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Adenoviruses (Ads) are robust vectors for therapeutic applications and vacci-

nes, but their use can be limited by differences in their in vitro and in vivo

pharmacologies. This review emphasizes that there is not just one Ad, but a

whole virome of diverse viruses that can be used as therapeutics. It discusses

that true vector targeting involves not only retargeting viruses, but impor-

tantly also detargeting the viruses from off-target cells.
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Adenoviruses (Ads) have many features that make

them useful as oncolytic viruses, as gene-based vacci-

nes, or as gene therapy vectors. First and foremost,

they can be produced at exceptionally high yields up

to 1013 virus particles from 109 cells. Ads are also

stable nonenveloped viruses that can be lyophilized for

long-term storage without a cold chain [1–5]. This is

quite different from the diverse array of enveloped

viral vectors that are inactivated by freeze-drying. This

is important for storage, but also for deployment of

global applications to regions where refrigeration is

not always available.

Ad vectors mediate high transduction efficiency in

dividing and nondividing cells. Ads do not actively

integrate into the host genome reducing the risk of

insertional oncogenesis [6], but this also limits their

persistence in actively dividing cells [7,8]. On the other

hand, Ad genomes can persist for years in nondividing

cells provided that an immune response is not pro-

duced against Ad or the transgene product. For

example, baboons injected once with helper-dependent

Ad (HD-Ad) vectors have had persistent transgene

expression for more than 7 years [9].

In many head-to-head in vivo comparisons, Ads

mediate higher expression and more potent vaccine

effects than most other vectors [10–15]. For example,

when compared to DNA or vaccinia virus as an HIV

vaccine in macaques, replication-defective Ad5 (RD-

Ad5) vectors generated higher immune responses and

better protection [12,13]. In an example from our

laboratory, in gene therapy for propionic acidemia, a

10-fold lower gene dose of RD-Ad5 generated equal to

or higher PCCA transgene expression than the popular

adeno-associated virus 8 vector [10].

While Ads are arguably the most potent in vivo gene

expression platform, they are also well known for their

ability to provoke immune responses and for a tragic

death in an early gene therapy trial for ornithine tran-

scarbamylase deficiency [16]. This makes them highly

sought as gene-based vaccines and oncolytic viruses,
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but has restricted their use for gene therapy. This lack

of use for gene therapy is largely political rather than

scientific, since newer HD-Ad vectors and polymer

shielding approaches largely mitigate most of their side

effects [9,17–21].

This review discusses retargeting and detargeting

Ads for therapeutic and vaccine applications. This

retargeting can be imposed first by physically retarget-

ing Ad particles to different receptors. For replication-

competent vectors, a second layer of targeting can be

applied postentry by controlling how Ads activate

their genetic program in cell-specific ways. A third

layer of control can be added by controlling transgene

expression in cell or situation-specific fashions. We will

delve into these technologies later in the article, but

must first lay the foundations of how the genetically

diverse adenovirus virome provides opportunities to

start targeting efforts with viruses that are already

tuned to different applications.

Adenovirus capsid proteins as
platforms for physical particle
targeting and off-target interactions

There are three major capsid proteins on Ads: fiber,

penton base, and hexon (Fig. 1, reviewed in Ref.

[22,23]). There are 36 monomers of fiber, 60 monomers

of penton base, and 720 monomers of hexon on each

Ad virion. There is good evidence that the fiber and

penton base proteins of many Ad serotypes interact

directly with cellular receptors, but there is little evi-

dence showing that hexons directly target cellular

receptors. One exception to this is binding of Ad hex-

ons to scavenger receptors on macrophages, Kupffer

cells, and endothelial cells [24,25]. While these interac-

tions are usually destructive to Ads in vivo [24], ectopic

expression of scavenger receptors on cells in vitro can

lead to productive infection [26]. A more recent obser-

vation shows that certain human Ads can bind scav-

enger receptor MARCO (SR-A6) for productive

infection [27].

There is also at least one minor protein, IX, that

can also display targeting ligands. Beyond fiber, pen-

ton, IX, and hexon, all other viral proteins are hidden

within the virion or are not packaged into virions.

These four proteins can serve on scaffolds to display

36, 60, 240, or 720 copies of targeting ligands, respec-

tively [28]. Low-affinity ligands like peptides from

library selections may not work well if displayed in

low copy fibers, but might work well if displayed on

more capsomers to allow avidity interactions. High-

affinity ligands should theoretically work on any

Fig. 1. Cryo-electron microscopic structures of Ad26. (A) Full virion structure. (B) Fiber and penton base. R indicated fiber shaft repeats.

RGD indicates arginine–glycine–aspartic acid integrin binding motifs in the penton base. Knob indicates the receptor binding portion of the

Ad26 fiber trimer. Receptors bound by these capsomers are shown on the right. Adapted from Ref. [33].
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capsomer, but data using biotinylated vectors suggest

that only fiber may be good for very high-affinity

ligands (see below).

In vitro, Ad fiber proteins act as primary high-

affinity attachment ligands for these viruses provided

their receptors are expressed on target cells. Three

fiber monomers trimerize to form a fiber at each ver-

tex of the icosahedral capsid (Fig. 1B). These fibers

form a ‘knob’ domain at their C terminus that is

involved with most receptor interactions. Although

fibers have this same basic structure, their shaft

length, flexibility, and receptor binding vary consider-

ably. The archetype adenovirus, human Ad serotype

5 (HAdV-5, hereafter referred to as Ad5) has a knob

that binds to the coxsackie and adenovirus receptor

(CAR). Most human Ads have only one fiber trimer,

but three others express two different fibers [29], a

long fiber and a short fiber. Fastidious gastrointesti-

nal human Ad40 and 41 from species F were the

examples for having novel dual fibers. In their cases,

the long fibers bound CAR, but the short fiber did

not appear to have overt receptor binding functions

[30,31].

Most Ads have an RGD motif in their penton base

that binds to integrins [32]. This RGD motif is dis-

played on loops with different lengths by the different

viruses [33]. Ad5’s fiber binds CAR with 10-fold higher

affinity than its penton binds av integrins [32]. Because

of this affinity difference, species C viruses have been

shown to first engage CAR, and then bind integrins,

which facilitate receptor-mediated endocytosis [34].

This is how it works in vitro in a cell culture dish and

perhaps on mucosa, but this staged interaction is over-

written after an intravenous (IV) injection by other

interactions with host factors in the blood.

Other Ads can bind to CAR, CD46, sialic acid, des-

moglein-2, and perhaps other receptors (Fig. 1B, [23]).

For many years, a non-CD46 additional receptor for

species B viruses Ad3, Ad7, Ad11, and Ad14 was a

mystery. This ‘receptor X’ was ultimately identified as

desmoglein-2 by Lieber and colleagues [35]. More

recent work with Ad3 shows that its fiber binds

desmoglein-2 in an unusual 1 : 1 stoichiometry [36,37].

Species D Ad37 is the archetype for viruses using

sialic acid as a receptor [38,39]. Ad37 and most Ads

do not use simple sialic acid for binding. Species D

human Ad37 is also the archetype virus for causing

keratoconjunctivitis. Like Ad37, species D Ad8, Ad53,

Ad54, Ad56, and Ad64 are also associated with this

disease [40]. Recent comparison of these viruses’ uti-

lization of sialic acid on corneal cells in vitro demon-

strated that Ad8, Ad53, Ad54, and Ad64 all use this

receptor [40]. In contrast, Ad56 did not.

Sialic acid binding Ads can be quite specific for cer-

tain sialic acid structures. For example, Ad37 uses sia-

lic acid only as presented in GD1a glycans [38,39]. The

relatively new species D human Ad52 joins Ad40 and

Ad41 in having two fibers: a short and long one. Like

Ad40 and Ad41, Ad52 binds CAR, but also binds sia-

lic acid [41]. More detailed examination of this interac-

tion shows that the short fiber of Ad52 binds long

chains of alpha-2,8-linked polysialic acid [29].

