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ABSTRACT: The increasing use of information technology in the discovery of new molecular entities encourages the use of
modern molecular-modeling tools to help teach important concepts of drug design to chemistry and pharmacy undergraduate
students. In particular, statistical models such as quantitative structure−activity relationships (QSAR)often as its 3D QSAR
variantare commonly used in the development and optimization of a leading compound. We describe how these drug discovery
methods can be taught and learned by means of free and open-source web applications, specifically the online platform www.3d-qsar.
com. This new suite of web applications has been integrated into a drug design teaching course, one that provides both theoretical
and practical perspectives. We include the teaching protocol by which pharmaceutical biotechnology master students at Pharmacy
Faculty of Sapienza Rome University are introduced to drug design. Starting with a choice among recent articles describing the
potencies of a series of molecules tested against a biological target, each student is expected to build a 3D QSAR ligand-based model
from their chosen publication, proceeding as follows: creating the initial data set (Py-MolEdit); generating the global minimum
conformations (Py-ConfSearch); proposing a promising mutual alignment (Py-Align); and finally, building, and optimizing a robust
3D QSAR models (Py-CoMFA). These student activities also help validate these new molecular modeling tools, especially for their
usability by inexperienced hands. To more fully demonstrate the effectiveness of this protocol and its tools, we include the work
performed by four of these students (four of the coauthors), detailing the satisfactory 3D QSAR models they obtained. Such
scientifically complete experiences by undergraduates, made possible by the efficiency of the 3D QSAR methodology, provide
exposure to computational tools in the same spirit as traditional laboratory exercises. With the obsolescence of the classic
Comparative Molecular Field Analysis Sybyl host, the 3dqsar web portal offers one of the few available means of performing this
well-established 3D QSAR method.

KEYWORDS: Upper-Division Undergraduate, Graduate Education/Research, Continuing Education, Chemoinformatics,
Interdisciplinary/Multidisciplinary, Computer-Based Learning, Molecular Modeling, Drugs/Pharmaceuticals, Medicinal Chemistry,
3D QSAR

■ INTRODUCTION

A basic knowledge of pharmaceutical chemistry is one
fundamental goal for students in master’s degree (MD)
courses such as Pharmaceutical Biotechnology (PB, PBMD)
or Medicinal Chemistry (MC, MCMD) and Pharmaceutical
Technology (Industrial Pharmacy Degree, PT, PTMD). To
undertake these courses, students are required to have
knowledge about biology, biochemistry, chemistry, pharmacol-
ogy, and general pathology, normally acquired from
introductory courses for medicinal chemistry during a
bachelor’s degree program. Master’s degree courses usually
emphasize frontal lectures delivered by teachers with the
students’ evaluations being written and/or oral student exams.
Only a few of them include practical training in the application
of theoretical rules and learned knowledge. At Pharmacy and
Medicine Faculty of Sapienza University of Rome PBMD
(Sapienza PBMD, SPBMD), this traditional approach to
teaching and learning is being enriched by increasing the
number of practical lessons and by augmenting the final

evaluation exam with the student’s multimedia presentation,
given in a classroom in the presence of the teacher and other
students. Although perhaps coincidentally, the number of
SPBMD enrolled students has increased during the last five
years (Figure 1).
More specifically, as other Italian universities1−3 and non-

Italian universities4−6 have also been doing, SPBMD has been
offering a drug design (DD) course, previously named
medicinal chemistry or computational medicinal chemistry.
At SPBMD, this DD course has gradually evolved from pure
frontal to interactive lectures, increasing the students’

Received: February 29, 2020
Revised: June 6, 2020
Published: June 23, 2020

Articlepubs.acs.org/jchemeduc

© 2020 American Chemical Society and
Division of Chemical Education, Inc.

1922
https://dx.doi.org/10.1021/acs.jchemed.0c00117

J. Chem. Educ. 2020, 97, 1922−1930

Made available through a Creative Commons CC-BY License

D
ow

nl
oa

de
d 

vi
a 

U
N

IV
E

R
SI

T
A

 D
I 

R
O

M
A

 L
A

 S
A

PI
E

N
Z

A
 o

n 
Fe

br
ua

ry
 2

1,
 2

02
1 

at
 2

2:
09

:5
5 

(U
T

C
).

