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MICROBIOTA:

The human intestine harbors nearly 100 trillion bacteria that are essential for health.
The largest microbial component of the human microbiome is located in the large
intestine of the gastrointestinal (Gl) tract.

- critical contributions to metabolism by helping to break down complex polysaccharides
- critical to the normal development of the immune system.

Recent studies reveal the importance of gut microbiota to the function of the CNS.

MICROBIOTA—-GUT-BRAIN AXIS:

A complex network of communication between the gut, the intestinal microbiota, and
the brain, modulating

- immune

-Gl

-and CNS functions.

It encompasses the CNS, the sympathetic and parasympathetic branches of the
autonomic nervous system, as well as the enteric nervous system and the
neuroendocrine and neuroimmune systems.
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TRENDS in Molecular Medicine

In healthy individuals:
the normal dominant microbiota is relatively stable and forms a mutually beneficial rapport

with the host.

Perturbations may have serious consequences and has the potential to exacerbate brain,
digestive, and metabolic disorders.

Bidirectional communication between the microbiota and the CNS influences stress
reactivity, pain perception, neurochemistry, and several brain— gut axis disorders.

The composition of the gut microbiota during critical periods of CNS development is
affected by a broad range of factors. Perturbation of any of these factors can lead to host
stress or disease.
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Figure 3. Windows of opportunity 1o madulate the microbiom e of the infant pranatally and postatally. Miaobiota-gut-brai n communicaton during pranatal and postnatal
dovolopmant is shown. Although still controversial, soma avidance suggests that the microbiota of the infant before birth is not starila, but may be influanced by the
maternal immune state and nutriton. Pranatal and postnatal developmant undergoes vigorous nouradevelopmantal phasas and it is passible that it may be indiractly
nf uanced by the fotal miaabial populaton (via microbiota of the mathar). This opans avenues for the developmant of navel distary and microbe - modulating therapies,
which may directly and indiractly altar the composition of the miaaobiota and nouradevalopmant of the infant



MICROBIOTA DEVELOPMENT
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Figure 4. Fadors infuancing the developmant of tha infant microbiota. Several faciors play arola in shaping of tha bacwrial |andscapa in the devalopmant of tha infant
microbiota. In sddition to miods of birth, mods of aarly nutdtion, anvironmant, othar faciors such s gastational age, ganatics, and hospitalizetion, alss influanca the
mikcrobial com position of tha infant. infactions jboth matsmal and infant] and antibiotic usaga influsnce the trajsctony of tha devaloping microbiota as doss tha salactve
transdant enrichment by problotics and prebiotic. Taken iogethar, such a plathora of factors with the ability to modulain the microbicta development suggest tha
importance of anvironmanital influance suparimpasad owar ganatics in tha astablishmant of a cora microbioma.
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MICROBIOTA—GUT—-BRAIN AXIS:

A complex network of communication between the gut, the
intestinal microbiota, and the brain, modulating

- immune

-Gl

-and CNS functions.

It encompasses the CNS, the sympathetic and parasympathetic
branches of the autonomic nervous system, as well as the enteric

nervous system and the neuroendocrine and neuroimmune
systems.
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MICROBIOTA AND BRAIN DEVELOPMENT
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TRENDS in Molecular Medicine

Childhood and adolescence are critical developmental windows
sensitive to damage.

Disruptions of dynamic microbiota increase the risk of (or lead to)
neurodevelopmental disorders.
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TA AND NEURODEVELOPMENTAL DISORDERS

Microbiota Modulate Behavioral and

Physiological Abnormalities Associated

with Neurodevelopmental Disorders
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TRENDS in Molecular Medicine

Shaping of the microbiota occurs in parallel with neurodevelopment and they have similar
critical developmental windows sensitive to damage.

Childhood and adolescence are the most dynamic periods of change in relation to microbiota
and brain development.