Human species D Ad26 is in rampant use as a gene-

based vaccine and as an oncolytic virus [42–50]. There

is ongoing debate on this virus’ receptor utilization.

Original in vitro data on artificial CAR- and CD46-

modified cells indicated that Ad26 did not use CAR,

but instead used CD46 for infection [42]. While Ad26

infection was increased on cells expressing CD46, this

infection was half as efficient CD46-utilizing species B

Ads [42]. Subsequent work by our laboratory on pri-

mary human B cells showed Ad26 used CD46 and

integrin, but did not use sialic acid as evidenced by a

lack of effect of neuraminidase on cells [46]. A more

recent study reports that Ad26 does not use CD46 and

instead uses avb3 integrin as its primary receptor [51].

Other work showed that Ad26 binds CAR and CD46

with 20 and 50 µM affinities, respectively [52]. A recent

publication showed that the removal of cell surface

sialic acid inhibits Ad26 infection [53]. This work also

cocrystalized Ad26 knob with sialic acid, thus making

the argument that sialic acid is ‘the’ Ad26 receptor

[53]. Conversely, we find Ad26 knob binds CD46-D4

with 0.12 µM affinity and that it infects cells expressing

CD46 in the presence or absence of sialic acid (unpub-

lished observations). Regardless of whether Ad26

binds CD46 and/or sialic acid, its receptor binding is

markedly weaker than the nM binding of most arche-

type viruses like Ad5, Ad35, and Ad11 for their recep-

tors.

The affinities of these interactions vary. Ad5 fiber

binds CAR with 15 nM affinity. Species B Ad11 binds

CD46 with 13 nM affinity, whereas species B Ad21’s

affinity is 22-fold lower at 284 nM. Some species D

Ads including Ad37 use sialic acid as a receptor, some

with high selectivity for the GD1a glycan [38,39].

While Ad37 does bind sialic acid, the affinity of this

interaction is only 19 µM. This is similar to the affinity

of many other viruses for their receptors, but it is also

1000-fold lower than the affinity of Ad5 and Ad11

fibers for their cognate receptors [54,55].

Therefore, one might expect this low-affinity fiber to

do well binding receptors in static conditions (e.g., on

the eye, on mucosa, after an intramuscular injection),

but struggle to interact in high shear conditions (e.g.,

after an IV injection). One might also expect that a
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low-affinity fiber might rely more on secondary inter-

actions of penton base with integrins on surfaces. This

hypothesis might also play out in a similar fashion

when exogenous low-affinity targeting peptides are

added to Ad capsid proteins. Low-affinity ligands may

perform well in the laboratory in a tissue culture dish

or under static in vivo conditions, but may fail when

challenged under high shear after IV injections.

Ad5 fiber has 21 or 22 b-spiral repeats in its shaft

making this protein ~ 37 nm in length [23,56]). While

one might think this long structure would prevent any

access of penton base to integrins, this long fiber has a

flexible joint near its base [57] allowing it to bend out of

the way for binding to av integrins in ‘virus yoga’ [57].

This flexibility can be appreciated by the inability to

observe species C fibers in cryo-electron microscopic

(cryo-EM) reconstructions [58,59]) because every fiber is

in a different position on the virions and so their den-

sity gets averaged out. Most short-shafted fibers in spe-

cies B and D viruses lack this flexible domain in their

shafts, and so, these can be observed in cryo-EM (e.g.,

Ad26 fiber in Fig. 1B and Ref. [33,60]). This lack of

flexibility may be compensated in some viruses by hav-

ing more extended loops in penton base to display their

RGD motif [33]. If these short-shafted fibers bind their

cognate receptor with very low affinity (i.e., Ad37 for

sialic acid), penton interactions may become more dom-

inant than fiber interactions for cell binding [46]. Like-

wise, if target cells lack an Ad’s cognate fiber receptor,

the virus can use integrins as a fall back receptor.

To a certain degree, this can be observed based on

the time allowed for the virus to infect cells in vitro. If

the cell lacks CAR, for example, letting Ad5 infect it

for only an hour yields little infection [61]. In contrast,

if the virus is allowed to bind the same cell for 24 h,

lower affinity integrin binding can occur allowing most

of the cells to be infected. Similar effects can be

observed when inserting cell-targeting peptides into Ad

proteins. If the ligand has low affinity, it may appear

to fail if given a short binding time, but may succeed

under extended conditions.

Types of adenovirus vectors

Before discussing retargeting and detargeting, we will

define the different types of Ad vectors onto which

these approaches may be applied. Most gene-based

adenovirus vectors in the literature are RD-Ad aden-

ovirus serotype 5 (Ad5) vectors (Fig. 2). Ad5 is popu-

lar in part because commercial kits to make these

viruses came out in the 1990s and no other serotype

kits have been sold.

These RD-Ad vectors have their E1 gene deleted to

prevent them from replicating their DNA and making

progeny viruses. This prevents the vector from killing

the cell that was just modified. This also avoids causing

potentially dangerous and potentially lethal Ad infec-

tions from the vector itself. An RD-Ad infects a cell,

delivers its one copy of a gene, and can express robust

amounts of its transgene protein. They are safe, but do

not replicate transgenes or amplify transgene expression.

Much that is known about adaptive T-cell responses

against Ad vectors was learned with RD-Ad vectors.

While the pivotal E1 gene is deleted, there can still be

leaky expression from the remaining 17 or more viral

ORFs and this leaky expression in transduced cells tar-

gets them for destruction by adaptive CD8 T cells [62].

Given this, HD-Ad vectors were developed that have

all Ad ORFs deleted [63–65] (Fig. 2). No Ad proteins

are produced, and this avoids immune cells killing the

transduced cells [63–65]. This reduced immunogenicity

allows HD-Ad to mediate sustained liver gene therapy

for longer than 7 years in nonhuman primates [9]. Any

residual HD-Ad toxicity can be blunted by genetic and

chemical shielding approaches (reviewed in Ref.

[20,26,66–68]). This makes HD-Ads viable platforms for

gene therapy. However, bad public relations cloud the

scientific merits of these improved Ad vectors. HD-Ads

Fig. 2. Schematic of different types of

adenovirus vectors. RC-Ad; SC-Ad; RD-Ad,

E1-deleted Ad; HD-Ad.
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are also replication-defective vectors that will not

amplify transgenes. They avoid immune responses

against encoded viral antigens. However, if the trans-

gene protein itself is immunogenic, it will provoke T-cell

responses that will delete these modified cells [69].

While RD-Ad and HD-Ad do not amplify transge-

nes, an E1 + replication-competent Ad (RC-Ad) vector

could infect the same cell type and replicate the same

transgene many thousands-fold [70–81] (Fig. 2).

In vitro, this translates into 33- to 100-fold increases in

protein production [82,83]. RC-Ad vectors are indeed

more potent. However, fully RC-Ads run the real risk

of causing adenovirus infections in humans. Indeed,

when live RC-Ad vaccines are used in military service

members, these wild viruses are delivered in enteric-

coated capsules or tablets and given orally primarily to

prevent them from causing Ad respiratory infections in

nurses and vaccines [1]. More recent clinical studies

of an RC-Ad4 influenza vaccine (clinical trial

NCT01443936) showed that this replicating vaccine

generates potent B-cell and antibody responses in

humans after single intranasal (IN), tonsillar, or oral

delivery [84]. However, this study also showed that

60% of the volunteers that received RC-Ad by the IN

route came down with respiratory Ad infections (Mark

Connors, NIH, personal communication).