Se
e 

ht
tp

s:
//p

ub
s.

ac
s.

or
g/

sh
ar

in
gg

ui
de

lin
es

 f
or

 o
pt

io
ns

 o
n 

ho
w

 to
 le

gi
tim

at
el

y 
sh

ar
e 

pu
bl

is
he

d 
ar

tic
le

s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Rino+Ragno"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Valeria+Esposito"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Martina+Di+Mario"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Stefano+Masiello"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Marco+Viscovo"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Richard+D.+Cramer"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Richard+D.+Cramer"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jchemed.0c00117&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.0c00117?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.0c00117?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.0c00117?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.0c00117?goto=supporting-info&ref=pdf
http://www.3d-qsar.com
http://www.3d-qsar.com
https://pubs.acs.org/toc/jceda8/97/7?ref=pdf
https://pubs.acs.org/toc/jceda8/97/7?ref=pdf
https://pubs.acs.org/toc/jceda8/97/7?ref=pdf
https://pubs.acs.org/toc/jceda8/97/7?ref=pdf
pubs.acs.org/jchemeduc?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://dx.doi.org/10.1021/acs.jchemed.0c00117?ref=pdf
https://pubs.acs.org/jchemeduc?ref=pdf
https://pubs.acs.org/jchemeduc?ref=pdf
http://pubs.acs.org/page/policy/authorchoice/index.html
https://creativecommons.org/licenses/by/4.0/


proficiency by exposing them to such computational resources
as online databases:

• Protein Data Bank (PDB)7

• ChEMBL8

• PubChem9

Students also gain exposure to specialized computational
chemistry software and techniques:

• Multiple linear regression (MLR)10

• Principal component analysis (PCA)11

• Partial least-squares (PLS)12,13

• Quantitative structure−activity relationships (QSAR)14

• Three-dimensional QSAR (3D QSAR)15

• Pharmacophore modeling (PM)16

• Molecular docking (MDock)17

Pedagogic Aspects

This article describes how, in MOOC-like fashion (MOOC:
Massive Online Open Courses18) with interactive lectures and
online platforms, students are learning these DD methods, in
particular 3D QSAR, by means of the www.3d-qsar.com
portal.19 While doing so, students also improve their computer
skills, in general and within this applied field, which can of
course benefit any future career.
From a somewhat different perspective, that is, the latest

thinking on the most effective approaches to education, this
combination of technology usage with a socio-constructivist
approach20−22 gives students the opportunity to benefit from
real learning by doing.23 The curriculum combines interactive
lectures and technical interaction tools that involve them in the
construction of a scientific product. We are thus instantiating
the so-called trialogical learning approach24 (TLA) and the
achievement of the knowledge considered as coconstruction
mediated by cultural and social artifacts and implemented at
the interpersonal level, through communication and inter-
action with peers and experts.25 As in a recent definition,26 in
the our TLA approach the students are actively collaborating in
developing and creating new science work, as similarly
described by Sins and Andreissen.27

However, the TLA approach can represent a novel challenge
to a student who has been exposed only to traditional

instruction and who may have not had much direct exposure to
executables and files. At first the student’s feelings are
uncertain. On the one hand, the volume of new concepts to
be acquired, may be intimidating; yet on the other side there
can be a great curiosity that drives them to explore a new way
of learning. Among the 50 students that attended the course
for the academic year 2017−2018, four of them were
particularly interested in its educational program and were
therefore invited to participate in preparing and compiling this
report, by reporting their fulfillments of these assignments in
this work and becoming coauthors of this publication.
Students were also asked about the difficulties encountered

in performing the assignment, and their doubts and questions
helped to improve the way to present some topics in the
frontal lessons. Among the most frequently difficulties was the
recognition of the 3-D aspects of molecules and the fact that to
develop a 3D QSAR model these 3-D aspects must somehow
be aligned. To help overcome some of the difficulties a blog
session was created for students to pose written questions to be
answered by the teacher, assistants, and also other more skilled
colleagues. At the time of writing this article, this blog lists
more than 300 answered questions (Italian language) and a
blog session has been added to the public www.3d-qsar.com19

(English language, the blog is accessible only after registering
at the site).

