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Summary

Microglia are tissue macrophages of the central nervous system (CNS).

Their key tasks are immune surveillance as well as responding to infec-

tions or other pathological states such as neurological diseases or injury.

In recent years it has been discovered that microglia are additionally cru-

cial for the maintenance of brain homeostasis during development and

adulthood by adjusting the neuronal network and phagocytosing neuronal

debris. Microglia persist in the CNS throughout the life of the organism

and self-renew without engraftment of bone-marrow-derived cells. Until

recently it remained unknown what controls their maturation and activa-

tion under homeostatic conditions. In this review we discuss new aspects

of the interaction between host microbiota and brain function with special

focus on the brain-resident innate immune cells, the microglia.

Keywords: gut–brain axis; macrophage; microbiota; microglia; short-chain

fatty acids.

Introduction

Man and mouse are occupied by trillions of commensal

bacteria that co-exist for potential mutual benefits. This

host microbiota colonizes mainly the gut and the skin as

well as several mucosal cavities (nasal, oral, vaginal and

pulmonary). The microbiota is a necessary element for

the synthesis of several vitamins (e.g. vitamins K and B),

it provides energy for the host in terms of short-chain

fatty acids (SCFAs) by fermentation of otherwise indi-

gestible carbohydrates and fibres, and is involved in the

metabolism of bile acids, sterols and xenobiotics.1 In fact,

there is some marked evidence that a complex composi-

tion and abundance of the gut microbiota is an essential

element for the maintenance of the host’s health. Altered

microbial compositions have been linked to several

human diseases,2 including cardiovascular disease,3

inflammatory bowel disease,4 and type 1 and type 2 dia-

betes.5,6 Fairly unexpectedly, multifaceted interactions

between the endogenous microbiota and the hosts’ central

nervous system (CNS) were discovered in the past dec-

ade. The influence of the host microbiota on CNS func-

tions have been studied using several experimental

approaches, including germ-free (GF) animals7 that have

never been exposed to bacteria and viruses from embryo-

genesis throughout their life, manipulation or eradication

of the gut bacteria with antibiotics at an adult stage,8–10

transient colonization,11 defined limited colonization12 or

faecal microbial transplantation.9 Over the last few years,

several new publications have defined the impact of the

gut microbiota on the innate and adaptive immune sys-

tem.13

In this review we highlight and discuss recent findings

concerning the environmental factor ‘host microbiota’

and its influences on the CNS with special focus on its

resident tissue macrophages, the microglia.

Gut–brain axis: an important connection

First, it has been described that the microbiota affects

several aspects of behaviour in mice and in humans in

general,14 for example social interaction,15 stress respon-

siveness,16 depression-like behaviour,17,18 anxiety-like

behaviour19–23 and nociceptive responses.24 Interestingly,

it was observed that the colonization of GF BALB/c mice

with a strain-specific microbiota from conventionally

(specific pathogen-free; SPF) raised NIH Swiss mice

increased exploratory behaviour and hippocampal levels

of brain-derived neurotropic factor; however, GF NIH

Swiss mice with a microbiota derived from conventionally

housed BALB/c mice had the opposite effect and showed

reduced exploratory behaviour,9 indicating that
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microbiota-derived signals can shape host brain function