To take advantage of transgene DNA replication by

replicating Ads, but avoid the risk of adenovirus infec-

tions, we developed single-cycle Ad (SC-Ad) vectors

(Fig. 2, [11,82,83,85] and reviewed in Ref. [86]). SC-Ads

retain their E1 genes to allow them to replicate their

genomes, but are deleted for their pIIIa gene to block

the production of infectious progeny viruses. SC-Ads

replicate their genomes and transgenes as effectively as

RC-Ad (up to 10 000-fold) [82]. RC- and SC-Ad pro-

duce more transgene protein than RD-Ad vectors [82].

Like RC-Ads, SC-Ads also kill the first infected cell.

However, they do not generate progeny viruses, so this

initial cell death is limited to the first cells infected. SC-

Ads generate more robust and more persistent immune

responses than either RD-Ad or RC-Ads [83]. In head-

to-head comparisons against standard RD-Ad vaccines,

SC-Ad produces significantly higher antibodies and bet-

ter protection against influenza virus [87]. SC-Ads have

also shown potency as vaccines against Ebola virus and

against Clostridoides difficile after single immunization

[11] (W.E. Matchett, S.S. Anguiano-Zarate & M. A.

Barry, unpublished results).

Conditionally replicating Ads (CRAds) are designed

primarily for cancer applications with the goal of having

Ads activate specifically in cancer cells while not

activating in normal cells ([88–92], and reviewed in Ref.

[93]). CRAds are engineered to activate in cancer cells

by replacing promiscuous E1 or E4 promoters with can-

cer-specific promoters or by mutating the ability of E1A

or E1B proteins to block their ability to interact with

pivotal cellular proteins like pRB, p53, or p300

pathways.

While CRAds are a clever postentry strategy with

demonstrated specificities, they are somewhat of an

illusion when they are applied in vivo. It is true that

the CRAd design can prevent the virus from activating

in off-target cells and killing them directly. However,

those cells will still die in vivo.

Any off-target cell that is infected by a CRAd

in vivo will have leaky Ad ORF expression just like

RD-Ad vectors [94]. The incoming capsid proteins

and/or these leaky Ad ORF proteins will be detected

by the immune system as a foreign invasion [94]. A

CRAd-infected off-target cell may not die because of

the direct cytotoxicity of the virus. However, it will

still die, but in this case by execution by cytotoxic T

lymphocytes. CRAd control may spare the host organ-

ism by reducing amplification of progeny viruses from

off-target cells, but those off-target cells will still die

and may provoke side effects.

This can be true for any Ad vector. If the immune

system detects viral or transgene antigens, T cells will

destroy that cell. HD-Ads can avoid this provided that

their transgene protein is close enough to ‘self’ to escape

detection. If an HD-Ad’s transgene protein is foreign,

these cells will also be destroyed by the immune system.

There is one final important note regarding testing of

replicating Ads. Ad DNA replication and transgene

amplification are highly species-dependent [95]. Human

and nonhuman primate cells can amplify their genomes

3000- to 100 000-fold [82,83,96]. In contrast, most

mouse lines do not allow any replication. In vivo, there

can be as much as 13-fold DNA replication of Ad6

DNA in the liver after an IV injection [85]. In contrast,

there is only threefold DNA replication of Ad DNA in

the lungs after intranasal administration [85]. Syrian

hamsters are thought to be a better model for human

Ads [95]. This is true for species C Ads, but not for

many other Ads [97]. In Syrian hamster HaK cells, one

can observe 350-fold Ad6 DNA replication [83], but

markedly less in vivo. Therefore, testing RC-Ad, SC-

Ad, or CRAds in most small animals will underappreci-

ate their potency and also their side effects.

Adenovirus serotypes as a diverse
palette for physical particle targeting
and postentry activation targeting

There are increasing numbers of Ad serotypes and

genotypes that are being discovered nearly every day.
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These serve as a genetically and functionally diverse

palette of biologies on which to apply vector engineer-

ing and cell-targeting approaches (Fig. 3). Genetic

diversity in human Ads can approach 40% at the

whole genome level [98,99]. This genetic diversity

translates into each virus having divergent protein

surfaces that are able to evade each other’s antibodies.

We and others have delved into the biologies of

other human and nonhuman Ads in the quest for new

functionalities or to evade anti-Ad5 immunity in

patients and to have non-Ad5 genetic platforms for

vector engineering [23,38,42,46–48,97,100–111]. They

also allow one to avoid pre-existing immune responses

against certain Ads (i.e., Ad5) and to vary the Ad ser-

otype between treatments in a shell game called sero-

type-switching [100,112].

Adenovirus serotypes as a diverse palette for

physical particle vector targeting

This diversity also translates into the evolution of

viruses that naturally bind different receptors and nat-

ural differences in therapeutic potential based on this

(Fig. 3). As discussed early, the fiber proteins of Ads

bind CAR, sialic acid, CD46, desmoglein-2, and a few

others (Fig. 3 and reviewed in Ref. [23]). Archetype

Ad5 virus and its species C family members Ad1, Ad2,

Ad6, and Ad57 bind CAR. Species B Ads like Ad21

and Ad35 bind CD46. Seminal work by Dmitry

Shayakhmetov in Andre Lieber’s laboratory generated

some of the most potent retargeted Ads by given Ad5

CD46-binding fibers from species B Ads [101,113].

This approach has been stolen by many laboratories

including ours. While this does retarget Ad5, it does

not actually retarget Ads as a family of viruses as

CD46 is already in the wheelhouse of human Ads.

Different serotypes of Ad can also bind receptors

indirectly by binding host proteins like vitamin K-de-

pendent clotting factors [primarily blood clotting

factor X (FX) and IX (FIX)], complement, natural

antibodies, and other proteins that serve as ‘bridges’ to

receptors [24,114,115]. These host-derived binding pro-

teins and their effects on Ad tropism in vivo are dis-

cussed in detail in other articles in this collection.

The cell-binding proteins evolved by Ads and the

host proteins that bind certain Ad serotypes can be

modified by genetic or chemical engineering to physi-

cally retarget Ad particles to new receptors. These

interactions can also be mutated or chemically blocked

to detarget Ads from off-target tissue for therapy.

In many cases, wild Ads have been screened for util-

ity prior to engineering. In another approach, Terri

Hermiston’s group bred multiple Ads together to

encourage interspecies recombination to generate bet-

ter oncolytic viruses [116]. One of these viruses known

as ColoAd1 that is a chimera of two species B viruses,

Ad11p and Ad3, was renamed Enadenotucirev and is

in human clinical trials [117].

Adenovirus serotypes as A diverse palette for

postentry vector activation targeting

Viral genetic diversity also translates into differences

in the activation of different Ads after cell binding and

entry has occurred. This is most relevant to Ads that

retain E1 and activate DNA or full viral replication

(i.e., SC-Ads, RC-Ads, and oncolytic Ads).

For example, we showed that species B, C, and D

Ads infect primary human B-cell cancers to different

degrees, but also activate DNA replication to different

degrees [45]. CD46-binding Ad11 and Ad35 infected

myeloma cells 100-fold more efficiently than species C

Ad5 and 6 or species D Ad26 and Ad48. While one

would predict that Ad11 and Ad35 would then domi-

nate in genome and progeny virus replication, they

never activated DNA replication in these cells. In con-

trast, the species C and D viruses activated and ampli-

fied their genomes in these primary cells. From this,

different Ads have different entry and activation biolo-

gies that can be harnessed for postentry targeting.

We also directly compared the genetic activation

programs of two of these genetically distant Ads:

human species C Ad6 and species D Ad26 [106]. Ad6

Fig. 3. Schematic of the human adenovirus virome palette for

adenovirus targeting. Adapted from Ref. [99] and showing whole

genome difference between species C Ad6 and species D Ad26

described in Ref. [106].
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and Ad26 differ by 34% at the whole genome DNA

level (Fig. 4). Ad6 binds CAR, av integrins, and FX.