Similar Approaches

Providing students with a fuller understanding of computer-
aided drug design (CADD) by the hands-on application of its
methods is the goal of several educational programs that have
recently been described.28 Of course, these programs do vary
somewhat in their emphases among the large variety of CADD
methods that are currently practiced. All start with the nature
of the problem: the primality of 3-dimensional shape and
flexibility; the multiple properties that an effective drug
molecule must have the many repetitive make-and-test cycles.
Hands-on instruction begins with the basic and often clunky
tools of the trade, today freely available from many sources, to
perform: the usage of public databases; the computer
representations of chemical structure and shape, and their

Figure 1. Number of SPBMD enrolled and cumulative students per year. Cumulative students are the total student in the full course (first + second
years).

Journal of Chemical Education pubs.acs.org/jchemeduc Article

https://dx.doi.org/10.1021/acs.jchemed.0c00117
J. Chem. Educ. 2020, 97, 1922−1930

1923

http://www.3d-qsar.com
http://www.3d-qsar.com
https://pubs.acs.org/doi/10.1021/acs.jchemed.0c00117?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.0c00117?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.0c00117?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.0c00117?fig=fig1&ref=pdf
pubs.acs.org/jchemeduc?ref=pdf
https://dx.doi.org/10.1021/acs.jchemed.0c00117?ref=pdf


means of modification; the generation of canonical 3D shapes
from 2D structures.
At this point, these published CADD educational programs

diverge. Usually the emphasis is on docking, today’s
representation, and the attempted quantification and opti-
mization of Ehrlich’s foundational “lock-and-key” intuition,
specifically of one or two ligands into a single receptor, often
with a further “pharmacophoric” goal of attributing an affinity
to specific interactions between ligand and receptor atoms.
Our 3D QSAR approach thus rather complements docking, as
it involves comparisons among many molecular structures,
themselves considered as wholes.
Other noteworthy features among these educational

programs include the following. Tantillo et al. agree with us
in the motivational value of utilizing the exposures to these
concepts and tools to complete a DD project.28 The
Computational Structural Biology group at Molecular Model-
ing Group of the SIB in Lausanne describes an elegant web-
based GUI’s intended to introduce DD and CADD to a very
different audience, the general public, including high school
teachers and students.29 Johnson et al.30 incorporated
pharmacokinetic considerations in their use of lighter
computational tools to strengthen a conventional medicinal
chemistry course. A Brazilian group31 included ligand-based
approaches and free computational resources in prescribing a
receptor-based study of a specific target, COX-1. Sutch et al.32

gave special attention to pharmacokinetic approaches in the
application of various web-available receptor-based tools to the
caspase-3 target.
DD Course Overview at SPBMD

The SPBMD DD course includes frontal and practical lessons.
During the frontal lessons, students are taught about the
history of classical and modern medicinal chemistry concepts
mainly focused on structure−activity relationship (SAR), from
Lipinski rules33 to current definitions of QSAR, pharmaco-
phores, and molecular docking, and is also given an
introduction to pharmacology, emphasizing ADMET (Adsorp-
tion, Distribution, Metabolism and Excretion−Toxicity) and
thereby pharmacokinetics, with some details about the
different macro-groups of drugs. Also included, in preparation
for the second part of the coursework, are some theory and
usage of the following molecular modeling computer
programs:

• ChemAxon MarvinSketch:34 used to edit and draw
molecules

• UCSF Chimera:35 used to visualize the structure target
and in preparation for a docking study

• AutoDock Vina:36 a Chimera tool, to perform a docking
study

• OpenBabel:37 used to interconvert molecular formats
• www.3d-qsar.com:38 a comprehensive online platform to

build 3D QSAR models from scratch

Participating in practical sessions, in a multimedia room,
helped the students in the use of personal computers to apply
these computational chemistry tools. A series of tutorials were
prepared and shared by means of the Moodle platform used in
Sapienza University.39 Basic training in MS Windows, MAC
OS, and Linux operating systems and office suites (MS Office
and Libreoffice) was also available as needed.
As final test, each student was assigned a project in which all

the skills acquired during both the lessons and practical
sessions were to be actively applied to the design of new

analogues with improved biological potency (the goal of any
actual drug design project). Each student selected a scientific
article starting from the current year issue of the Journal of
Medicinal Chemistry or its ASAP articles.40 The selected article
should include, at minimum, a list of 40 newly synthesized
molecules including their affinities for a macromolecular target
whose experimental structure was listed in the protein data
bank.7 On their selected article the student should perform the
following tasks:

