modeling set that can be divided into training and test sets.
Algorithms for dividing a modeling set into diverse and
representative training and test sets were developed in our
group previously and are reported and discussed in detail
elsewhere.[39]

We have demonstrated earlier[35] that the majority of
models with high q2 values have poor predictive power
when applied for prediction of compounds in the external
test set. In the subsequent publication[40] the importance of
rigorous validation was again emphasized as a crucial, inte-
gral component of model development. Several examples
of published QSPR models with high fitted accuracy for the
training sets, which failed rigorous validation tests, have
been considered. We presented a set of simple guidelines
for developing validated and predictive QSPR models and
discussed several validation strategies such as the randomi-
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zation of the response variable (Y-randomization), external
validation using rational division of a dataset into training
and test sets, and others. We highlighted the need to es-
tablish the domain of model applicability in the chemical
space to flag molecules for which predictions may be unre-
liable, and discussed some algorithms that can be used for
this purpose. We advocated the broad use of these guide-
lines in the development of predictive QSPR models.[40–42]

The importance of model validation could now be re-
garded as collective wisdom within the community of mo-
lecular modelers. At the 37-th Joint Meeting of Chemicals
Committee and Working Party on Chemicals, Pesticides &
Biotechnology, held in Paris on 17–19 November 2004, the
OECD (Organization for Economic Co-operation and Devel-
opment) member countries adopted the following five
principles that valid (Q)SAR models should follow to allow
their use in regulatory assessment of chemical safety: (i) a
defined endpoint; (ii) an unambiguous algorithm; (iii) a de-
fined domain of applicability ; (iv) appropriate measures of
goodness-of-fit, robustness and predictivity; (v) a mechanis-
tic interpretation, if possible. Since then, most of the Euro-
pean authors publishing in QSAR area include a statement
that their models fully comply with OECD principles (e.g. ,
see References[43–46]).

Validation of QSAR models is one of the most critical
problems of QSAR. Recently, we have extended our require-
ments for the validation of multiple QSAR models selected
by acceptable statistics criteria of prediction for the test
set.[47] Additional studies on this critical component of
QSAR modeling should establish reliable and commonly ac-
cepted applicability domain criteria, which should make
models increasingly useful for virtual screening.

2.5 Applicability Domains and Model Acceptability Criteria

One of the most important problems in QSAR analysis is es-
tablishing the domain of applicability for each model. In
the absence of the applicability domain restriction, each
model can formally predict the activity of any compound,
even with a completely different structure from those in-
cluded in the training set. Thus, the absence of the model
applicability domain as a mandatory component of any
QSAR model would lead to the unjustified extrapolation of
the model in the chemistry space and, as a result, a high
likelihood of inaccurate predictions. In our research we
have always paid particular attention to this issue.[40, 48–55] A
good overview of commonly used applicability domain def-
initions can be found elsewhere.[56, 57]

In our earlier publications[35, 40] we have recommended a
set of statistical criteria which must be satisfied by a predic-
tive model. For continuous QSAR, criteria that we will
follow in developing activity/property predictors are as fol-
lows: (i) correlation coefficient R between the predicted
and observed activities; (ii) coefficients of determination[58]

(predicted versus observed activities R0
2, and observed

versus predicted activities R’0
2 for regressions through the

origin); (iii) slopes k and k’ of regression lines through the
origin. We consider a QSAR model predictive, if the follow-
ing conditions are satisfied (i) q2>0.5; (ii) R2>0.6; (iii)
(R0

2�R0
2)/R2<0.1 and 0.85�k�1.15 or (R0

2�R’0
2)/R2<0.1

and 0.85�k’�1.15; (iv) jR0
2�R’0

2 j<0.3 where q2 is the
cross-validated correlation coefficient calculated for the
training set, but all other criteria are calculated for the test
set (for additional discussion, see[8]).

3 Predictive QSAR Models as Virtual Screening
Tools

In our recent studies we were fortunate to recruit experi-
mental collaborators who have validated computational
hits identified by virtual screening of commercially available
compound libraries using rigorously validated QSAR
models. Examples include anticonvulsants,[53] HIV-1 reverse
transcriptase inhibitors,[59] D1 antagonists,[60] antitumor
compounds,[61] beta-lactamase inhibitors,[62] Human Histone
Deacetylase (HDAC) inhibitors,[63] and geranylgeranyltrans-
ferase-I inhibitors.[64] Thus, models resulting from predictive
QSAR workflow could be used to prioritize the selection of
chemicals for the experimental validation. To illustrate the
power of validated QSAR models as virtual screening tools
we shall discuss the examples of studies that resulted in ex-
perimentally confirmed hits. We note that such studies
could only be done if there is sufficient data available for a
series of tested compounds such that robust validated
models could be developed. The following examples illus-
trate the use of QSAR models developed with predictive
QSAR modeling and validation workflow (Figure 2) for virtu-
al screening of commercial libraries to identify experimen-
tally confirmed hits.