in terms of behaviour. It was shown recently that the host

microbiota has an effect on adult hippocampal neurogen-

esis leading to more immature neurons in young GF mice

compared with conventionally colonized control mice,

whereas the mechanisms and potential hippocampus-related

behavioural changes are only poorly understood.25,26

In general, the mechanisms by which the microbiota

influences the host are manifold and complex (Fig. 1).27

Commensal microbiota can either have a direct impact

on the production of metabolic precursors like trypto-

phan and neurotransmitters (e.g. serotonin, noradrenaline

or dopamine) or produce active mediators like SCFAs,

which are commensal anaerobic bacteria-derived fermen-

tation products.14,21,28 SCFAs are also known to inhibit

histone deacetylases and thereby result in epigenetic

changes.29 Further, the gut is connected to the CNS

through the vagus nerve, enabling a direct communica-

tion through a neurochemical pathway.30 A third pathway

linking the microbiota and the CNS is the release of

microbial-associated molecular patterns (MAMPs) in the

gut.14 MAMPs such as bacterial lipoproteins, double-

stranded RNA, lipopolysaccharide and many others are

recognized by different receptors, mostly belonging to the

Toll-like receptors (TLRs) in association with the myeloid

differentiation primary response gene, MyD88, signalling

pathway, which is known to be involved in several aspects

of the host immune response.31 A recently proposed

mechanism as to how the host may control the micro-

biome is host epithelial derived miRNA, which is pro-

posed to control bacterial gene expression.32

It was suggested by Braniste and colleagues that blood–
brain barrier (BBB) integrity in the frontal cortex, hip-

pocampus and striatum is influenced by gut microbiota.33
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Figure 1. Microglia functions under homeostatic conditions and its modulation by host microbiota. During adulthood cortical microglia survey

mature neurons and are involved in learning-induced dendritic spine formation and nourish neurons. Furthermore, colony-stimulating factor 1

(CSF-1), interleukin-34 (IL-34) and short-chain fatty acids (SCFAs) are important components for microglia function and maturation. Direct sig-

nalling via the vagus nerve and other molecules like gut hormones, neurotransmitters, cytokines or microbial-associated molecular patterns

(MAMPs) may also affect microglia.
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They provided evidence that BBB permeability is

increased in GF mice already during embryonal develop-

ment – visible from E16.5 until adulthood – caused by

reduced tight junction protein expression. Further, the

impaired BBB integrity in GF mice could be rescued by

recolonization with a complex intestinal microbiota or

the application of butyrate. Pericyte numbers seem not to

be altered but a more detailed analysis of all components

of the BBB, namely endothelial cells, pericytes and astro-

cytes, including their function and mechanism by which

SCFAs mediate BBB integrity remain to be investigated.

Intriguingly, antibiotic-induced alteration of the gut

microbiota in adult mice also leads to decreased tight

junction expression in the hippocampus, whereas in the

amygdala an increased expression of tight junction pro-

teins was observed,34 indicating potential region-specific

differences. Similar findings could be determined regard-

ing the blood–testis barrier, as GF mice feature reduced

expression of adherens and tight junctions proteins and

increased blood–testis barrier permeability,35 suggesting

the general involvement of the gut microbiota in the reg-

ulation of the blood–tissue barriers.36

Recent evidence demonstrated myelination being influ-

enced by the microbiota under steady-state conditions in

some specific anatomical brain regions like the prefrontal

cortex, but the (patho-)physiological consequences are

not yet examined.37

The impact of microbiota on neuropsychiatric
disorders

The findings described above implicate that under home-

ostatic conditions brain function and architecture are

highly influenced by gut microbiota. In addition, it has

only recently been appreciated that commensals obviously

influence CNS diseases as well.

A crucial role of the gut microbiota could be demon-

strated in a relapsing–remitting (RR) mouse model

(transgenic SJL/J anti-MOG TCR transgenic RR mice)

whereby mice spontaneously develop features similar to

those of human multiple sclerosis.38 Mice that are kept

under normal SPF conditions spontaneously develop dis-

ease hallmarks mediated by triggering peripheral immune

processes driven by myelin-specific CD4+ T cells, whereas

mice housed in a sterile environment are nearly pro-

tected.38 It remains open, whether the microbiota influ-

ences directly the pathological process or the generally

impaired immune system of GF mice is contributing to

this observation.