1. Review its context in depth, considering:

a. The reason for carrying out the reported research
b. The chemical routes used to synthesize the presented

compounds
c. The biology and biochemistry of the macromolecular

target

2. Create models of each listed molecule and tabulate their
structures, in SMILES and MOL2 formats

3. Calculate and include a first series of descriptors, in
order to

a. Evaluate the molecules’ “drug-likeness” by means of the
Lipinski41 and Veber42 rules and attach the calculated
data

b. Examine the overall physicochemical profile of these
molecules, based on the parameters that underly these
“drug-like” rules, by means of PCA

c. Make QSAR models using only these same parameters,
by means of MLR and PLS statistical approaches

4. Use the modeled molecules as a starting point to
perform a ligand-based (LB) 3D QSAR study with the
www.3d-qsar.com web applications.

5. Use the modeled molecules in a structure-based (SB)
application to

a. Investigate the binding modes of the molecules by
molecular docking

b. Obtain a SB molecular alignment for subsequent SB 3D
QSAR study

6. Prepare a final report, which includes:

a. An electronic document describing the work and its
results

b. An electronic presentation by means of MS Powerpoint
or Libreoffice Impress

7. Make an oral presentation of a maximum 30−40 min

While all of these theoretical background matters are also
described in the didactic material of the course, shared and
freely available from the Moodle platform at Sapienza
University,39 here the discussion will be focused only on
their 3D QSAR aspects, since it seems that elsewhere 3D
QSAR and analogous techniques are simply mentioned,
without any practical components. Please note that our 3D
QSAR facilities and experiences can provide anyone with a
fresh template for teaching and learning 3D QSAR, again with
no costs whatsoever and without any need to install any
specialized software.
The four selected students (coauthors in this publication;

V.E., M.D.M., S.M., and M.V.) were among the best students
of the 2017−2018 academic year. Among their course (2017−
2018), they were among the first to take the master’s degree
and all of them earned the maximum degree rank cum laude.
Also, their reports were among the best then reported,
although with the maturation of the course and with higher
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reference many other students of the same academic year and
many others among the following one (2018−2019)
performed just as well. The high quality of the 3D QSAR
models themselves was not considered a requisite to pass the
exam, as not all data sets can yield satisfactory models. Instead
the quality of a final presentation allowed the examining
committee to evaluate the student’s understanding and
performance. Only a few percent of students actually failed
to pass the exam (4%) while about 16% passed with the
maximum rank (30/30 cum laude), about 40% were very good
(28−30/30), about 30 gained an average rank (24−27/30)
and the last 10% had a low rank((18−23/30).

■ A BRIEF INTRODUCTION TO 3D QSAR

Many reviews and a few books have been published on 3D
QSAR.15,43−47 While other 3D QSAR methods are known,
with some discussed below, the field-based (FB) 3D QSARs
(FB 3D QSAR) were the first introduced and are by far the
most practiced, starting with the first Cramer et al. comparative
molecular field analysis (CoMFA) published article,47 and with
little subsequent enhancement of CoMFA beyond Cramer’s
developments of “topomers”48,49 and “template CoMFA”50−52

as simple yet robust options for producing ligand-based (LB)
alignments (in general drug design nomenclature, “Field-
based” (FB) approaches are a major subset of “ligand-based”
(LB) approaches, with LB in turn to be contrasted with the set
of “receptor-based” or “structure-based” approaches).
To summarize the CoMFA methodology, the set of 3-D

aligned molecular conformations is virtually embedded into a
3-D lattice spanning at least 5 Å, the minimum volume
typically required to enclose all the molecules. At each grid
point a hypothetical probe atom, typically an sp3 carbon atom
bearing a positive charge, is placed, and then its Lennard-Jones
and Coulomb law potentials with each of the atoms in every
molecule are accumulated, collectively comprising the
respective steric and electrostatic “interaction fields (MIF)”
for each molecule. This result can be visualized as a structure/
activity table or matrix with far more columns (lattice point

count × 2), than rows (structures)a severely under-
constrained base for conventional model derivation! Happily,
by treating this matrix as a whole rather than as a collection of
independently manipulable descriptor columns, the PLS
algorithm coupled with cross-validation can yield a robust
mathematical model from these MIFs, although one described
by a long unreadable regression equation containing thousands
of terms