Ad26 binds CAR, CD46, sialic acid, and av integrins,

but not FX. Despite differences in receptor utilization,

both infect human lung A549 cells. Both viruses initi-

ate DNA replication within 12 h with identical kinetics

and both begin killing cells within 72 h. Ad6-infected

cells remain adherent until death. Ad26-infected cells

detach from plates within 12 h, but remain viable in

this detached state. Quantitative PCR and next-genera-

tion sequencing showed that both viruses activate their

early genes at 6 h and transition to late gene activation

by 12 h.

However, there are marked differences in how these

viruses activate E1A and E1B genes and how E3A and

E3B immune evasion mRNAs are activated (Fig. 4

and [106]). Differences in E1 activation could be

related to differences in the sequences of their E1 pro-

moters, but also perhaps due to differences in their

ability to neutralize cellular proteins. For example,

both viruses retain pRB binding motifs, but p300 and

BS69 binding motifs are not conserved in Ad26. Varia-

tions in E3 mRNA expression translated into Ad6

being more effective at suppressing MHC I display on

infected cells and evading extrinsic apoptosis signals

than Ad26. These differences in E1 and E3 utilization

likely underpin differences in the fundamental ability

of these viruses to kill different cancers [45,46,97,118].

More differences are likely to be found in the diverse

genetic palette of Ads. This provides a wide repertoire

of genetic platforms on which to apply pre-entry and

postentry vector targeting strategies.

Adenovirus pharmacology

Retargeting and detargeting of Ads are easy in cell cul-

ture; it is like shooting fish in a barrel. Ignoring the

in vivo pharmacology of Ads is, however, a drastic

mistake: You may develop the world’s best targeted

adenovirus, but if most of it is absorbed and destroyed

by off-target cells and tissues, you will fail in vivo.

Given this, we discuss important aspects of Ad in vivo

pharmacology below before moving to retargeting and

detargeting efforts.

Rapid blood protein and cell binding after

intravenous injections

Other articles in this collection provide detailed

review on these topics, so this will be a somewhat

brief review with our opinions on these topics. More

detailed reviews and our opinions on these topics can

be found in Ref. [93,119]. When Ads are injected

directly into the bloodstream, they can rapidly bind

to blood proteins, platelets, red blood cells, and

nucleated cells, and these fundamentally change the

biodistribution of these viruses [120–126]. Because of

this, Ads do not always perform as expected in vivo

if these expectations are based on in vitro cell culture

data.

Binding to blood clotting factors IX and X, natural

antibodies, and complement can decide the fate of IV-

injected Ads. Binding clotting factors can partially

protect Ads from destruction in macrophages, particu-

larly liver Kupffer cells. Species C human Ads can

cloak themselves with FIX and FX and hide them-

selves to a certain degree from destruction by macro-

phages. Most other Ad serotypes do not and they can

be drastically consumed and destroyed by macro-

phages. IX and X can also serve bridges to retarget

Ads to heparan sulfate proteoglycans on cells. Binding

to natural antibody IgMs can target Ads for covalent

tagging by complement proteins to also target the

viruses to macrophages for destruction. Uptake by

macrophages and Kupffer cells and nonimmune cells

can trigger potentially dangerous innate immune

Fig. 4. mRNA activation after infection of

human lung cells with species C Ad6 and

species D Ad26. See the main text for

further information. Adapted from Ref.

[106].
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responses and helps initiate adaptive immune

responses against the virus and its transgene proteins.

Intravenously injected Ads can also bind to and

activate platelets and endothelial cells [66,124,127,128].

Activation of these cells induces clotting and in

extreme cases can lead to disseminated intravascular

coagulation and death [129,130]. Platelet binding can

also target Ads for degradation by macrophages [124].

Systemic distribution of adenoviruses after

intravenous injection: interactions with organs

and the reticuloendothelial system (RES)

An IV dose of Ad by most routes will usually encoun-

ter the heart and lungs before being distributed to the

liver, spleen, and kidneys (reviewed in Ref. [93,119]).

In mice, almost 98% of IV-injected Ad5 is found in

the liver 30 min after injection [131]. At this same

dose, only about 1% of injected Ad5 can be found in

either the lungs or the kidney at this dose. If the dose

is increased fourfold, Ad5 in the liver falls to 85% of

injected dose and virus in the spleen and lung rises to

6% and 5% of injected dose, respectively. These are

results in one strain of mice. No doubt there will be

differences in relative distributions in humans. Differ-

ent Ad serotypes may vary in their relative distribu-

tions, but the liver and spleen are likely to dominate

all, since the RES cells housed in these tissues is

evolved to absorb and neutralize particulate invaders.

The rapid distribution and sequestration of Ad after

an IV injection can be easily appreciated by viewing

movies of Ad5 labeled with near-infrared fluorophores

distributing in mice [132]. In these, Ad5 can be seen

entering the heart within 500 ms, flowing through dis-

tant arteries in 7 s, ‘blushing’ the skin and tissues

within 11 s, and then accumulating in the liver within

3 min of the injection [132].

The liver as a dominant pharmacologic dead end

for adenoviruses

Approximately 1.5 L of blood passes through the liver

every minute in humans. After an IV injection and

upstream absorption, Ads enter liver sinusoids where a

large fraction of virions are absorbed by liver sinu-

soidal endothelial cells (LSECs) and Kupffer cells that

line the sinusoids (reviewed in Ref. [119]). Kupffer cells

are the resident macrophage of the liver. While they

comprise only ~ 7% of liver cells, they may account

for up to 90% of all of the macrophages in the body

[133]. It has been estimated that liver Kupffer cells can

sequester up to 98% of intravenously injected Ad5

vector in mice [134]. LSECs are also a major

component of the RES, but their role in sequestration

of Ads is underappreciated [135,136]. LSECs constitute

~ 25% of all liver cells [133]. LSECs and Kupffer cells

work in concert to clear particles from the blood.

Kupffer cells absorb particles up to 2 µm in diameter,

and LSECs absorb particles below 230 nm [133,137].

Therefore, both cells can phagocytose or pinocytose

~ 100 nm Ads.

Viruses that evade LSECs and Kupffer cells enter

the parenchyma of the liver through fenestrations in

the sinusoid wall that are large enough to pass Ads.

Once inside the liver, Ads can infect hepatocytes. If

the goal is to transduce hepatocytes, this is great. If

the goal is to reach more distant tissues or cancer cells,

this is terrible, since more of the injected dose is

depleted.

Beyond the liver

Beyond the liver, we know that a smaller, but signifi-

cant fraction of Ad lands in the spleen, kidneys, and

lungs after IV injection. As noted above, high doses of

Ad5 in mice can result in 6% of the injected dose

landing in the spleen and 5% in the lung. If you nor-

malize viral genomes to organ weight, the spleen

absorbs Ad5 as well as the liver kilogram for kilogram

[138]. This specific activity representation is helpful for

understanding adenoviral biology and immune

responses against these viruses. However, viral gen-

omes per organ weight or viral genomes per host gen-

ome underestimate the magnitude of the liver as a

pharmacologic sink for IV-injected Ads, since it is con-

siderably more massive than other tissues. Absorption

in the spleen seems to be in large part due to uptake

and sometimes transduction of macrophages. Absorp-

tion in the spleen can have drastic immunologic

impacts as this organ can amplify innate and adaptive

immune responses against the viruses or against their

transgene products.

The kidney is another interesting organ for Ads. Its

natural filtering functions prevent most entry into the

organ Ads after IV injection. The glomerulus of the

kidney actively excludes proteins above 50 kDa from

entry into the organ (reviewed in Ref. [139,140]). In

addition, slit diaphragms between podocytes in the

glomerulus are only 10 nm. Therefore, on paper,

100 nm, 150 megadalton Ads have little likelihood of

penetrating beyond the glomerulus deeper into the

organ. In addition, there is only low-level infection of

glomerular cells by most Ads [140]. Transduction of

cells in the parenchyma of the kidney has been

reported after IV injections of different Ad serotypes

or retargeted Ads [141,142]. While this is reported, it is
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unclear how these huge Ads break the glomerular bar-

rier. Perhaps they overwhelm the glomerulus, form

immune complexes, or perhaps enter by an unexpected

route like retrograde through kidney lymphatics

[143,144].