Autism spectrum disorder (ASD) is a frequent neu-

ropsychiatric disorder that is supposed to be caused by

multifactorial aetiology.39 Affected people suffer from

impaired sociability and communication, as well as fre-

quent repetitive and stereotyped behaviours. Some poten-

tial risk factors for ASD are linked to the gut microbiota,

such as perinatal infection, hospitalization or early antibi-

otic exposure.40 It was observed that SCFAs may trigger

ASD in rodents41 and, supporting this finding, it has been

described that children with ASD display increased faecal

SCFA concentrations;42 however, the precise mechanism

is not fully understood.40 A probiotic treatment with the

human commensal Bacteroides fragilis was shown to ame-

liorate ASD-linked behaviour in mice by normalizing 4-

ethylphenylsulphate levels.43

The presence of gut microbiota is also pathophysiologi-

cally relevant for Parkinson’s disease as patients displayed

an altered composition of the gut microbiota including

reduced abundance of Prevotellaceae and increased abun-

dance of Enterobacteriaceae compared with matched con-

trols.44 Prevotellaceae are known to provide potential

beneficial SCFAs, thiamine and folate, which are found to

be decreased in patients with Parkinson’s disease.44 The

relative abundance of Enterobacteriaceae was associated

with the severity of motor symptoms.44 Beyond these cor-

relative data it is proposed that various a-synuclein forms

can spread from the gut to the brain by microtubule-

associated transport via the vagus nerve, suggesting that

this pathway might be used for the transport of misfolded

proteins as well. However, the detailed mechanism has

yet to be determined.

Further, the gut microbiota may play a crucial role in

the pathogenesis of other neurodegenerative diseases, such

as Alzheimer’s disease and amyotrophic lateral sclero-

sis45,46 because it is known that neurons,21 astrocytes47

and microglia48 are shaped by the host microbiota and/or

their metabolites, and microglial activation accompanied

by the production of potential neurotoxic factors are

common features of these diseases.49 Hence, it is likely

that gut bacteria affect a wide range of neurological disor-

ders, whereby it should be considered generally whether

an observed altered composition of the microbiome is

cause or consequence. A functional link between ascer-

tained bacterial species and findings should be deter-

mined.

Factors modulating fate and function of tissue
macrophages in the CNS

Different types of macrophages in the CNS are related to

separate compartments. The non-parenchymal macro-

phages comprise meningeal, perivascular and choroid

plexus macrophages.49,50 Under steady-state conditions,

microglia are the only myeloid cell type distributed

throughout the CNS parenchyma with region-specific

varying numbers and with a wide range of morpholo-

gies.51,52 These CNS immune cells belong to the large

family of mononuclear phagocytes, which further includes

peripheral tissue-specific macrophages, different subsets

of dendritic cells and circulating monocytes.53,54 In mice

all mentioned CNS macrophages – except choroid plexus
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macrophages – are derived from prenatal sources such as