∑= ×
=

y x( PLScoeff )
i

n

i i
1

where y is the calculated or predicted response; xi are the field
values; and PLScoeffi are the PLS correlation coefficients.
Yet the graphical representation of PLScoeffi (after multi-

plication by each node point’s average value) yields very
informative polyhedron whose interpretation can aid in the
design of new molecules.

Steps for the FB 3D QSAR Procedure

Carrying out a FB 3D QSAR model involves the following
steps, as shown in Figure 2.

Data Set Compilation. Selection of a molecular data set
with associated biological activities or properties (responses)
which do not need to share a structural scaffold. It is
recommended that biological activities, when as typically
expressed in concentrations (IC50, EC50, Ki), are expressed by
the “p = −log() (logistic) function”, with the negative sign
associating positive model coefficients with improved activities.
To ensure that the differences among the activities exceed
random experimental variabilities, the range of these logistic
values should span at least 2 log values. Many authors are
actually indicating a range of 4−5 logs to get good QSAR
models, but it is not always possible to have such a range of
activity.
To permit an estimate of the predictive ability of an ensuing

model, the intended conclusion with CoMFA, the data set can
also be split into a training (model building) and a test (model

Figure 2. Workflow of a FB 3D QSAR procedure.
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evaluation) set. To develop such a reliable model a minimum
number of 15−20 molecules for the training set is desirable.
Generation of 3-D Conformations. If the data set

molecules are available only in SMILES format, their “flat”
representations must first be converted into 3-D conforma-
tions. Appropriate tools include graphical sketch-based (UCSF
Chimera35) or command line methods (OpenBabel53) or free
web services (ochem.eu).54

Definition of Alignment Rules. This is the most critical
step. Its goal is to superimpose (align) each of the molecules so
that the differences among their atoms’ identities and positions
represent the resulting field differences in a way that then
yields a satisfactory CoMFA model. Different alignment
strategies can be adopted.55 Many articles have reported
several approaches to obtain the aligned training set through
automatic alignment programs56 or by atom-by-atom super-
position of the maximum common substructure57 or by using
pharmacophore modeling.58 One of us (Cramer) has found
that alignment rules, such as “topomers” and “template
CoMFA”, which prefer the field differences intentionally
introduced by chemical synthesis to those imposed by
physicochemical realities, often easily generate remarkably
powerful and versatile 3D-QSAR models. However, with the
demise of classical CoMFA’s Sybyl host but the continuance of
relevant patents, these alignment methods are unfortunately
available only as crude, unsupported, and almost unvalidated
open source codes that also require the acquisition and
installation of underlying commercial software.
Calculation of MIF. The aligned molecules are virtually

placed in a grid of proper dimension and the MIF are
calculated.
Model Generation. At this point, all the data needed to

run the PLS and generate the models for a given number of
extracted principal components have been assembled. The
goodness of the models is evaluated through the squared
correlation coefficient r2 calculated by

= −
∑ −

∑ − ̅

= _ _

= _

r
y y

y y
1

( )

( )
i
n

i i

i
n

i

2 1 exp calc
2

1 exp
2

Model Validation. The best model is selected by means of

• Robustness: Cross-validation that indicates the most
robust model on the basis of an internal predictive
coefficient called q2 evaluated by the following equation:

= −
∑ −

∑ − ̅

= _ _

= _

q
y y

y y
1

( )

( )
i
n

i i

i
n

i

2 1 exp pred
2

1 exp
2

• Lack of Chance Correlation: Even a robust model could
have been obtained by chance. A further test is the “Y-
scrambling” (Y−S) method, by randomly reassigning the
experimental potencies to the compounds. Upon
rederivation of this now clearly invalid model, the
obtained rY−S

