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ABSTRACT: We introduce the SAR matrix data structure that is designed
to elucidate SAR patterns produced by groups of structurally related active
compounds, which are extracted from large data sets. SAR matrices are sys-
tematically generated and sorted on the basis of SAR information content.
Matrix generation is computationally efficient and enables processing of
large compound sets. The matrix format is reminiscent of SAR tables, and
SAR patterns revealed by different categories of matrices are easily inter-
pretable. The structural organization underlying matrix formation is more
flexible than standard R-group decomposition schemes. Hence, the resulting
matrices capture SAR information in a comprehensive manner.

■ INTRODUCTION
The evaluation of structure−activity relationships (SARs) of
small molecules is a critically important task in high-throughput
screening (HTS) data analysis and medicinal chemistry.1,2 For
example, in HTS data analysis one often selects the most potent
hits and their structural neighbors from a primary screening
campaign for further exploration. However, it is equally, if not
more, important to identify series of compounds that contain
interpretable SAR information as an indicator of sustainable and
evolvable SARs. The presence of such information often renders
compound series promising starting points for further chemical
exploration and hit-to-lead projects. To these ends, standard
clustering using whole-molecule similarity measures is often
applied to group structurally similar compounds together3 and
subject individual clusters to statistical4 or graphical analyses5,6 of
corresponding activity data. However, whole-molecule similarity
measures might often not be sufficient to capture SAR informa-
tion in chemical interpretable ways, due to the predominantly
local molecular nature of SAR determinants. This potential caveat
can be circumvented, for example, by employing substructure-
based approaches that organize compound sets on the basis of
shared molecular building blocks.7 For example, a data structure
termed ‘scaffold tree’8 has been introduced that derives molecular
frameworks from compounds by pruning side chains and uses a
set of predefined chemical rules to further decompose scaffolds
until only single rings remain. The hierarchical organization
of generated substructures and their annotation with activity
information of the compounds from which they originate makes
it then possible to identify frameworks that are associated with
specific biological activities.8,9 In addition, bioactive frameworks
can also be identified on the basis of R-group decomposition

schemes.10 However, when adhering to conventional definitions
of molecular frameworks and hierarchies,7 subtle differences in
heteroatom composition of ring systems or in the size of rings
and linker fragments yield building blocks that are considered
distinct but are in fact often very similar from a chemical point of
view. Such frameworks might thus better be considered to belong
to the same series, rather than as building blocks of different
series, which complicates SAR exploration. Furthermore, addi-
tional analysis steps are generally required to extract detailed SAR
information from a set of compounds that are represented by
a framework associated with a specific activity. For the visual
analysis of SARs in medicinal chemistry, methods focusing on
maximum common substructures that define the core of con-
generic compound series (analogs) are also widely applied.10,11

In this case, analog series are often represented in R-group tables
that contain the common core structure of a series and list
chemical groups that are present at individual substitution sites.10

However, for the analysis of large compound data sets, the deter-
mination of maximum common substructures for compound
subsets is a computationally expensive task. In addition, R-group
tables become difficult to navigate with increasing compound
numbers, and the extraction of SAR information from them is in
such cases far from being straightforward.
We have been interested in the development of a methodology

to extract compound subsets from large data sets that are rich
in SAR information, without adhering to predefined definitions
of molecular cores or rules of chemical similarity. Building upon
the recently introduced concept of ‘matching molecular series’
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(MMS),12 we have designed and implemented a computationally
efficient approach to identify groups of structurally related com-
pounds and use emerging structural relationships to organize
core structures and substituents in an SAR table-like format termed
‘SAR matrix’. This display format is chemically intuitive and
readily interpretable. In addition, different scoring schemes were
devised to prioritize SAR matrices that represent different types
of information-rich local SAR environments and capture SAR
information in different ways.
In the following, we first introduce the SAR matrix approach

and data structure and then report exemplary applications to
screening and chemical optimization data sets.