3.1 Discovery of Novel Anticancer Agents

A combined approach of validated QSAR modeling and vir-
tual screening was successfully applied to the discovery of
novel tylophorine derivatives as anticancer agents.[61] QSAR
models have been initially developed for 52 chemically di-
verse phenanthrine-based tylophorine derivatives (PBTs)
with known experimental EC50 using chemical topological
descriptors (calculated with the MolConnZ program) and
variable selection k nearest neighbor (kNN) method. Several
validation protocols have been applied to achieve robust
QSAR models. The original dataset was divided into multi-
ple training and test sets, and the models were considered
acceptable only if the leave-one-out cross-validated R2 (q2)
values were greater than 0.5 for the training sets and the
correlation coefficient R2 values were greater than 0.6 for
the test sets. Furthermore, the q2 values for the actual data-
set were shown to be significantly higher than those ob-
tained for the same dataset with randomized target proper-
ties (Y-randomization test), indicating that models were
statistically significant. Ten best models were then em-
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ployed to mine a commercially available ChemDiv Database
(ca. 500 K compounds) resulting in 34 consensus hits with
moderate to high predicted activities. Ten structurally di-
verse hits were experimentally tested and eight were con-
firmed active with the highest experimental EC50 of 1.8 mM
implying an exceptionally high hit rate (80 %). The same
ten models were further applied to predict EC50 for four
new PBTs, and the correlation coefficient (R2) between the
experimental and predicted EC50 for these compounds plus
eight active consensus hits was shown to be as high as
0.57.

3.2 Discovery of Novel Histone Deacetylase (HDAC)
Inhibitors

Histone deacetylases (HDAC) play a critical role in transcrip-
tion regulation. Small molecule HDAC inhibitors have
become an emerging target for the treatment of cancer
and other cell proliferation diseases. We have employed
variable selection k Nearest Neighbor approach (kNN) and
Support Vector Machines approach (SVM) to generate
QSAR models for 59 chemically diverse compounds with in-
hibition activity on class I HDAC. MOE[22] and MolConnZ[65]

based 2D descriptors were combined with k nearest neigh-
bor (kNN) and support vector machines (SVM) approaches
independently to improve the predictive power of models.
Rigorous model validation approaches were employed in-
cluding randomization of target activity (Y-randomization
test) and assessment of model predictability by consensus
prediction on two external datasets. Highly predictive
QSAR models were generated with leave-one-out cross vali-
dation R2 (q2) values for the training set and R2 values for
the test set as high as 0.81 and 0.80, respectively with Mol-
connZ/kNN approach and 0.94 and 0.81, respectiveley with
MolconnZ/SVM approach. Validated QSAR models were
then used to mine four chemical databases: National
Cancer Institute (NCI) database, Maybridge database,
ChemDiv database and ZINC database, including a total of
over 3 million compounds. The searches resulted in 48 con-
sensus hits, including two reported HDAC inhibitors that
were not included in the original data set. Four database
hits with novel structural features were purchased and
tested using the same biological assay that was employed
to assess the inhibition activity of the training set com-
pounds. Three of these four compounds were confirmed
active with the best inhibitory activity (IC50) of 1 mM.

3.3 Discovery of Novel Geranylgeranyltransferase Type I
(GGTase-I) Inhibitors

In another recent study,[64] we employed our standard
QSAR modeling workflow (Figure 2) to discover novel Gera-
nylgeranyltransferase type I (GGTase-I) inhibitors. Geranyl-
geranylation is critical to the function of several proteins in-
cluding Rho, Rap1, Rac, Cdc42, and G-protein gamma sub-
units. GGTase-I inhibitors (GGTIs) have therapeutic potential

to treat inflammation, multiple sclerosis, atherosclerosis,
and many other diseases. Following our standard QSAR
modeling workflow, we have developed and rigorously vali-
dated models for 48 GGTIs using variable selection k near-
est neighbor[66] and automated lazy learning,[54] and genetic
algorithm-partial least square[67] QSAR methods. The QSAR
models were employed for virtual screening of 9.5 million
commercially available chemicals yielding 47 diverse com-
putational hits. Seven of these compounds with novel scaf-
folds and high predicted GGTase-I inhibitory activities were
tested in vitro, and all were found to be bona fide and se-
lective micromolar inhibitors.