2 and qY−S
2 values should be always lower

than those of the original model.
• Predictive Ability: In the case of availability of additional

molecules external to this model-building set (perhaps
by subsequent synthesis), it is the usual practice in
CoMFA to evaluate the predictive ability of its final
model, by calculating the standard deviation error of
prediction (SDEP), and possibly computing an rpred

2 (r2

calculated using the predicted and experimental

responses of the test set). The calculation of SDEP
can be easily achieved with the standard deviation
equation:

=
∑ − _

−
= _y y i

n
SDEP

( )

1
i
n

i1 exp pred
2

Graphical Interpretation. A series of plots are generated
to inspect and describe the model and design new derivatives
on the basis of the observation of the plots superimposed on
the training set molecules.
Field-Based Instructional Resources

As mentioned above, 3D QSAR was introduced by Cramer et
al. in 1988,47 with the name of CoMFA as an acronym for
“Comparative Molecular Field Analysis”. Nevertheless, despite
the application of 3D QSAR as CoMFA in tens of thousands of
articles and many books, we can find no current evidence of
any practical presentation within a DD academic MD course.
CoMFA had been available only in the Tripos Suites (aka
Sybyl), in a very friendly form so easy to use that with a few
“mouse clicks” almost any user was able to develop their own
3D QSAR model, and was well documented in the CoMFA
manual. Nevertheless some IT knowledge and costs were
required to obtain, install and run the software. Although other
3D QSAR software appeared on the scene, the original
CoMFA patent prevented its commercialization by any other
software house until its expiration in 2011. Possibly the further
development of 3D QSAR was inhibited; 4D QSAR,59 5D
QSAR,60 and 6D QSAR61 appeared but few scientific
applications followed. However, the Cresset Group now
commercially offers a field-based nonlattice 3D QSAR
package.62 In 1994, Cruciani et al. introduced GOLPE,63 a
chemometric tool that in combination with Goodford’s GRID
provided highly reliable 3D QSAR models. In 2011, after the
CoMFA patent expired, Open3DQSAR,64 was announced, the
first free and open source program that with the companion
softwares Open3DALIGN65 and Open3DGRID (open3-
DGRID.sourceforge.net) provided all the steps in 3D QSAR.
However, a web-based implementation of Open3DQSAR in a
Web site66 lacked model building and graphical analysis. In
2012, 3D-QSAutogrid/R,67 a second open source software
based 3D QSAR procedure, was reported in which the MIFs
were calculate by means of the AutoDock suite AutoGrid
program68 and the statistical calculations (PLS, cross-
validation and Y-scrambling) were performed by means of
the R-CRAN pls package.69 The only other CoMFA source, an
open source Open Eye-based code, was mentioned above.
Thus, although these other tools for building other types of

FB 3D QSAR models exist, it is evident that, today, well-
validated classic CoMFA 3D QSAR models can easily be
created at no cost with Open3DQSAR and via the readily
accessible and www.3d-qsar.com portal.19

■ DEVELOPING 3D QSAR MODELS BY MEANS OF
THE QSAR WEB PORTAL

Overview of the Web Portal Procedure

Here is an overview of this portal’s workflow, serving also as
background for the following summaries of the four student
projects. The scientific and technical rationales underlying each
of its six successive stages have already been summarized.

Data Set Compilation through the Web Portal. At
first, an empty data set container, a sort of work folder or
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virtual spreadsheet, is prepared by means of the Py-MolEdit
web application. Molecules may be added to this data set in
several different ways. For these projects 3D structures were
created with MarvinSketch and uploaded to the data set
container using the “Add Multiple Molecules” command. A
separately prepared file added biological activities to these data
set molecules. (See the Py-MolEdit tutorial link in the
Supporting Information.)
Generation of 3-D Conformations through the Web

Portal. A ligand-based (LB) conformation analysis was
performed with the Py-ConfSearch module on all of the
molecules in this data set. Its goal is to explore the
conformational space of each molecule and provide an idea
of their flexibility, with a family of conformations being saved
for every flexible molecule. (See the Py-ConfSearch tutorial
link in the Supporting Information.)
Definition of Alignment Rules through the Web