Adenoviral vector retargeting and
detargeting

Discussions of early efforts to retarget and detarget Ads can

be found in our previous reviews [22,93,118,119,145,146].

Activity in the Ad targeting and detargeting space

since 2011 can be found in the following references

[19,147–207]. General strategies are summarized in a

schematic (Fig. 5).

Most early and recent work has been directed at

retargeting Ads to new receptors rather than detarget-

ing them from off-target receptors and cells. Much of

this early work was championed by David Curiel’s

original group at the University of Alabama at Birm-

ingham [208–214]. The reader should check out these

seminal early works and follow subsequent work from

Curiel and his ‘progeny’ scientists. Other seminal work

on the basic biology of Ads including retargeting,

swapping fibers, and in vivo sequestration can be

found in publications by Andre Lieber and Dmitry

Shayakhmetov [101,103,113,114,215–224].

Subsequent work aimed to detarget Ad from its cog-

nate in vitro receptors. Many great retargeted Ads

have been broken on the shores of the massive absorp-

tion of most of their injected doses by the RES. We

believe that we must be effective at detargeting before

we can be effective at retargeting.

Evading blood proteins and cells

After IV injection, the multivalent Velcro-like surface of

Ad binds proteins and cells in the blood. Blocking these

interactions is likely key to improving the ability of Ads

to reach distant cells, particularly since many of these

proteins target the viruses for destruction by the RES. A

number of strategies can be used to detarget these cells

(Fig. 5). The use of alternate Ad serotypes may avoid

some of these interactions, since binding is receptor-me-

diated. Other approaches are to genetically delete viral

ligands that bind CAR, CD46, integrin, and other inter-

actions [225]. Another approach to evade interactions is

to shield Ads with polymers like polyethylene glycol and

poly-N-(2-hydroxypropyl) methacrylamide (HPMA)

[20,66,123,131,134,226–242].

Shielding with these polymers prevents interactions

of Ads with blood proteins, blood cells, endothelial

cells, and Kupffer cells [20,66,123,189,243,244]. Poly-

mer shielding can also reduce innate immune responses

and liver damage after IV injection. Random covalent

conjugation of these polymers has the down side that

they can inhibit the ability of Ads to bind receptors

and unpackage in cells. This problem can be avoided

in part by targeting polymer modifications to specific

sites on Ad by inserting cysteines into hexon and tar-

geting conjugation to this amino acid with maleimide

[26,235,236,245].

A novel new shielding approach was tested wherein

Ads were ‘cloaked’ with silica (SiAd) [162]. This

nanoparticle coating blocked the production of inflam-

matory cytokines and reduced production of neutraliz-

ing antibodies as well as increased virus infection after

intratumoral injection.

Another innovative approach has been to insert

albumin binding peptide into the hexon of Ad5 to

shield it from neutralizing antibodies [246,247]. This

approach allows the virus to cloak itself in albumin in

the blood and may have utility to evade antibodies as

well as other problematic factors in the blood.

Evading the reticuloendothelial system

In mice, 98% of Ad5 appears to be absorbed by liver

Kupffer cells and LSECs at low dose after an IV injec-

tion [131]. If you increase the dose above the seques-

tration threshold, virus spills into liver hepatocytes

[248]. This can increase liver transduction if this is

your goal, but this also has immunologic side effects.

One brute force way to avoid Kupffer cells and per-

haps LSECs is to ‘predose’ the system by injecting

other particles like gadolinium chloride, clodronate

liposomes, or Ad5 itself to saturate and kill Kupffer
Fig. 5. Schematic of adenovirus retargeting and detargeting

strategies. See the main text for further information.
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cells before injecting the therapeutic or reporter virus

[134,217,249–252]. While predosing can be effective,

uptake of Ad into Kupffer cells not only kills the

virus, but also kills the Kupffer cells [253]. This creates

a highly inflammatory milieu and results in dead

Kupffer cell fragments lodging in the lung where they

can provoke dangerous side effects.

Ad polymer shielding is an effective means to detar-

get Kupffer and LSECs [20,237,238]. Larger polymers

that increase the diameter of Ad beyond the size of

liver fenestrations also appeared to prevent entry into

the parenchyma of the liver and uptake into hepato-

cytes.

Changing the serotype or the hypervariable regions

(HVRs) of Ads can also hide the virus from Kupffer

and other cells [68,96]. For example, giving Ad5 the

HVRs from Ad6 block its uptake by scavenger recep-

tors and macrophages, and increase transduction of

hepatocytes [68]. Similarly, deleting the large, highly

charged HVR1 of Ad5 reduces its binding to scavenger

receptor MARCO (SR-A6) [27]. Conversely, giving an

Ad HVRs that do not bind FX for shielding from

IgM and complement can make uptake and side

effects worse. For example, giving Ad5 the HVRs

from Ad48 increased Kupffer cell uptake and inflam-

mation against the virus [254].

Other approaches are to insert peptides or proteins

into the HVRs of Ad [122,255–257]. Insertions into

HVR5 appear able to block binding of FX to Ads.

At the time, the expectation was that blocking this

would prevent FX acting as a bridge to targeting

heparan sulfate proteoglycans on cells like hepato-

cytes. In vivo data supported this paradigm, since

insertion of RGD or a biotin acceptor peptide (BAP)

into HVR5 markedly reduces hepatocyte transduction

[122,255–257]. While this worked, the underlying

hypothesis appears wrong as these FX binding inser-

tions likely just block the ability of the virus to cloak

itself in FX to avoid targeting to and destruction by

Kupffer cells. If the viruses are more destroyed by

Kupffer cells, hepatocyte transduction will also be

reduced.

While Kupffer cells are a problem, depleting them

by predosing does not reduce Ad genomes in the liver

[252,253]. So, Kupffer cells are not the only story. To

do better, Di Paolo et al. engineered Ad5 to target

multiple liver cells 5 [225]. In this work, they showed

that no single intervention by itself fully detargeted the

virus from the liver. While one can detarget multiple

interactions, in many cases, the virus actually needs

these functions to be efficient. Therefore, detargeting

can come at the cost of efficacy.

Adenoviral vector retargeting

Genetic insertions into Ad capsomers

Early work on inserting ligands relied on genetically

adding known small peptides to the Ad5 fiber. First,

proof of principle was adding a non-cell-targeting epi-

tope tag to the C terminus of fiber [208]. Later work

inserted a flag tag or an RGD motif into the noncon-

served flexible loop between the H and I beta sheets of

the Ad5 knob [211,212]. Many subsequent studies have

inserted RGD into almost all capsomers of Ad. Most

of these studies erroneously describe these as ‘retar-

geted’ vectors when in fact they are simply ‘gain-of-

function’ vectors, since Ad already has its own RGD

motif in its penton base. Placing RGD on fiber does

not really retarget the virus. Rather, it just exposes the

motif better for interactions with the same av integrins

that Ad already uses. More recent work has inserted

more specific RGD peptides from foot-and-mouth dis-

ease virus to more specifically target avb6 integrins

that are upregulated on cancer cells [258].

Other efforts have involved replacement of the trimeric

fiber with heterologous trimeric proteins like bacteriophage

fibritin [160,174,183,259–263] or reovirus sigma 1 protein

[264–266]. Recent examples of retargeting by direct genetic

introduction of ligands into Ad capsomers can be found

in the following references: [19,152,154,158,164,166,173–

175,183,185,187,191,192,204]. Other examples are dis-

cussed below in selected cases that provide guidance for

future engineering efforts.