Figure 4 shows the structures of both representative
training set compounds as well as confirmed computation-
al hits. We should emphasize that QSAR models have been
traditionally viewed as lead optimization tools capable of
predicting compounds with chemical structure similar to
the structure of molecules used for the training set. Howev-
er, this study clearly indicates (Figure 4) that with enough
attention given to the model development process and
using chemical descriptors characterizing whole molecules
(as opposed to, e.g. , chemical fragments) it is indeed possi-
ble to discover compounds with novel chemical scaffolds.
Furthermore, in our study we have additionally demonstrat-
ed that these novel hits could not be identified using tradi-
tional chemical similarity search,[64] which highlights the
power of robust QSAR models as the drug discovery tool.

In summary, several examples above demonstrate that
QSAR models could be used successfully as virtual screen-
ing tools to discover compounds with the desired biologi-
cal activity in chemical databases or virtual libra-
ries.[53, 60, 61, 68, 69] It should be stressed that the total number
of compounds selected for virtual screening based on
QSAR model predictions is typically relatively small, only a
few dozen. Obviously, the total number of computational
hits is controlled by the value of applicability domain. In

Figure 4. The use of QSAR modeling, virtual screening of commer-
cial libraries, and experimental validation of computational hits af-
forded the discovery of geranylgeranyltransferase-I inhibitors with
novel scaffolds.
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most published cases, because we were limited in both
time and resources, we chose a very conservative applica-
bility domain leading to the selection of a small library of
computational hits with an expectation that a large fraction
of these would be confirmed as active compounds. In the
industrial size projects it may be more reasonable to loosen
the applicability domain requirement and increase the size
of virtual hit library. One may expect that the increase in
the library size will result in lower relative accuracy of pre-
diction but the absolute number of confirmed hits may ac-
tually increase. Thus, scientists using QSAR models that in-
corporate the applicability domain should always be aware
of the interplay between the size of the domain, the cover-
age of the virtual screening library, and the prediction accu-
racy so they should use the applicability domain as a tuna-
ble parameter to control this interplay. The discovery of
novel bioactive chemical entities is the primary goal of
computational drug discovery, and the development of va-
lidated and predictive QSAR models is critical to achieve
this goal.

4 Best Practices for Contests in QSAR
Modeling: Competitive Collaboration and
Consensus Modeling

The title of this section may appear contradictory and per-
haps controversial because competition is perhaps one of
the major (and for the most part, healthy) attributes of sci-
entific research. Nevertheless, we believe that QSAR model-
ing may provide unique environment to advance the field
by a mechanism that we may regard as “competitive col-
laboration”. The following example may help illustrate our
point.

4.1 Study Design

In a recent study,[15] the combinational QSAR modeling ap-
proach was applied to a diverse series of organic com-
pounds tested for aquatic toxicity in Tetrahymena pyriformis
in the same laboratory of Prof. T. Schultz over nearly a
decade.[70–76] The unique aspect of this research was that it
was conducted in collaboration between six academic
groups specializing in cheminformatics and computational
toxicology. The common goals for our virtual collaboratory
were to explore the relative strengths of various QSAR ap-
proaches in their ability to develop robust and externally
predictive models of this particular toxicity end point. The
members of our collaboratory included scientists from the
University of North Carolina at Chapel Hill in the United
States (UNC); University of Louis Pasteur (ULP) in France;
University of Insubria (UI) in Italy; University of Kalmar (UK)
in Sweden; Virtual Computational Chemistry Laboratory
(VCCLAB) in Germany; and the University of British Colum-
bia (UBC) in Canada. Each group relied on its own QSAR
modeling approaches to develop toxicity models using the

same modeling set, and we agreed to evaluate the realistic
model performance using the same external validation
set(s).

The T. pyriformis toxicity dataset used in this study was
compiled from several publications of the Schultz group as
well as from data available at the Tetratox database website
of (http://www.vet.utk.edu/TETRATOX/). After deleting du-
plicates as well as several compounds with conflicting test
results and correcting several chemical structures in the
original data sources, our final dataset included 983 unique
compounds. The dataset was randomly divided into two
parts: 1) the modeling set of 644 compounds; 2) the valida-
tion set including 339 compounds. The former set was
used for model development by each participating group
and the latter set was used to estimate the external predic-
tion power of each model as a universal metric of model
performance. In addition, when this project was already
well underway, a new dataset had become available from
the most recent publication by the Schultz group.[77] It pro-
vided us with an additional external set to evaluate the pre-
dictive power and reliability of all QSAR models. Among
compounds reported in[77] 110 were unique, i.e. , not pres-
ent among the original set of 983 compounds; thus, these
110 compounds formed the second independent validation
set for our study.