Portal. Single conformations, selected from the conformation
family for each of the molecules are aligned by means of the
Py-Align application, forming one training set. The Py-Align
application provides 16 alignment approaches, with the
expectation that many different training sets, conformational
analysis and alignment couplex, will be considered from each
data set. (See the Py-Align tutorial link in the Supporting
Information.)
Calculation of MIF Fields and Model Generation

through the Web Portal. For each such aligned training set,
a 3D QSAR model can be generated using the Py-CoMFA
module70 with the default settings, which can then be further
explored by varying the probe type, the grid spacing, the min-
max cutoff energy and the minimum sigma. To evaluate model
robustness, cross-validation is done as the model is built. Other
tests for chance correlation, as discussed above, can be
performed on the completed model. (See the Py-CoMFA
tutorial link in the Supporting Information.)
Model Validation and Prediction through the Web

Portal. Since the main goal of any 3D QSAR model is to
predict unknown molecules activities by means of their
structures and the alignment rules, an external test set is
usually prepared along with the training set. The aim of
external validation is to verify the predictive capacity of the
model. Including this capability can be made part of the

derivation of the 3D QSAR model, by random selection from
the test set molecules in the data set container.

Graphical Interpretation through the Web Portal. Still
within the Py-CoMFA application, once the model has been
built and validated the standard CoMFA 3-D map can be
created and inspected directly through the web browser
without the use of any supplementary software. The
polyhedron images can generated for an individual molecule’s
MIF as well as for the entire 3D QSAR model.

Protocol Most Commonly Followed by the Students

Target Assignment. As described above (see also DD
course overview at SPBMD) the students were each assigned a
J. Med. Chem.71 article describing more than 40 molecules for a
given biological target. The four targets chosen were:
indoleamine 2,3-dioxygenase 1 (IDO1),72,73 tyrosine−protein
phosphatase nonreceptor type II (SHP-2),74,75 interleukin-1
receptor associated kinase-4 (IRAK4),76,77 and bromodomain-
containing protein 4 (BRD4).78

General Procedures for Initial Molecular Modeling of
Ligands. All of the molecules listed in the target articles were
drawn and edited through ChemAxon, MarvinSketch, or the
Py-MolEdit web application available on the Web site www.3d-
qsar.com.19 (For use, see the Supporting Information.) With
ChemAxon, the molecules must be downloaded from another
Web site, and the direct editing on Py-MolEdit saves the
molecule in the database. Conformation analysis was
performed on each of the four completed data sets (Py-
ConfSearch), specifically using the Balloon79 method, and an
arbitrary number of conformations for each molecule,
specifically 70, were aligned by Py-Align. Py-Align provides
16 possibilities from a training set as templates for alignment,
such as the most active, the less active, or the most flexible.
Once the template is selected, Py-Align provides several
options for automatic alignment; for most projects the option
chosen was ShaEP56 with the default settings. From the result
of each training set alignment, a 3D QSAR model was
generated.

General Procedure for the 3D QSAR Models’
Development. The 3D QSAR Ligand-Based approach was
performed with the same default settings for all listed targets.
Therefore, for each one a conformational analysis was carried
out, various alignment rules were applied and finally, several

Table 1. Comparison of 3D QSAR Models Metricsa

q2 SDEPd q2 YS settings

target N fields ONPCb r2 SDECc LOOe LSOf LOOe LSOf r2 YS LOOe LSOf PAg GSh GEi MSj Ck

IDO1 51 Stel 2 0.54 0.77 −0.06 −0.06 1.17 1.17 0.52 −0.27 −0.28 C.2 1.312 5 0.05 15

Elem 8 0.98 0.13 0.47 0.40 0.84 0.87 0.88 −1.45 −0.94
Bothn 8 0.98 0.12 0.15 0.19 1.04 1.02 0.94 −0.36 −0.42

SHP-2 40 Stel 4 0.84 0.31 0.41 0.41 0.61 0.61 0.76 −0.67 −0.46 H 2.200 10 1.50 25

Elem 1 0.18 0.71 0.12 0.12 0.74 0.74 0.05 −0.12 −0.10
Bothn 4 0.78 0.36 0.27 0.29 0.67 0.66 0.61 −0.61 −0.51