the yolk sac and self-renew throughout life.55–59 Specifi-

cally, microglia originate in a c-MYB-independent but

Runt-related transcription factor 1 (RUNX1), interferon

regulatory factor (IRF8) and PU.1-dependent manner

from CD45� Tie2+ c-KIT+ F4/80�CX3CR1
� ery-

thromyeloid progenitors of the yolk sac during primitive

haematopoiesis.55,56,60,61 It is convincingly assumed that

during embryonal development the forming CNS is

uncoupled by the closing BBB starting from E14.5,62,63

leading to a defined and restricted environment presum-

ably excluding substantial immigration of peripheral mye-

loid cells from the definitive haematopoiesis.50,55,56,60,61

However, in a zebra fish model it was recently described

by using high temporal–spatial resolution fate mapping

that multiple sources may give rise to adult microglia.64

It is well known that under steady-state conditions,

microglia as innate immune cells actively survey their sur-

rounding environment with their highly motile processes,

as shown using in vivo time lapse two-photon-imaging of

Cx3cr1GFP mice.65,66 In addition, several studies revealed

that microglia are critical for maintaining tissue home-

ostasis during development and adulthood.49,50,67 In par-

ticular, microglia carry out distinct region-specific tasks

such as neuronal circuit development and modification of

synapses in the cortex or phagocytosis of myelin debris in

the white matter (Fig. 1).68–73 Various pathological stim-

uli (such as bacterial or viral infection) or diseases (neu-

roinflammatory, neurodegenerative, neuro-oncological or

neuropsychiatric) can cause rapid recruitment of micro-

glia to sites of injury, resulting in a resident innate

immune response.50,74,75 In general, these microglial

responses include characteristic macrophage functions

such as phagocytosis, antigen presentation and the pro-

duction and release of immunomodulatory factors.

Compared with their tissue relatives in peripheral

organs, microglia exhibit a specific gene expression profile

and a distinct chromatin state.76–80 In two large-scale

studies, Lavin et al.77 and Gosselin et al.78 demonstrated

that gene expression patterns and epigenetic identities of

macrophages are only partly shaped during development,

but rather are shaped also by the local microenvironment,

which is capable of reprogramming the genetic imprints,

suggesting a remaining plasticity. In fact, Gosselin et al.78

could show that freshly isolated microglia and large peri-

toneal macrophages lose their specific gene expression

patterns to a great extent in vitro. Furthermore, when

large peritoneal macrophages were incubated with trans-

forming growth factor-b1 (TGF-b1), which is important

for microglial development and homeostasis,79 approxi-

mately 50% of genes usually expressed by microglia

in vivo could be induced in these macrophages, indicating

that environmental factors in the CNS have a determining

influence to induce a microglia phenotype.78 Environ-

mental signals that further shape microglia properties are

certainly not limited to TGF-b1 and growth factors like

colony-stimulating factor 1 (CSF-1) and interleukin-34

(IL-34) but rather include other factors that are essential

for maintaining homeostasis of these unique CNS-resi-

dent tissue macrophages.81

How host microbiota controls microglia
maturation and immune function

It was recently shown that host microbiota is also an

essential environmental factor shaping the brain innate

immune system, in particular the maturation and func-

tion of microglia.48 Non-colonized young adult GF mice

exhibit stunted microglia under homeostatic conditions

compared with microglia from mice bred under common

SPF settings (Fig. 2).48 RNA-sequencing analysis of

FACS-sorted CD11b+ CD45lo microglia from GF and SPF

animals revealed marked differences regarding their cell

differentiation, transcription factor binding and prolifera-

tion. Microglia expressed reduced mRNA levels for several

activation markers under GF conditions (e.g. Il1a, Stat1,
Jak3, B2m), whereas transcripts either for inhibitors of

transcription, such as Nfkbia (encodes IjBa), or the

essential microglia transcription and survival factor Sfpi1,

encoding PU.1, were up-regulated. Further, the c-fms

gene, encoding for the integral tyrosine kinase transmem-

brane receptor CSF-1 receptor (CSF-1R), which is ele-

mentary for microglial proliferation, maturation, function

and survival,82–85 was found to be increased in GF micro-

glia in addition to other genes controlling proliferation,

cell cycle and apoptosis (e.g. Cdk9, Ccnd3, Bcl2). There is

also evidence that microglia from CSF-1Rop/op mice dis-

play reduced numbers of processes.86 Notably, it is known

that DNA damage-inducible transcript 4 (DDIT4, also

known as REDD1) is induced by energy stress and essen-

tially influencing cell growth, proliferation and survival

via inhibition of the activity of the mammalian target of

rapamycin complex (mTORC) 1 and activation of

mTORC2.87–89 Germ-free microglia express higher levels

of Ddit4 compared with SPF mice. Accordingly, a salient

hyper-ramified morphology as well as an increased micro-

glial density were observed in different brain regions in

GF mice accompanied by an increased proliferation rate.