■ METHODS AND MATERIALS
Index Table. Initially, all molecules in a data set are frag-

mented by systematically deleting all exocyclic single bonds and
their two- and three-bond combinations. Deletion of a single
bond generates two fragments that are added to an index table
(‘single cut table’), with the larger fragment constituting the key
and the smaller fragment the corresponding value. If the two
fragments contain the same number of heavy atoms, they are
added to the index table twice because each fragment is con-
sidered once as the key. The simultaneous deletion of two bonds
results in the formation of one fragment with two ‘break
points’ and two fragments having a single break point. These

single-point fragments are grouped together. Again, the fragment
or set of fragments that contains the larger number of heavy
atoms is selected as the key for the index table (‘double cut
table’). Of the possible fragment combinations resulting from the
simultaneous deletion of three bonds, only those containing a
fragment with three break points are retained and processed in
analogy to double cut fragments. This means that triple cuts that
produce two fragments with two break points each and two
fragments with one break point are ignored. In Figure 1, the
systematic fragmentation of a molecule and the generation of
index tables are illustrated. This fragmentation and indexing
procedures represent a variant of the Hussain and Rea algorithm
for the identification of matched molecular pairs (MMPs).13 In
our implementation, cuts are limited to exocyclic single bonds,
and the definition of keys and values is more flexible because
values are not limited to single fragments.

Matching Molecular Series. All molecules that are asso-
ciated with the same key in an index table form an MMS,12 i.e., a
series of compounds that share a common substructure or core
(key) and differ by defined chemical replacements (values).
From standard index tables, molecules that contain a given key
fragment as a substructure but carry a hydrogen atom at a break
point cannot be identified. Therefore, in order to add these mol-
ecules to anMMS, one to three break points of keys consisting of
a single fragment are systematically replaced by hydrogen atoms.

Figure 1.Molecule fragmentation. An exemplary compound is exhaustively fragmented through systematic deletion of all combinations of one to three
exocyclic bonds (drawn in bold). If more than two fragments are generated, fragments with a single break point are combined. Fragments are then added
to an index table where the fragment (or set of fragments) having the larger number of heavy atoms constitutes the key and the remaining
substructure(s) the corresponding value.
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The resulting structure is then used to identify compounds in
input data sets that also qualify for an MMS. If one or two break
points remain, the modified structure is compared to keys in
the single and double cut tables, respectively, and compounds
belonging to a matching key are added to the MMS. These addi-
tional steps ensure that congeneric compound series involving
substitutions of hydrogen atoms are correctly identified, follow-
ing Hussain and Rea.13

Structurally Similar MMS. For the identification of ‘struc-
turally similar MMS’, i.e., series of compounds having similar
cores, keys are fragmented and indexed in separate tables essen-
tially following the procedures applied to fragment original com-
pounds, with two exceptions: (i) one of maximally three bonds
that are cut is permitted to connect a break point and a heavy
atom that is not a ring atom and (ii) values must now consist of a
single fragment. In these newly generated separate index tables,
keys from the single, double, and triple cut tables that only differ
at a given site are grouped together, as illustrated for a model data
set in Figure 2, and form a set of structurally similar MMS, also
termed ‘key MMS’.
Matrix Generation. For key MMS, all value fragments are

pooled, and a matrix is generated in which rows correspond
to keys and columns to values. Each combination of a key and a
value defines a possible compound, and the corresponding cell in
the matrix is colored if this molecule is contained in the data set,
as illustrated in Figure 3. The color code reflects the compound
potency distribution and follows a traffic light spectrum from red
(low potency) over yellow to green (high potency).
Due to the systematic deletion of single bonds during frag-

mentation, it is principally possible that a compound occurs mul-
tiple times within the same matrix in different cells representing
distinct key-value pairings. To remove compound redundancies

from SAR matrices, the following rules are sequentially applied
to prioritize fragment combinations: (i) If among multiple key-
value pairings representing the same compound a key is a sub-
structure of another key, then higher priority is assigned to the
larger key paired with a smaller value fragment. (ii) If identical
compounds are produced by the same value fragments for two

Figure 2. Identification of structurally similar MMS. A model data set consisting of 10 compounds A-J with hypothetical pKi values is shown on the left.
A section of the ‘single cut table’ of this compound set is displayed on the right. Compounds associated with the same key share a common substructure
and form anMMS. Structurally related MMS are then identified by fragmenting keys and generating a separate index table (bottom right). In this index,
keys that differ at a given single site (highlighted in red) form a ‘key MMS’.