Naturally, different groups employed different techniques
and (sometimes) different statistical parameters to evaluate
the performance of models developed independently for
the modeling set. To harmonize the results of this study
the same standard parameters were chosen to describe
each model’s performance as applied to the modeling and
external test set predictions. Thus, we have employed Q2

abs

(squared leave-one-out cross-validation correlation coeffi-
cient) for the modeling set, R2

abs (frequently described as co-
efficient of determination) for the external validations sets,
and MAE (mean absolute error) for the linear correlation be-
tween predicted (Ypred) and experimental (Yexp) data (here,
Y = pIGC50) ; these parameters are defined as follows:

Q2
abs ¼ 1�

X

Y

ðYexp � YLOOÞ2=
X

Y

ðYexp � <Y>expÞ2 ð1Þ

R2
abs ¼ 1�

X

Y

ðYexp � YpredÞ2=
X

Y

ðYexp � <Y>expÞ2 ð2Þ

MAE ¼
X

Y

Y � Ypred

�� ��=n ð3Þ

Many other statistical characteristics can be used to eval-
uate model performance; however, we restricted ourselves
to these three parameters that provide minimal but suffi-
cient information concerning any model’s ability to repro-
duce both the trends in experimental data for the test sets
as well as mean accuracy of predicting all experimental
values. The models were considered acceptable if Rabs

2 ex-
ceeded 0.5.

Mol. Inf. 2010, 29, 476 – 488 � 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.molinf.com 485

Best Practices for QSAR Model Development, Validation, and Exploitation

www.molinf.com


4.2 QSAR Models of Aquatic Toxicity; Comparison Between
Methods and Models

The objective of this study from methodological prospec-
tive was to explore the suitability of different QSAR model-
ing tools for the analysis of a dataset with an important
toxicological endpoint. Typically, such datasets are analyzed
with one (or several) modeling techniques, with a great
emphasis on the (high value of) statistical parameters of
the training set models. In this study, we went well beyond
the modeling studies reported in the original publications
from the Schultz group in several respects. First, we have
compiled all reported data on chemical toxicity against T.
pyriformis in a single large dataset and attempted to devel-
op global QSAR models for the entire set. Second, we have
employed multiple QSAR modeling techniques thanks to
the engagement of six collaborating groups. Third, we
have focused on defining model performance criteria not
only using training set data but most importantly using ex-
ternal validation sets that were not used in model develop-
ment in any way (unlike any common cross-validation pro-
cedure).[78] This focus afforded us the opportunity to evalu-
ate and compare all models using simple and objective uni-
versal criteria of external predictive accuracy, which in our
opinion is the most important single figure of merit for a
QSAR model that is of practical significance for experimen-
tal toxicologists. Fourth, we have explored the significance
of applicability domains and the power of consensus mod-
eling in maximizing the accuracy of external predictivity of
our models.

The results of this exercise demonstrated that all models
performed quite well for the training set with even the
lowest Qabs

2 among them as high as 0.72. However, there
was much greater variation between these models when
looking at their (universal and objective) performance crite-
ria as applied to the external validation sets. Thus, of 15
QSAR approaches used in this study, nine implemented
method-specific applicability domains. Models that did not
define the AD showed a reduced predictive accuracy for
the validation set II even though they yielded reasonable
results for the validation set I.

4.3 The Power of Consensus

For the most part all models succeeded in achieving rea-
sonable accuracy of external prediction especially when
using the AD. It then appeared natural to bring all models
together to explore the power of consensus prediction.
Thus, the consensus model was constructed by averaging
all available predicted values taking into account the ap-
plicability domain of each individual model. In this case we
could use only nine of 15 models that had the AD defined.
Since each model had its unique way of defining the AD,
each external compound could be found within the AD of
anywhere between one and nine models so for averaging
we only used models covering the compound. The advant-

age of this data treatment is that the overall coverage of
the prediction is still high because it was rare to have an
external compound outside of the ADs of all available
models. The results showed that the prediction accuracy
for both the modeling set (MAE = 0.22) and the validation
sets I and II (0.27 and 0.34, respectively) was the best com-
pared to any individual model. The same observation could
be made for the correlation coefficient R2

abs. The coverage
of this consensus model was actually 100 % for all three
data sets. This observation suggests that consensus models
afford both high space coverage and high accuracy of pre-
diction.