In contrast, cell numbers of neuroectodermal cells, such

as astrocytes, oligodendrocytes and neurons, were not

altered. Although it was recently discovered that some

brain regions show a leaky BBB,33 no lymphocytic infil-

trates were detectable in GF brains.48

It is known that microglial numbers increase in the

first 2 weeks after birth and then start to decline in the

third postnatal week.68,90 A higher microglia density

therefore indicates an immature microglial attribute in

GF mice. Remarkably, these findings contrast data from

bone-marrow-derived haematopoietic cells, such as

peripheral tissue macrophages, neutrophils and
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monocytes, which are most likely found to be diminished

in GF mice (Table 1).10,91,92 Notably, reduced cell num-

bers for granulocytes, monocytes, granulocyte–monocyte

progenitors and haematopoietic stem/progenitor cells

(lineage � Sca1+ c-kithi cells) corresponds to host micro-

biota complexity.93 F4/80hi and CD11b+ Gr1� F4/80lo

splenic and bone marrow macrophages are described to

be reduced in GF mice and in broad-spectrum antibiotic

(ABX)-treated SPF mice.91 Moreover, it was shown that

SCFAs and MAMPs were not sufficient to restore splenic

macrophage numbers. Instead, only recolonization with a

complex flora was able to rescue macrophage numbers

and reduce bacterial burden upon Listeria monocytogenes

infection in the spleen, indicating a restored proper

innate immune response against infection.91 Further,

Kupffer cells, the tissue macrophages of the liver, were

reduced in GF and ABX-treated Swiss Webster male

mice94 and C57BL/6 mice, respectively.91 Interestingly,

Kupffer cells exhibited a reduced MHC class II expression

and an increased phagocytic capacity in GF animals.89

These ABX-treated mice displayed mitigated liver damage

in an ischaemia–reperfusion injury model.94 Contradic-

tory data were recently published by Zhang et al. that did

not find changed Kupffer cell numbers in the liver of

ABX-treated C57BL/6 mice.92 In addition, dermal macro-

phage populations were found to be decreased in GF

mice95.

The often observed decrease in cell numbers might be

in some cases caused by the fact that growth factors like

CSF-1 or CSF-2 are reduced in the respective compart-

ments or organs of GF animals (Table 1).10,96,97 However,

brains of GF animals showed slightly increased Csf1

mRNA levels in the cortex and cerebellum whereas the

second known ligand for the CSF-1R Il34 was not

affected by gut microbiota.98,99

One common feature of microglia is that each cell cov-

ers its own defined territory.100 In contrast, GF microglia

frequently crossed the neighbouring microglial territories

and touched adjacent microglia, indicating a disturbed

microglial network. In FACS analysis microglia from GF

mice showed an up-regulation of the surface markers

CSF-1R, F4/80 and CD31, which are known to be down-

regulated in mature adult microglia.55 In addition, the

expression of the maturation marker Apoe was increased

in GF microglia, usually declining during microglial mat-

uration.79 Another crucial factor for the homeostasis of

microglia is TGF-b as Tgfb1-deficient mice show reduced

microglia numbers in the CNS.79 Interestingly, we

detected – in line with the already mentioned augmented

microglial density – an increased Tgfb1 expression in

microglia from GF-housed mice.79

To further investigate the bacterial factors mediating

the maturation of microglia, mice harbouring a strongly

reduced microbiota with a defined subset of known bac-

terial species, so-called tri-colonized altered Schaedler

flora (ASF) mice, were analysed. These mice harboured

only three bacterial strains, namely Bacteroides distasonis

(strain ASF 519), Lactobacillus salivarius (strain ASF 361)

and Clostridium cluster XIV (ASF 356),101 instead of the

400–1000 strains usually found in SPF mice.101 Although

SPF controls and tri-colonized ASF mice exhibited the

same bacterial loads, microglia from the tri-colonized

GF phenotypeSPF phenotype

SCFAs
Recolonization with
complex gut flora

Antibiotic treatment
Reduced gut flora

FFAR2KO

Immature phenotype:
CSF-1R
F4/80
CD31

Ddit4
Proliferation
Cell density

Diminished response
to bacterial and
viral challenge

Figure 2. Immature microglia phenotype under germ-free (GF) conditions. Mice raised under conventional (specific pathogen-free; SPF) condi-