Figure 3. SARmatrix generation. For the keyMMS identified in Figure 2,
a matrix is generated in which the three keys correspond to rows and their
associated value fragments to columns. The combination of a key and a
value defines a possible compound and the corresponding cell is colored if
this molecule is present in the data set. The color code reflects compound
potency and ranges from red (lowest potency in the matrix) via yellow to
green (highest potency).
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matching series, one of the two series is randomly removed. (iii)
If two value fragments generate identical compounds for the
same matching series, then one of the two value fragments is
randomly discarded. This rule is important for value fragments
that are identical except for the numerical identifiers of their
attachment points. If for a given value fragment only a subset of
the molecules associated with another value fragment exists, then
this value fragment is removed, because it is found in fewer
molecules. The application of these rules does not guarantee that
an individual molecule occurs only once in a generated matrix, as
illustrated in Figure S1 of the Supporting Information. In our
implementation, a warning message is displayed if a compound
occurs more than once in a matrix.
Optionally, hierarchical clustering can be performed on both

horizontal and vertical axes to bring rows (keys) and columns
(values) together that yield similar potency patterns, in analogy
to gene expression heatmaps.14

Matrix Ranking. Due to their systematic generation, many
different key MMS matrices are typically obtained for a com-
pound data set. If the same subset of molecules in a data set yields
multiple matrices with different keys and values, the matrix with
the lowest cut level is selected. This is done because matrices in
which molecules yield small numbers of fragments are generally
easiest to analyze. Furthermore, four different scoring schemes
are introduced to select key MMS among multiple matrices
having the same cut level and rankmatrices representing different
compound subsets. Specifically, matrices are prioritized that
contain the following:

(1) Highly Potent Compounds. For this purpose, the
Kolmogorov−Smirnov (KS) statistic15 is applied, similar
to Varin et al.16 Accordingly, potency distributions of
compounds in a matrix and in the complete data set are
determined, and a p-value is calculated for a one-sided KS
test15 to detect a shift toward more potent molecules in the
matrix compared to the data set distribution (i.e., the
smaller the p-value, the more significant the activity shift).
Matrices are then ranked in the order of increasing p-values.

(2) SARDiscontinuity. Potency differences are calculated for all
compounds in the same row or column of a matrix, and
matrices are ranked in the order of decreasing average
potency differences. This scoring scheme favors the pre-
sence of SAR discontinuity,17 i.e., matrices with structurally
similar compounds having large differences in potency.

(3) Most Potent Compounds in a Single Column. Thereby,
preferred value fragments (substituents) are identified for
similar keys. For each column containing at least three
molecules, the potency of the least potent compound is
assigned to the corresponding value fragment. Then, the
highest assigned potency of all values is selected as a
threshold. The percentage of compounds that are less
potent than this threshold is calculated as a matrix score,
and matrices are ranked in the order of decreasing scores.

(4) SAR Transfer Series. In the case of SAR transfer, the same
structural modifications in two MMS lead to comparable
potency changes between pairs of corresponding com-
pounds.18 For two MMS in a matrix sharing at least three
value fragments, a transfer score19 is calculated
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Here, n corresponds to the number of value fragments shared
by the two MMS, potk

s gives the potency of the compound in
series s that contains the kth value fragment, ranges denotes the
potency range spanned by the n compounds in series s, and sd(d)
is the standard deviation of potency differences between com-
pounds containing the same value fragment. This scoring func-
tion yields high scores for two MMS having a large number of
corresponding compounds with identical substituents (values),
constant potency differences between matching compounds, and
large potency ranges (a minimal potency range of 1 order of
magnitude is set as a threshold). The highest SAR transfer score
obtained for two MMS in a matrix is used as a score to rank
generated SAR tables in the order of decreasing SAR transfer
potential.

Implementation. All calculations required to build index
tables, identify structurally related MMS, and generate, rank, and
display SARmatrices were carried out using in-house written Java
programs. SAR matrix representations shown here are automati-
cally generated. Routines to generate MMPs and draw chemical
structures were implemented using the OpenEye chemistry and
depict tool kits.20,21

Data Sets. In 2010, GlaxoSmithKline released an anti-
malarial screening data set22 containing a total of 13,533
compounds displaying at least 80% inhibitory activity in
parasite growth assays at two μM concentration. A total of
10,437 of these compounds were found to represent previously
unknown inhibitory chemotypes.23 This compound subset
has been subjected to fragmentation and SAR matrix genera-
tion in our current study. As activity annotation, the negative
decadic logarithm of estimated compound concentrations
yielding 50% inhibition of Plasmodium falciparum growth
(pXC50) was used. In addition, we also assembled 1892
inhibitors of human carbonic anhydrase I from BindingDB24 for
which pKi values were available. It has previously been shown
that SAR transfer series frequently occur in carbonic anhydrase
inhibitor sets.19

Figure 4. Antimalarial screening data. The potency (pXC50) distribu-
tion of 10,437 test compounds is reported as a color-coded histogram
(from lowest (red) to highest (green) data set potency).
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■ RESULTS AND DISCUSSION