IRAK4 58 Stel 6 0.98 0.13 0.29 0.31 0.94 0.93 0.96 −0.30 −0.29 O.3 1.000 5 2.00 25

Elem 4 0.83 0.46 0.21 0.26 0.99 0.96 0.62 −0.36 −0.47
Bothn 6 0.97 0.16 0.44 0.45 0.83 0.83 0.93 −0.30 −0.27

BRD4 45 Stel 2 0.69 0.40 0.28 0.31 0.61 0.60 0.55 −0.64 −0.39 H 2.200 5 0.05 25

Elem 2 0.31 0.60 0.04 0.08 0.71 0.69 0.22 −0.39 −0.23
Bothn 4 0.88 0.24 0.54 0.54 0.49 0.48 0.74 −0.67 −0.36

aNote: For further details, see the Supporting Information. bONPC: Optimal number of principal components. cSDEP: Cross-validated standard
deviation error prediction. dSDEC: Standard deviation error calculation. eLOO: Leave-one-out. fLSO: Leave-some-out. gPA: Probe atom. hGS:
Grid step. iGE: Grid extension. jMS: Minimum sigma. kC: Max/min energy of cutoff value. lSte: Steric MIF. mEle: Electrostatic MIF. nBoth: Steric
and electrostatic fields.
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models were generated. Then, these models were optimized,
modifying the settings as following:

• Probes atom: C.3, C.2, C.cat, O.3, N.3, H
• Grid spacing: range 1−3 with 0.1 unit of difference
• Grid extension: range 5−10 with 1 unit of difference
• Min/max cutof f energy: range 20−40 with 5 units of

difference
• Minimum Sigma: range 0.05−2 with 0.05 units of

difference

A total of about 80 3D QSAR models were built for each
target, and for the one yielding the highest r2 and q2 values,
both steric and electrostatic contours maps were generated and
analyzed through the graphical plots implemented within www.
3d-qsar.com.19

■ STUDENT WORK EXAMPLES
The students applied the above protocol to their selected J.
Med. Chem. articles to generate ligand-based aligned FB 3D
QSAR models by means of the www.3d-qsar.com portal19

(Table 1). Considering all four of the projects, a total of 194
inhibitors were modeled and more than 320 3D QSAR models
were developed and internally validated for fitting, robustness,
and lack of chance correlation. External validations were also
performed in three of the four projects, yielding low errors of
predictions (see the Supporting Information). Each of the four
final models were further analyzed by means of classical
CoMFA contour maps revealing the possibility for future drug
design.

■ CONCLUSIONS
In this publication, we believe we have demonstrated the
effectiveness and the convenience of the free Web site platform
www.3d-qsar.com as a tool to teach 3D QSAR in DD courses,
including the difficult underlying chemical concepts. Our
experiences suggest that the 3D QSAR approach is quite
appropriate for undergraduate students of pharmaceutical
biotechnology, and more generally as a part of bachelor,
master, and Ph.D. degree programs, and perhaps even within
high school courses. Particularly relevant evidence for this view
could be the work performed by the four students from the
SPBMD course during the academic year 2017−2018, who
constructively criticized and then employed four modules of
the www.3d-qsar.com website19 (Py-MolEdit, Py-ConfSearch,
Py-Align, Py-CoMFA) to complete a ligand-based 3D QSAR
study. This experience helped these students to obtain a high
score in the drug design exam, increasing their biological
computational skills, and encouraging them to continue these
kind of studies.
To also provide students with some experience in receptor-

based methodogies, since the targets of the four publications
used for this study are available in crystallized form in the
online database PDB (protein data bank),7 another study will
describe the use of these targets to generate alternative
molecular alignments for 3D QSAR. Also, video tutorial are
planned for release soon to provide even better guides to
develop 3D QSAR models.
In conclusion, beyond the value of the students’ models

themselves, their work clearly demonstrates that by using the
protocol we describe they learned many skills and perspectives
in computational medicinal chemistry, as was the main
objective of the course.

■ ASSOCIATED CONTENT
*sı Supporting Information

The Supporting Information is available at https://pubs.ac-
s.org/doi/10.1021/acs.jchemed.0c00117.

Details of student work examples with tutorial links for
interacting at the 3D QSAR Web site (PDF)
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