tions exhibit mature microglia with ramified morphology that respect territorial boundaries (SPF; left). Microglia from GF mice (right) display a

hyper-ramified morphology, increased cell density accompanied by increased proliferation rate, up-regulation of colony-stimulating factor 1

receptor (CSF-1R), F4/80 and CD31 and a changed gene expression profile more related to that of immature cells. Eradication of host microbiota

with antibiotics, the presence of a gut flora with strongly limited diversity or FFAR2-deficiency in the host are causing a microglial phenotype

similar to that observed in GF mice, whereas recolonization with a highly diverse gut flora or the application of SCFA is able to re-establish a

mature microglial phenotype.
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ASF mice had still markedly altered microglia morphol-

ogy, function and maturation, which indicates that bacte-

rial complexity is essential for microglia prosperity.48

Importantly, recolonization with a diverse microbiota

through SPF donors largely rescued the immature micro-

glial phenotype, which could have major therapeutic

implications as the full maturation of these cells can also

be attained at later stages during adulthood. As GF mice

have never been exposed to microbiota and therefore

microglia development might also be influenced in those

mice, the microbiota of adult SPF mice was eradicated by

ABX. Microglia from these ABX-treated mice displayed

an immature phenotype of microglia reminiscent of the

malformed microglia observed in GF animals, suggesting

that continuous input signals from host microbiota are

required for microglia properties postnatally, independent

from developmental imprints. It was proposed that

minocycline, a second-generation tetracycline, inhibits

microglial activation and therefore affects neurodegenera-

tive, neuropsychiatric and inflammatory diseases.102,103

However, it is not yet clarified how this ‘inhibition’ is

generated. Orally administered minocycline can certainly

affect the composition of the gut microbiota but is also

well-absorbed and is able to penetrate the brain parench-

yma and could inhibit microglia independent of the

abundance of the microbiota.104 There is some evidence

that minocycline attenuates the nuclear factor-jB path-

way in microglia in vitro but the exact mechanism is not

understood.105 The potential interaction of minocycline

and microglia is further discussed elsewhere.106 Interest-

ingly, in control experiments intraperitoneal administra-

tion of a mixture of non-absorbable antibiotics (namely

neomycin, bacitracin and pimaricin) to SPF mice or oral

administration to GF mice did not influence behaviour.9

The antibiotic cocktail used in the study48 was composed

of three antibiotics (cefoxitine, gentamicin and van-

comycin) that are described not to reach the brain tis-

sue,107 but the fourth substance metronidazole is

considered to penetrate at least as poorly the CNS.107

Therefore, further experiments are necessary to clarify

whether metronidazole is able to affect microglia directly.