The two data sets that we analyzed were of rather different
chemical composition and size. The antimalarial screening set
was selected as a structurally heterogeneous compound set that
contained many weakly potent hits. The potency distribution
of the 10,437 screening set compounds is shown in Figure 4.
Many hits displayed inhibitory activities in the micromolar range.
The minimum, maximum, and average pXC50 values were
5.7, 8.5, and 6.2, respectively. In addition, given its phenotypic
screening readout, potential targets of active compounds were
not defined and activity annotations were only approximate in
nature. From such phenotypic screening data, it is generally
difficult to extract SAR information.22,23 Hence, this large data set
presented a challenging test case for SAR exploration. On the
other hand, the carbonic anhydrase I inhibitor set contained
many optimized congeneric series of potent inhibitors active in
the low nanomolar range. In this case, equilibrium constants were
available as potency measurements. Hence, this set represented a
typical lead optimization set, with higher and more accessible
SAR information. To evaluate the SAR matrix approach, we at-
tempted to generate SAR matrices from these two very different
data sets. In the following, representative examples are presented.

Analysis of Antimalarial Screening Data. We searched
this data set for SAR matrices that contained a key MMS with at
least five individual series and at least two compounds per series.
Applying these criteria, we obtained 941 single cut, 1791 double
cut, and 348 triple cut matrices from the GSK data.

Potent Screening Hits.The matrices were first ranked accord-
ing to the KS-based scoring scheme, hence attempting to select
matrices enriched with potent screening hits. The top-ranked
single cut matrix is shown in Figure 5. All keys in this matrix con-
tained a 1-benzyl-4-(pyridin-4-yl)piperazine moiety. The fourth
ring in each key was either another phenyl or a thiophene ring,
and the value fragments were differently substituted benzimida-
zoles. The matrix consisted of 19 different compounds with
pXC50 values between 6.6 and 7.2. The average pXC50 value of
the matrix compounds was 6.85. Hence, this subset was con-
siderably more potent than an average screening hit (see above).
Importantly, on the basis of a standard framework definition, hits
contained in this matrix would not have been identified as a
related series because all six MMS forming the matrix rep-
resented different Bemis and Murcko frameworks25 and cyclic
skeletons.26 Figure S2a of the Supporting Information shows the
top-ranked triple cut matrix for KS-based scoring. Low-scoring
SAR matrices are abundant, do not contain interpretable SAR

Figure 5.Matrix with potent compounds. The top-ranked antimalarial compound matrix according to KS statistic-based scoring is displayed. For the 19
molecules contained in the matrix, pXC50 values range from 6.6 to 7.2. The cell color code is according to Figure 4. Substructures that distinguish
different keys are colored red.
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information, and do not need to be considered during SAR
analysis.
SAR Discontinuity.We then ranked the screening set matrices

on the basis of discontinuity scoring. A representative highly
ranked single cut matrix is shown in Figure 6 (the top-ranked
matrix is provided in Figure S2b of the Supporting Information).
The 34 compounds in this SAR matrix spanned a pXC50 value
range from 6.0 to 7.7. Compounds that contained different
keys but shared the same substituent and also compounds
with the same key structure but different substituents showed
large potency differences within the matrix. For example, the
attachment of a 4-chloro-phenyl ring to five different key
structures yielded compounds with variable potency (pXC50
values from 6.1 to 7.3). For the fifth MMS series in this matrix
that was defined by a 1-(4′-(1H-benzo[d]imidazol-2-yl)-
biphenyl-4-yl)urea key structure, a rather subtle structural
modification, i.e., the replacement of a ethyl-4-benzoate by a
4-methoxy-phenyl, led to a notable potency decrease (from a
pXC50 value of 7.7 to 6.3). The presence of SAR discontinuity
is often considered a valuable indicator for the potential to
further evolve a chemical series.5 Hence, the hit set represented
by this matrix should be an interesting starting point for further
compound optimization efforts. A number of different matrices
with these characteristics were extracted from the screening
data set.
Analysis of Carbonic Anhydrase I Inhibitors. For the set

of carbonic anhydrase I inhibitors, we obtained 49 single, 97
double, and 56 triple cut matrices containing at least three similar
MMS each represented by at least four compounds.
Preferred Substituents. We next scored all matrices for the

presence of potent compounds within a single column, thus
aiming at the identification of a preferred substituent (value) for
similar keys. Figure 7 shows a highly ranked single cut matrix
consisting of 24 inhibitors that were active within a pKi range
from 3.5 to 8.4. For six structurally related keys, a 5-sulfamoyl-

