Ligand gated ion channels

Cys-loop pentameric receptors nAChR GABAR

(A) LIGAND-GATED ION CHANNELS

NEUROSCIENCE, Fourth Edition, Figure 5.23 (Part 1)

© 2008 Sinauer Associates, Inc.

(B) G-PROTEIN-COUPLED RECEPTORS

NEUROSCIENCE, Fourth Edition, Figure 5.23 (Part 2)

© 2008 Sinauer Associates, Inc.

NT recptors:

lonotropic

Metabotropic

Agonist	Ionotropic ligand-gated channels (fast 0.1 - 100 ms)	Metabotropic G-protein- coupled receptors (slow 0.05 – 100 s
ACh	Nicotinic (Cationic)	Muscarinic
Glutamate	AMPA, NMDA, Kainate (Cationic)	mGluR
GABA	GABA _A (Anionic)	GABA _B
Glycine	Glycine (Anionic)	_
Serotonin	5-HT ₃ (Cationic)	5-HT _{1.2,4-7}
ATP (a purine)	P2Y (Cationic)	P2X
Histamine		H ₁ , H ₂ , H ₃
Catecholamines	_	$\alpha_1, \alpha_2, \beta, D_1, D_2$
Anandamide	_	Cannabinoid R
Odorante		> 500 adarant recentors ^b
Testeste		>500 odorant receptors
lastants	Some	Some

-

NEUROSCIENCE, Fourth Edition, Figure 6.5 (Part 1)

Ligand gated ion channels

Neurotransmitters

ACh 5-HT GABA Glycine Glutamate ATP

General structure

General structure

Except for rare exceptions, ionotropic receptors are heteropolymers, consisting of four or five subunits arranged in a circle, which can be present in many variations.

The structural analysis of the ionotropic receptors molecules suggests to classify them in two large families, derived from two distinct ancestral genes:

a) the family that has as its protoype the nicotinic acetylcholine receptor (nAchR) and its like; – nAchR represents the reference model for the whole class of ionotropic receptors;

b)the family which has the ionotropic receptor for ac. glutamic (iGluR).

Cys Loop receptors

Selectivity

Nicotinic receptos

GABA_A Receptors

Opening Probability and duration of the openings are conditioned by:

benzodiazepines barbiturates anesthetics Alcohol steroid hormones

Gene	Protein	(human)
GABRA1	α1	5q31.1-33.2
GABRA2	α2	4p12-p13
GABRA3	α3	Xq28
GABRA4	α4	4p14-q12
GABRA5	α5	15q11-q13
GABRA6	α6	5q31.1-33.2
GABRB1	β1	4p12-p13
GABRB2	β2	5q31.1-33.2
GABRB3	β3	15q11-q13
GABRG1	γ1	4p14-q21.1
GABRG2	γ2	5q31.1-33.2
GABRG3	γ3	15q11-q13
GABRD1	δ1	1p
GABRE1	8	Xq28
	$\rho 1$	6q14-q21
	p2	6q14-q21

Glutamatergic Receptors

Nicotinic Acethylcholine Receptors nAChR

Substances that interact with nicotinic transmission

Nicotina tabacum

· 5H,O 2CI -

Strychnos Toxifera

Substances that interact with nicotinic transmission

Physiostigma Venenosum (Calabar bean) Nerve Gas (Sarin)

nAChR at NMJ

(A) Patch clamp measurement of single ACh receptor current

nAChR at NMJ

(B) Currents produced by:

nAChR at NMJ

Influence of the postsynaptic membrane potential on the nicotinic (muscular) currents

(B) Effect of membrane voltage on postsynaptic end plate currents (EPCs)

Na⁺ & K⁺ contribute to the current generated by the activation of nACh How do they move?

Influence of the postsynaptic membrane potential on the nicotinic (muscular) currents

nAChR structure

nAChR structure

(A) HYDROPATHY PLOT of a nicotinic Acetylcholine Receptor Subunit

LSS: Leading signal sequence (cleved in mature AchR) ED: Extracellular domain M1-4 Membrane spanning segment

CL: Cytoplasmatic Loop

Distribution of polar and nonpolar AA provides info on how the AA sequence spans the membrane 5 subunits each with 4TM domains (hydrophobic regions)

External end Wide mouth 2.5 nm Narrowest diameter ~0.8 nm

the molecules of the best known specimen: (nAchR) T, are present in the membranes of the electric organ of the Torpedo (Torpedo) in such a large quantity as to constitute "almost crystalline" structures.

α-bungarotoxin (Cobra) binds to nAchRs with very high affinity, facilitating protein extraction and purification

the structure of the (nAchR) T molecule is resolved to the atomic level (with X-ray diffraction).

nAChR structure

nAChR structure

large transmembrane molecule.