The pathways mediating this gut–microglia connection

are not yet known but in contrast to other myeloid

cells92,108 this is most likely independent of TLR-

signalling as microglia from mice deficient for TLR-2, -3,

-4, -7and -9109 have similar features to the respective

wild-type animals.48 Instead, SCFAs rather than TLR

ligands were found to mediate signals to microglia

in vivo.48 The oral application of a mixture of the three

major SCFAs acetate, propionate and butyrate was suffi-

cient to drive maturation of microglia. It is known that

SCFAs are able to cross the BBB110,111 and may therefore

affect microglia directly. In general, SCFAs can also be

recognized by specific receptors, such as free fatty acid

receptor 2 (FFAR2) [also known as G protein-coupled

receptor (GPR) 43)] or FFAR3 (GPR41).112,113 In general,

GPRs are a large class of seven transmembrane spanning

proteins that regulate a wide range of signalling events,

whereas activation of FFAR2 by SCFAs is mediated

through a dual coupling through Gi/o and Gq sig-

nalling.113 It is known that FFAR2 regulates immune sys-

tem properties.114 Interestingly, FFAR2-deficient mice

displayed microglia reminiscent of those found in GF

mice, although FFAR2 is not expressed in any adult brain

cell including microglia and endothelial cells.76,113 This

indicates that an indirect signalling of SCFAs through

peripheral myeloid or lymphocytic cells expressing

FFAR2, such as splenic or enteric macrophages, to the

adult brain is conceivable. Despite this possible connec-

tion, it has not been investigated whether FFAR2 is

Table 1. Effect of host microbiota on cell density in different innate immune cell populations

Immune cell type Cell density (GF) Cell density (ABX) Change of growth factors References

Microglia ↑ No change CSF-1: Slightly ↑
IL-34: not changed

Erny et al. (2015)48

Neutrophils ↓ ↓ CSF-2↓ Zhang et al. (2015)92

Khosravi et al. (2014)91

Balmer et al. (2014)93

Deshmukh et al. (2014)10

Monocytes ↓ (spleen) ↓ Suggested CSF-1 ↓ (data not shown) Khosravi et al. (2014)91

↓ (bone marrow)

↓ (blood)

Not changed

Not changed

Zhang et al. (2015)92

Kupffer cells ↓ ↓ Not changed Corbitt et al. (2013)94

Khosravi et al. (2014)91

Not changed Zhang et al. (2015)92

Gut macrophages ↓ CSF-1 ↓ Muller et al. (2014)97

Splenic macrophages ↓ ↓ Suggested CSF-1 ↓ (data not shown) Khosravi et al. (2014)91

Zhang et al. (2015)92

Bone marrow macrophages ↓ Suggested CSF-1 ↓ (data not shown) Khosravi et al. (2014)91

Skin macrophages ↓ Unknown Tamoutounour et al. (2013)95

ª 2016 John Wiley & Sons Ltd, Immunology, 150, 7–1512

MICROBIOTA INTERACTIONS WITH INNATE AND ADAPTIVE IMMUNITY REVIEW SERIES
D. Erny et al.

USER

USER

USER

USER

USER

USER

USER

USER

USER

USER

USER

USER

USER

USER

USER

USER



expressed at earlier stages during development. Other

possible routes linking the gut and microglia such as

direct signalling via the vagus nerve or other mediators

like gut hormones, neurotransmitters, cytokines or

MAMPs, which may also affect microglia, have not been

investigated (Fig. 1).27

What are the functional consequences of microglial

malformation and immaturity discovered in GF mice?

Upon either bacterial (lipopolysaccharide) or viral (lym-

phocytic choriomeningitis virus) challenge, microglia

from GF mice exhibited a restricted or disturbed innate

immune response compared with microglia from SPF

mice. Similar impaired immune responses are also

described for other innate immune cells in ABX-treated

SPF or GF mice, such as peritoneal macrophages115 alveo-

lar macrophages116 or natural killer cells.108

Concluding remarks

In the past few years, the link between the host micro-

biota and human health and disease has become appar-

ent. An unbalanced composition of host microbiota is

becoming recognized as a crucial environmental factor

that strongly impacts the host immune system, metabo-

lism and has an important role in many diseases, such as

systemic diseases (obesity, diabetes), gut-related irritable

bowel syndrome and inflammatory bowel disease.117 A

recent study by Tillisch and colleagues described how

ingestion of probiotic bacteria alters brain function in

humans.118 It can be assumed that numerous interactions

between host microbiota and the CNS immune systems

exist, which can essentially shape the outcome of a

plethora of neuroinflammatory, neuro-oncological and

neurodegenerative CNS diseases. The future treatment of

CNS disorders in man can certainly take advantage of the

intimate and mutual interactions of the gut inhabitants

with the brain that can be considered as an ‘axis of the

good’.
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