1,3,4-thiadiazol-2-yl-aminosulfonyl-4-phenyl group was iden-
tified as a preferred substituent yielding inhibitors with
pKi values from 8.1 to 8.4 that were much more potent
than other matrix compounds. These compounds included
analogs with a 4-aminosulfonyl-phenyl substituent and different
aliphatic linkers that were only weakly potent in the high
micromolar range. Hence, this matrix immediately revealed a
critical role of the terminal thiadiazol-sulfonamide group. By
contrast, the modifications made to the central pyridyl ring of the
key structures were only of minor importance because potency
differences between the six MMS were only subtle. The larger
top-ranked matrix is shown in Figure S2c of the Supporting
Information.

SAR Transfer. Finally, we applied the SAR transfer scoring
scheme to matrices of the carbonic anhydrase I inhibitor set.
Clear SAR transfer events over significant potency ranges were
not detected in the GSK screening data, as one might expect
(by contrast, multiple instances of the other three categories of
SAR matrices at different cut levels were detected in both data
sets). Because SAR transfer scoring focused on pairs of MMS,
we lowered our threshold for the minimum number of MMS
per matrix to two, thereby avoiding the loss of potentially
interesting SAR transfer events. This modification further
increased the total number of generated matrices from 202 to
524. In Figure 8, the seventh-ranked triple cut matrix is shown
that consisted of two MMS with 13 compounds each. This
matrix displayed nearly ideal stepwise increases in potency
for different substituents. The top-ranked matrix is shown in
Figure S1 of the Supporting Information. This matrix also
meets formal SAR transfer criteria because identical sub-
stituents induce similar potency changes for different MMS.
The two MMS in Figure 8 differed by the exchange of a methyl
group and a phenyl ring at the substituted pyridine moiety of
their keys. Interestingly, for these MMS, only pairs of analogs
with exactly the same R-group pattern at three corresponding

Figure 6. Matrix capturing SAR discontinuity. An antimalarial compound matrix containing 34 molecules with varying pXC50 values (6.0 to 7.7) is
shown. On the basis of discontinuity-based scoring, this matrix is assigned rank 20 of all single cut matrices. The cell color code is according to Figure 4.
Substructures that distinguish keys are colored red.
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substitutions sites were retrieved from the data set, a rather
unusual case. As can be seen, potency values for pairs
of analogs with identical substituents were very similar. The

same structural modifications led to comparable potency
changes in the two series, representing a textbook-like SAR
transfer event.

Figure 7. Preferred substituents. A matrix containing 24 human carbonic anhydrase I inhibitors covering a pKi range from 3.5 to 8.4 is displayed. The
matrix obtained ranks 9 among all single cut matrices on the basis of substituent-directed scoring. The cell color code is adjusted to reflect the potency
range of the depicted carbonic anhydrase I inhibitor subset. Substructures that distinguish keys are colored red.

Figure 8. SAR transfer. A matrix with two MMS is shown. These MMS contain 13 carbonic anhydrase I inhibitors each and reveal nearly perfect SAR
transfer within a pKi range from 4.5 to 8.0. Value fragments are sorted in the order of increasing compound potency in the top row, and the cell color
code is adjusted to the potency range covered by matrix compounds. Substructures that distinguish keys are colored red. This matrix ranks seventh
among all triple cut matrices on the basis of SAR transfer scoring.
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■ CONCLUDING REMARKS
Herein we have introduced the SAR matrix data structure for the
elucidation of SAR information extracted from large compound
data sets. The matrix format is intuitive and straightforward to
interpret, and the structural decomposition scheme upon which
the matrices are based is flexible and makes it possible to capture
SAR information in different ways. We have shown that SAR
matrices can be ranked according to alternative criteria, thus
emphasizing the presence of different SAR patterns. Ease of
interpretation is another characteristic of the SAR matrix struc-
ture. In order to evaluate the methodology, we have systemati-
cally generated SAR matrices for different compound sets
including raw and approximate screening and detailed chemical
optimization data. Representative application examples have
been discussed, and it has been shown that compound subsets are
obtained through matrix generation and ranking that contain
potent compounds, display SAR discontinuity, identify preferred
substituents for similar core structures, or represent SAR transfer
events. On the basis of our findings, we conclude that the SAR
matrix data structure is versatile and easily adaptable for different
applications.
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