The 5 subunits $(\alpha\beta\gamma\delta)$ cross the double phospholipid layer with 4 STM, are arranged at the top of a pentagon, in which a γ subunit is interposed between two α subunits.

Extracellular domains 100 Å

M2 domains form the pore.

Nicotinic Receptors

Subunit expression: regional & developmental regulation

Subunit composition: nAChR-channel functional properties

Nicotinic Receptors

nAChRs are homoor hetero-pentamers

Subunit topology

nAChR-channels

During

na

select for cations are permeable to Ca²⁺ [From the Proceedings of the Physiological Society, 18–19 February 1977 Journal of Physiology, 268, 32–33 P]

Calcium entry across the post-junctional membrane during transmitter action

BY R. MILEDI, I. PARKER and G. SCHALOW. Department of Biophysics, University Comparison, Gower Street, London WC1E 6BT

> on, an influx of calcium ions across the postsquid giant axon has been demonstrated using t Stinnakre, 1975), and there is evidence for a

Control of post-synaptic processes

Control of transmitter release (dopamine in nicotine addiction)

Ca²⁺ permeability of recombinant nAChR

nAChR	P _f
h α7	11.4%
r α 7	8%
h α1β1εδ	7.5 %
m/r α1β1εδ	4.2 %
m/r/h α1β1γδ	2.8 %
h α3β4	2.7 %
chick	4.5 %
h α4β2	2.6 %
chick	2.9 %
h α4β4	1.5 %
chick	2.1 %

Fucile (2004) Cell Calcium 35:1-8 Fucile et al. (2006) J Physiol 573: 35-43

P_f depends on subunit composition & SPECIES

nAChR	P _f
h α7	11.4%
r α7	8%
h α1β1εδ	7.5 %
m/r α1β1εδ	4.2 %
m/r/h α 1 β 1 γδ	2.8 %
h α3β4	2.7 %
chick	4.5 %
h α4β2	2.6 %
chick	2.9 %
h α4β4	1.5 %
chick	2.1 %

Fucile (2004) Cell Calcium 35:1-8 Fucile et al. (2006) J Physiol 573: 35-43

Identification in patients Functional studies on human muscle Functional studies on recombinant nAChRs Genetically modified animal models

Nicotine addiction

Tobacco use is the leading cause of preventable death in developed countries, causing about 5 million deaths/year wordwide. Its use is increasing in developing countries, further raising death toll.

Vincent van Gogh (1853-1890) Van Gogh Museum, Amsterdam

nAChR & Nicotine addiction

3 genome-wide association studies (2010) other previous genetic studies Combined analysis > 140 000 individuals

Nature Genetics, May 2010

D398N in $\alpha 5$ & Nicotine addiction

Bierut et al., Am J Psych 2008

D398N in α 5 & Nicotine addiction

 $\alpha 3\alpha 5\beta 4$ in

- PNS (ganglion neurones)
- medial habenula (epithalamus)

D398N in α 5 & Nicotine addiction

 $\alpha 5_{D398N}$ induces LOSS-offunction in $\alpha 3\beta 4\alpha 5$ nAChR

 $\alpha 5_{D398N}$ reduces aversion to nicotine allowing enhanced consumption

Frahm et al. (2011) Neuron 70: 522-535

Fast GABAergic transmission

γ-amino butyric acid (GABA)

Ca2+ cond.

GABA metabolism

(A)

Fast GABAergic transmission

GABA action on neuronal firing

IPSPs are mediated by a Cl^{-} conductance : $GABA_{A}$ Receptor

At macroscopic level

Voltage clamp: Inhibitory postsynaptic current (IPSC); outward current

Influence of the postsynaptic membrane potential on GABAergic currents How does CL- move?

I-V curve

Kinetics of GABA_A receptors

Antagonists of GABAA receptors lead to epileptic seizures

Anamirta cocculus

Dicentra cucullaria

Penicillium notatum

GAD (glutamic acid decarboxylase) catalyzes the formation of GABA from glutamic acid

Allosteric modulators of GABAA receptors

Allosteric modulators of GABAA receptors

Phenobarbital

Structure of GABAA receptor

At the synaptic level, GABAA receptors are found in symmetric, inhibitory synapses (no postsynaptic density)

Synthesis and uptake of GABA in nerve endings

GAD: Glutamic Acid Decarboxylase

GABA_A receptor distribution

A transgenic mouse that expresses the green fluorescent protein (GFP) in GAD positive neurons.

Paulsen 2004

How does Cl-move?

Cl- equilibrium

Cl- equilibrium