Choosing the best cell-targeting
ligands for Ad genetic engineering

Incompatibility of secreted targeting ligands

Some of the best cell-targeting ligands are antibodies

and other glycosylated proteins (Fig. 5). Unfortunately,

these ligands are excreted through the secretory path-

way where they are post-translationally modified with

carbohydrates and disulfide bonds that are key to their

targeting functions. This is unfortunate, because Ads

are built in the reducing environment of nucleus where

disulfides do not form and little glycosylation occurs.

Therefore, one must usually engage in drastic ligand

engineering to translate these excellent ligands from

secretory tech to nuclear tech for direct genetic incorpo-

ration into Ad capsomer proteins [259]. Alternately,

one can generate bridging molecules in which one end

binds an Ad capsomer or tag and the other is the target-

ing ligand [267,268]. In contrast, chemical engineering

approaches that chemically cross-link exogenous
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ligands to Ads can bridge the divide between the secre-

tory and nuclear world for targeting [229,233].

Peptide ligands and peptide-presenting phage

libraries

What do you do if you do not have a targeting ligand

already conveniently in hand? To quote Ghost-

busterstm: ‘Who you gonna call?’

This question actually served as part of the lead

author’s postdoctoral work. To find these needed

ligands, we selected cell-binding and cell-internalizing

peptides from peptide-presenting phage libraries [269].

Our goals were as follows: (a) to identify ligands with-

out any prior knowledge of the biology or receptors of

the target tissue; (b) to develop a technology that

would identify ligands that bind directly to the cells

of interest for direct transduction; and (c) to identify

cell-binding ligands that would be compatible with

genetic engineering into viral gene delivery vectors.

Peptides were attractive, since they are relatively

small for genetic engineering into Ads, but also can be

easily produced in good manufacturing practice

(GMP) grade by chemical synthesis for targeting non-

viral vectors or Ads by bioengineering approaches.

The possibility of identifying peptide ligands for vec-

tor targeting was suggested at the time by the early

use of peptide-presenting phage libraries to select pep-

tides against proteins in vitro in ELISA plates [270–

272]. These peptide-presenting phage libraries had been

developed by engineering filamentous bacteriophage to

display random peptides by inserting semirandom

DNA into their pIII receptor binding protein (analo-

gous to Ad fiber) or their pVIII (analogous to the

hexon). This peptide discovery technology was a

uniquely powerful, since the actual ligand is physically

attached to the DNA that encodes it. This allowed

any good peptide sequence to be inferred by sequenc-

ing the DNA.

Proof of principle was demonstrated with peptide

libraries build in filamentous phage and has been fol-

lowed by other approaches like ribosomal display and

yeast display [273–276]. Yeast display has the advan-

tage over bacterial libraries of being able to generate

ligands with some level of carbohydrate modifications.

For example, ribosome display was used to generate

bifunctional designed ankyrin repeat proteins that

retarget Ad5 to Her-2 [273].

These library technologies used to need to be devel-

oped by individual laboratories. Phage peptide

libraries have long been available commercially from

companies like New England Biolabs, and you can see

how this availability has generated most of the cell-

targeting peptides that are in the adenovirus literature.

Some peptide and single-chain antibody libraries can

now be purchased from other vendors. This is a great

expansion of availability, but is hindered by expense

and sometimes stringent material transfer agreements.

The importance of ligand library size

More importantly, peptide libraries built in bacteria can

have diversities of up to 1010 members. Consider that an

average antibody recognizes six amino acids [270–272].

Therefore, if you want a targeting peptide that might be

as good as an antibody, you may want to be able to

screen 6-mer peptides. Consider that a peptide library

must have at least 20 members in the library to cover

one amino acid position with all possible 20 amino

acids. To cover two amino acid positions, you need a

library with 202 or 400 members. To cover four amino

acid positions, you need 204 combinations or 1.6 9 105

library members. To cover six amino acid positions, you

need a library of 6.4 9 107 library members. If you

want to do better than the needed six amino acids of

binding surface, a library covering all combinations of

eight amino acids would need 2.56 9 1010 library mem-

bers. At the time, we searched for peptide ligands, and

even now, huge complexity libraries are still best gener-

ated in bacteria. Random PCR can generate more

diversity, but they are not generally easy to apply in

the context of a stable genetic platform for screening.

Selection of peptides against mammalian cells

and their receptors

In the early 90s, peptide-presenting phage libraries had

been used to select peptides against proteins on plates

in vitro [270–272] and it had not been used to select

peptides directly on mammalian cells. We demon-

strated that you could do this by selecting 12 and 20-

mer peptide libraries against mammalian cells [269].

As we pursued this work, other work described select-

ing peptides against purified cell surface receptors

[277–280], against platelets [281,282], and notably

selected the now famous RGD-4C peptide [279], which

is the go-to ligand for Ad vector targeting. Subsequent

work described selection peptide libraries in vitro and

in vivo [229,283–288]. A few of these early investigators

went the full distance and translated phage-selected

peptides onto gene therapy vectors. Examples include

translation of phage-selected peptides into adenovirus

and AAV by genetic insertion [154,212,289–291], by

chemical cross-linking to adenovirus [229,292], and by

incorporation of targeting peptides into vector-specific

antibodies [285,293].
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Ligand context

Genetic insertion of foreign peptides into the viral cap-

somer proteins has been reviewed previously [22,146].

These methods can be unpredictable in terms of

whether these peptide insertions would be compatible

with capsomer folding and virion assembly and whether

the peptide would retain its cell-binding functions when

grafted into this foreign protein. For example, when we

have had many disastrous experiences of having pep-

tides that either fail to work in Ad or destroy things

like fiber trimerization. We took one approach to cir-

cumvent these problems by engineering a bacteriophage

library that displayed random peptides already in the

context of the Ad fiber HI loop between fiber H and I

beta sheets [290]. We showed that we could select mus-

cle-binding peptides from these libraries and that at

least one could be grafted back into the HI loop of

Ad5 to yield functional retargeting of the virus [290].

We called these ‘context-specific’ phage libraries, but

later realized that most nonenveloped viral proteins

have an abundance of very similar beta sheets sepa-

rated by flexible loops. Therefore, these are not so

much ‘context-specific’, but viral capsomer ‘compati-

ble’. We proved this principle by grafting these HI

loop-selected muscle-binding peptides into a similar

beta sheet-loop-beta sheet structure of HVR5 in Ad5’s

hexon [291]. We showed that these HVR-modified

viruses had increased infection of muscle cells in vitro

and in vivo. Interestingly, we showed that only one of

the two peptides inserted into HVR5 detargeted Ad5

from hepatocytes in the liver. This suggests variable

effects of insertions into hexon on modulating interac-

tions with FX and perhaps Kupffer cells.

In summary, abundant data demonstrate that viable

cell-targeting ligands can be selected from bacterial

phage libraries and can be used to retarget Ads by

genetic or chemical engineering.

Direct adenovirus peptide libraries

More recently, peptide libraries have been created in

which random peptides are cloned directly into the Ad

capsid [294–296] without the pain and suffering of

having to translate phage tech into Ad tech. This tech-

nique was modified to accommodate the insertion of

peptides with known affinity for cellular targets.

Lupold et al. designed an Ad peptide library that had

a constant binding peptide insert flanked with random

linker sequences [295]. Virions could then be selected

with retained binding specificity [297].

Although these Ad libraries could theoretically con-

tain up to 109 unique peptides as bacterial plasmids,

there is a huge bottleneck in converting Ad plasmids

to Ad viruses in mammalian cells. If you transfect 293

cells with 10 µg of DNA and get 20 plaques, your

library is 20 members and you can only cover one

amino acid position with all 20 amino acids. In prac-

tice, with concerted effort, these Ad libraries yielded

sizes of up to 2 9 105 members [294,295] allowing

coverage of all combinations of a four amino acid

peptide.