In summary, this study presents an example of a fruitful
international collaboration between researchers that use
different techniques and approaches but share general
principles of QSAR model development and validation. Sig-
nificantly, we did not make any assumptions about the pur-
ported mechanisms of aquatic toxicity yet were able to de-
velop statistically significant models for all experimentally
tested compounds. However, the most significant single
result of our studies is the demonstrated superior perfor-
mance of the consensus modeling approach when all
models are used concurrently and predictions from individ-
ual models are averaged. We have shown that both the
predictive accuracy and coverage of the final consensus
QSAR models were superior as compared to these parame-
ters for individual models. The consensus models appeared
robust in terms of being insensitive to both incorporating
individual models with low prediction accuracy and the in-
clusion or exclusion of the AD. Another important result of
this study is the power of addressing complex problems in
QSAR modeling by forming a virtual collaboratory of inde-
pendent research groups leading to the formulation and
empirical testing of best modeling practices. This study con-
firms the power of the “competitive collaboration” principle
that we proposed in the beginning of this section.

5 Summary and Conclusions

As is true perhaps for any computational field, QSAR mod-
eling has been both blessed and sometimes, cursed in the
literature. Our group was among the first emphasizing the
importance of statistical validation of QSAR models.[35] As
we pointed out and demonstrated with examples in this
review (cf. Section 4.2), the high accuracy of the training
set model characterized with leave-one-out cross validated
R2 (q2), i.e. , model fitness, is not indicative of the high exter-
nal predictive power of the model. Thus, the exclusive reli-
ance on training set modeling without any external valida-
tion is one of the reasons why many models cannot be
considered reliable. Another important paper examined the
reasons behind the failure of in silico ADME/Tox models[6]

linking the frequent failures to the inappropriate use of
models, false expectations, or procedures used to develop
models. In a brief but very important editorial note G. Mag-
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giora[18] outlined limitations and some reasons for failures
of QSAR modeling that relate to the so called “activity
cliffs”, which are known cases when a small change in
chemical structure leads to dramatic changes in the target
activity. Such cases are indeed difficult to foresee and hard
to capture and explain using QSAR models since the
models work best in reflecting relatively smooth trends in
structure-activity correlations. Addressing the activity cliffs
problem is indeed a hard problem in QSAR modeling and
in some cases it is a source of poor predictions. A summary
of various reasons leading to erroneous QSAR models was
given in a recent critical overview of the field.[79] Another
recent important paper listed as many as 21 possible sour-
ces of error when developing QSAR models[7] and provided
some recipes as to how to avoid at least some common
errors in QSAR model development.

In most cases the authors concerned with the quality
and practical utility of QSAR models looked deeply into
possible sources of errors or offered approaches to improve
the robustness of models. On the other hand, the author of
the negative opinion letter published in early 2008[19] made
an unfortunate attempt to equate the fraction of papers
not paying enough attention to the statistical quality of
models with the entire field. As we discuss in this review, it
is critically important to avoid the oversimplification of the
QSAR modeling process and employ statistically robust ap-
proaches for both model development and validation. Au-
thors ignoring the complexity of the problem or those
paying insufficient attention to model validation do end up
developing and in some cases, publishing models that
could not be regarded as reliable. Conversely, the criticism
of the field should be balanced and based on the thorough
analysis of possible sources of error rather than equating
the entire field to one large error as the aforementioned
opinion letter[19] did. Thus, in this review we have made a
fair attempt to outline the objective challenges facing (but
not dooming!) the field (such as activity cliffs) and empha-
size the importance of developing and practicing rigorous
approaches to both model development and validation.

In conclusion, we have discussed current best practices
for developing robust and externally predictive QSAR
models. As with any computational molecular modeling ap-
proach, it is imperative that QSAR method is used expertly.
Therefore, this review has focused on the discussion of criti-
cal components of QSAR modeling procedures that should
be studied and executed rigorously to enable their success-
ful application. We have shown that with enough attention
paid to critical issues of model validation and applicability
domain definition, the models could be indeed used suc-
cessfully to mine external virtual libraries, especially of com-
mercially available chemicals, to generate reliable computa-
tional hits. The methods and applications discussed in this
review should be of help to both computational and syn-
thetic chemists as well as experimental biologists working
in the areas of biological screening of chemical libraries.
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