The library size bottleneck was more recently

addressed in part by work in the Yakamoto Lab

[152,298]. In this approach, the transfection to plaque

bottleneck with plasmids was circumvented in part. In

the first iteration, full adenoviral genomes were gener-

ated by Cre-lox recombination between a fiber-modi-

fied plasmid library and Ad DNA/terminal protein

complex (DNA-TPC) before transfection into mam-

malian cells [294]. In the second iteration, a fiber plas-

mid library and a fiberless Ad DNA-TPC were

cotransfected into Cre-expressing 293 cells. This gener-

ated a library of ~ 104 members from ~ 106 cells and

allowed selection of novel Ads with new functionalities

[298].

This is a great step forward for Ad retargeting.

However, total library size will still likely limit the

affinity of any peptides selected from these libraries. If

such a library is scaled up to cell factory scale with 109

cells, this may yield a library with 107 library mem-

bers. This allows coverage of all combinations of 4-

mer peptides, but not all combinations of 5-mers.

While RGD can be held up as a great cell-binding

3-mer peptide, it is an exception rather than a rule for

binding. Bigger peptides are likely better for binding.

When we directly competed 12-mer vs 20-mer phage

libraries against each other, the bigger library always

generated better cell-binding peptides (unpublished

data). Even if one uses large complexity phage

libraries, most peptides selected out of peptide libraries

start with affinities in 10–100 µM level. Given this, it is

standard practice to identify a lead peptide from a

peptide and then generate a second mutant library

based on the original peptide sequence and select this

again to increase peptide affinity [269].

Therefore, direct peptide libraries in Ads are a great

advance for the field. Efforts to increase library size

and more importantly ligand affinity will help move

these technologies forward.

Bioengineering to covalently attach
targeting ligands to Ads

Another strategy to retarget Ad is to covalently attach

targeting ligands to Ad capsid using mono- or
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bifunctional cross-linkers (Fig. 5). In this approach,

amine-reactive polymers bearing synthesized ligands can

be cross-linked to Ad for shielding and retargeting. For

example, polyethylene glycol-glucose and polyethylene

glycol-galactose have been used to retarget Ad vaccines

for intranasal immunization [226]. One end of a bifunc-

tional polymer can be conjugated to lysines on the sur-

face of the Ad, and the other end of the polymer can be

cross-linked to targeting ligand. For example, small pro-

teins like FGF-2 and EGF and phage-selected peptides

have been cross-linked to Ads using bifunctional

polyethylene glycol, HPMA, or other reagents

[229,233,239,292,299]. Not only is this technology suit-

able for the display of ligands from the capsid, but

native vector tropism can either be maintained or inacti-

vated, depending on choice of amino acid targeted. This

approach works best with ligands that have free single

cysteines that are not tied up in disulfide bonds (i.e.,

FGF-2 and synthetic peptides with added cysteines).

Complex disulfide-bearing ligands like antibodies can be

used, but breaking these apart to liberate free cysteines

can be tricky. Alternately, one can use things like

Traut’s reagent to convert amines on the ligand to cys-

teines for maleimide reaction. An improvement on this

approach uses combined genetic and chemical engineer-

ing to target polyethylene glycols to cysteines inserted

into specific sites in capsomer proteins [26,235,245,300].

Other approaches have utilized not only natural amino

acids such as cysteine, but also unnatural amino acids

to photo-cross-link ligands onto vectors [202,301].

Polymer coupling of ligands is an excellent way to

screen peptide library-generated ligands before going

to the trouble of genetically engineering them into cap-

somer proteins [292] and to shield or detarget Ad at

the same time. It can also provide two layers of parti-

cle targeting: the first by the ligand and polymer and

the second by the capsomers. In the context of a repli-

cating oncolytic or vaccine vector, progeny virions

coming from the first infection can have secondary tar-

gets now that they are no longer coated by polymers.

More recent examples of chemical retargeting can be

found in several studies [147,148,150,155,156,163,167–

170,176,177,179–181,184,193–196,202,203,206].

Adenovirus targeting with adaptor
proteins

Targeting Ads with high-affinity proteins like antibod-

ies is hampered by their large size and improper fold-

ing of antibodies in the reducing environment of the

nucleus where Ad is assembled. To circumvent this

incompatibility, molecular adapters have been designed

that bind Ad capsomers on one end and target

receptors with the other end. Early adaptors bound

Ad5 fiber by fusing the ectodomain of CAR to FGF-2

and EGF [302]. We used the GLA domain from FX

to bind the hexons from species C Ad to fuse to sin-

gle-chain antibodies targeting Her-2, EGFR, and the

stem cell marker ABCG2 [268].

If CAR or FX adaptors are encoded by oncolytic

Ads, the incoming Ad is not targeted by the adapter

unless it is added to virus as an exogenous recombi-

nant protein. This either weakens the adaptor technol-

ogy or strengthens it by allowing two stages targeting.

For the first stage, initial infection is mediated by

whatever fiber or targeting ligands are displayed on

the virus. For the second stage, the Ad is retargeted

by the adaptor. Using CAR or FX may have different

utilities. CAR binds 36 sites on Ad. FX adaptor binds

up to 240 binding sites on Ad, so one might benefit by

more avidity interactions to zipper up Ad to cellular

receptors. CAR adaptor might block CAR binding

during the second stage, which could be good or bad.

FX adaptors preserve fiber functions while still provid-

ing a second level of retargeting. This may be useful to

help oncolytic Ads spread in tumors since FX target-

ing is not affected by excess fiber production [268].

A major hurdle to this targeting method is that the

adaptor molecules rely on noncovalent protein–protein
interactions for their conjugation to the Ad capsid. Nat-

urally occurring antibodies or CAR receptors could

compete for Ad binding and displace the molecular

adaptors from the capsid, abolishing the vector target-

ing activity. For example, we originally hoped that FX

adaptors would not only retarget, but also detarget Ad

from hepatocytes, but this did not work in practice

[118], perhaps because the huge amounts of FX in the

bloodstream competed the protein off the virus.

Other examples of Ads targeting with

adaptor molecules can be found elsewhere

[153,157,171,178,182,186,190,197,199,200].

Lessons learned from adaptor
targeting with metabolically
biotinylated adenoviruses

We developed a different adaptor system where BAPs

were genetically fused to Ad fiber, protein IX, or

inserted into hexon HVRs [28,61,303,304]. When BAP-

modified viruses are produced in mammalian cells, the

BAP tag is covalently biotinylated during vector pro-

duction by the endogenous enzyme holocarboxylase

synthetase [305] or by co-expression of bacterial BirA

[61,145,305,306]. This allows biotinylated Ads to be

bound to any biotinylated ligand using avidin as a

bridge. Alternately, one can genetically or chemically
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generate a single avidin targeting ligand for a two-

component targeting complex. This system forms more

stable complexes than other adaptors, because of the

extreme affinity of avidin for biotin (10�15
M, which is

about a quarter the strength of a carbon–carbon single

covalent bond).

We showed that the system is adaptable, in that Ad-

Fiber-BAP could be retargeted to new receptors using

biotinylated peptides, proteins, carbohydrates, DNA,

antibodies, and magnets [28,61,303]. There is also the

advantage that you can buy many biotinylated ligands

right off the shelf. The disadvantage would come in

translating to clinic, since you would need to produce

two or three GMP-rated components to target:

GMP Ad-BAP + GMP avidin or streptavidin + GMP

biotinylated ligand or GMP Ad-BAP + GMP avidin–
ligand fusion protein.

While there are strengths and weaknesses in the Ad-

BAP systems, they actually provide unique insights

into (a) which capsomers work best for targeting; (b)

how the biology of the ligand affects targeting; and (c)

how the affinity of ligands might affect targeting on

different capsomers.

We used the BAP system to directly compare target-

ing through the Ad fiber, protein IX, and hexon cap-

someres, using a variety of high-affinity ligands

(antibodies, transferrin, and cholera toxin B subunit)

on multiple cell types. While all of these capsomers

could bind and display the same high-affinity targeting

ligands, the fiber protein always worked for targeting,

whereas IX and hexon did not [28]. When Ads were

labeled with fluorophores and observed on cells by

microscopy, it appeared that some of the failed vectors

were actually trapped on their receptors and recycled

to the cell surface rather than released from endo-

somes [28]. The one exception to this was transferrin,

which could mediate intermediate levels of transduc-

tion when displayed on IX-BAP [304].

These results are most likely explained by differences

in the biology of fiber, IX, and hexon proteins as well

as the biology of ligand–receptor interactions during

endosomal uptake and escape. Receptor binding is a

critical first step in Ad infection, but virus release from

the receptor after uptake is equally important. Ads

normally accomplish this by shedding fiber and penton

base in the endosome once their tasks are complete

[34]. Following this, fibers and penton base are

released from the virion [34,307]. In contrast, protein

IX and hexon dissociate from virions 30 min or more

after receptor binding, well after endosomolysis and

cytosolic escape [308].

From this, we believe that fiber works with high-

affinity ligands, because it naturally releases from the

virion, so the virus can escape high-affinity interactions

with receptors. Conversely, viruses bound to receptors

with high-affinity ligands on IX and hexon on the

icosahedron cannot be released from the same recep-

tors because these capsomer proteins are not shed until

they are in the cytoplasm or at the nuclear membrane.

Unlike the high-affinity antibody ligands, transferrin

works with the icosahedral proteins because this ligand

is released from its receptor at endosomal pH [309].

If this model is correct, high-affinity ligands may

have problems if directly inserted or coupled to IX or

hexon, but may be functional if they can be designed

to release from their receptors or the virion itself. This

model also suggests that lower affinity ligands may not

have these problems, since their kinetic off rates from

receptors are likely high allowing for their spontaneous

release after internalization. This is supported by

observations of being able to insert low-affinity pep-

tides into hexon and have them work for retargeting

[255,291].

Combined targeting and detargeting

The vast majority of work in this space has been

devoted to retargeting Ads. This works well in vitro,

but frequently fails in vivo due to the many pharmaco-

logic and host factors that were discussed above (re-

viewed in Ref. [119]). Early work used pharmacologic

interventions to detarget Ads. This included ‘predos-

ing’ discussed previously wherein a first injection of

Ad or another particulate reagent like clodronate lipo-

somes hours before therapeutic virus injection can

destroy the Kupffer cells and allow the second virus to

be effective. This effect can be garnered by two sepa-

rate injections or by one very high-dose injection. The

second pharmacologic approach was to use drugs like

warfarin or snake toxins to knock out FX and blood

factor binding to Ad to ‘detarget’ hepatocytes. In real-

ity, this detargeting is really removing FX’s shielding

effects and is in actuality retargeting Ad for destruc-

tion in Kupffer cells and macrophages [24,310–313].

Predosing and blocking FX binding could yield

improvements in treating tumors after IV injections

[252], but the effects were not as strong as hoped likely

because the viruses were still be absorbed by other

cells like endothelial cells. In addition, destroying

Kupffer cells can have profound consequences includ-

ing death [253,314].

We described above retargeting Ad5 to muscle while

detargeting it from the liver by inserting phage-derived

peptides into the virus’ hexon [291]. In this case, detar-

geting was largely sacrificial. The reduced liver trans-

duction by the virus was likely mediated by blocking
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FX binding to hexon and deprotecting the virus from

complement and destruction in Kupffer cells. Better

detargeting was achieved by Shayakhmetov and col-

leagues by blocking uptake into hepatocytes, Kupffer

cells, and endothelial cells [225], but this lacked retar-

geting.

More recent efforts have combined targeting and

detargeting in a vector called Ad5NULL-A20 that

bears capsomer mutations that block binding to CAR,

avb3/5 integrin, and FX, but that also includes peptide

A20 that targets avb6 integrins [315]. After high-dose

(1011 virus particle) IV injections, this virus provides

remarkable 107-fold reductions in Ad genomes in the

liver with other large reductions in uptake in other off-

target organs. Given other work that shows that FX

protects Ad5 from complement activation and Kupffer

sequestration, one might expect that deleting FX bind-

ing would make the virus more susceptible to uptake

and destruction in these cells [24,310–313]. This may

occur even with Ad5NULL-A20, but the use of high-

dose injections may have helped clear this block by

destroying the Kupffer cells. Regardless, this is a sig-

nificant step forward for detargeting and retargeting

by genetic strategies.

Conclusions and Perspectives

As the diverse in vivo biology of the adenovirus virome

has been better appreciated, it has become clearer that

vector pharmacology relies only in part on evolved

receptor binding ligands and can be significantly influ-

enced by interactions with host proteins. We now

understand that Ads encounter progressive viral dis-

tractions and sinks in the blood and in organs that

can quantitatively deplete the vast majority of IV-in-

jected Ad therapeutics. Retargeting efforts after IV

injection that are pursued without considering detar-

geting are likely doomed to failure. Avoiding the

blood and vasculature is a smart way to avoid these

problems for those therapies that can be delivered by

other routes. If this is not possible, selections of the

right Ad serotypes combined with genetic or chemical

modifications of the virus hold promise to bypass these

viral sinks. Once detargeted, effective retargeting

strategies can be applied to Ad vectors. Whether IV-

administered Ads can penetrate into tissues from the

blood is a separate question.

It is unclear to what degree genetic and chemical

detargeting can shield the virus from blood protein

binding and the host from this rapid toxicity. We specu-

late that chemical shielding may be better at reducing

this immediate toxicity based on their general abilities to

blunt binding and side effects. However, comprehensive

genetic engineering of Ads that detarget certain proteins

or cells may also succeed at blunting rapid and extended

side effects after systemic Ad therapy.
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296 Nishimoto T, Yoshida K, Miura Y, Kobayashi A,

Hara H, Ohnami S, Kurisu K, Yoshida T and Aoki K

(2009) Oncolytic virus therapy for pancreatic cancer
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308 Greber UF (1998) Virus assembly and disassembly: the

adenovirus cysteine protease as a trigger factor. Rev

Med Virol 8, 213–222.
309 Qian ZM, Li H, Sun H and Ho K (2002) Targeted

drug delivery via the transferrin receptor-mediated

endocytosis pathway. Pharmacol Rev 54, 561–587.
310 Qiu Q, Xu Z, Tian J, Moitra R, Gunti S, Notkins AL

and Byrnes AP (2015) Impact of natural IgM

concentration on gene therapy with adenovirus type 5

vectors. J Virol 89, 3412–3416.
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Morita T and Byrnes AP (2013) Coagulation factor X

shields adenovirus type 5 from attack by natural
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MA (2013) Circulating antibodies and macrophages as

modulators of adenovirus pharmacology. J Virol 87,
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indirect complement activation by virions in vivo. J

Virol 83, 5648–5658.
314 Smith JS, Tian J, Muller J and Byrnes AP (2004)

Unexpected pulmonary uptake of adenovirus vectors

in animals with chronic liver disease. Gene Ther 11,

431–438.

315 Uusi-Kerttula H, Davies JA, Thompson JM,

Wongthida P, Evgin L, Shim KG, Bradshaw A, Baker

AT, Rizkallah PJ, Jones R et al. (2018) Ad5NULL-

A20: a tropism-modified, alphavbeta6 integrin-selective

oncolytic adenovirus for epithelial ovarian cancer

therapies. Clin Cancer Res 24, 4215–4224.
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