Disruptions during such critical periods of dynamic microbiota—host interaction have the
potential to profoundly alter brain—gut signaling, affect health throughout life, and increase the
risk of (or lead to) neurodevelopmental disorders.
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Figure 3. Windows of opportunity 1o madulate the microbiome of the infant pranatally and postatally. Migobiata-gut-brai n communicaton during pronatal and postatal
devalopmant is shown. Although still controversial, soma avidance suggests that the microbiota of the infant befare birth is not starile, but may be influanced by the
matarnal immune state and nutriton. Prenatal and postnatal developmeant undergoes vigorous nourodevelopmeantal phasas and it is passible that it may be indiroactly
nf uanced by the fotal miaabial populaton {via microbiota of the mathar). This opens avenues for the devalopmant of navel distary and microbe madulating tharapias,
which may diroctly and indiractly altar tha composition of thae miaobiota and naurodavalopmant of the infant
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Both clinical and preclinical studies

Important role for the gut microbiota in the pathogenesis of ASDs,
novel therapeutic strategies in managing neurodevelopmental disorders via microbiome-
based treatment.

Bacteroides fragilis given in early adolescence has been shown to ameliorate some, but not
all, of the behavioral dysfunctions

The gut microbiota may be modified in throughout life and possibly pregnancy.

Early preweaning and adolescence periods appear to be critical periods for modifying
enteric microbiota with the potential to prevent the development of abnormal
behaviors.

Consequently, it is becoming clear that understanding the early interaction between the
intestinal microbiota and the host opens novel avenues for nutritional/therapeutic
interventions in at-risk populations, particularly for infants and young children.
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probiotic treatment of mice with autism features

alters the composition
of the gut microbiota

improves epithelial
barrier integrity

reduces leakage of
particular Gl metabolites

restores serum metabolites

ameliorates specific autism-related behavioral abnormalities




Animals and MIA
Pregnant C57BL/6M mice (Charles River; Wilmington, MA) were injected i_p. on

o

Er

MicrObiOta MOdUlate BehaVioral and E12.5 with saline or 20 mg/kg poly(l:C) according to methods described in

Physiological Abnormalities Associated Smith et al. (2007). All animal experiments were approved by the Caltech
. . lACUC.

with Neurodevelopmental Disorders
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http://cix.doi.org/10.1016/j.cell 2013.11.024 B. fragilis, or wehicle, in 1.5% sodium bicarbonate was administered in
sugar-free applesauce over standard food pellets. The same procedure was
used for mutant B. fragilis PSA and B. thetaiotaomicron.

Offspring of Immune-Activated Mothers Exhibit Gl

Symptoms of Human ASD

Figure 1. MIA Offspring Exhibit Gl Barrier
Defects and Abnormal Expression of Tight
Junction Components and Cytokines

(A) Intestinal permeability assay, measuring FITC
intensity in serum after oral gavage of FITC-
dextran. Dextran sodium sulfate (DSS): n=6, 3
(saline+vehicle): adult n = 16; adolescent n=4, P
(poly(l:Cy+vehicle): adult n= 17; adolescent n = 4.
Data are normalized to saline controls.

(B) Colon expression of tight junction components
relative to [-actin. Data for each gene are
normmalized to =saline controls. n = &/group.

(C) Colon expression of cytokines and inflamma-
tory markers relative to B-actin. Data for each gene
are normalized to saline controls. n = 6-21/group.
(D) Colon protein levels of cytokines and chemo-
kines relative to total protein content. n = 10/group.
For each experiment, data were collected simul-
taneously for poly(l:C}+B. fragils treatment group
(See Figure 3). See also Figure 51,
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Figure 5. B. fragilis Treatment Ameliorates
Autism-Related Behavioral Abnormalities in
MIA Offspring

(A) Anxiety-like and locomotor behavior in the open
field exploration assay. n = 35-75/group.

(B) Sensorimotor gating in the PPl assay. n= 35-75/
group.

(C) Repetitive marble burying assay. n = 16-45/
group.

(D) Ultrasonic vocalizations produced by adult male
mice during social encounter. n = 10/group.

5 = saline+vehicle, p = poly(l:C)+vehicle, P+BF =
poly(l:C)+B. fragilis. Data were collected simul-
taneously for poly(kCHB. fragilis APSA and
poly(l:C)+B. thetaiotaomicron treatment groups
(See also Figures S3 and 54).
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Normal gut microbiota modulates brain development
and behavior
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Fig. 3. GF mice show elevated NA, DA, and 5-HT
turnover in the striatum. The hietograms depict the
miean ratios (+ SEM: n= & per group) for MHPG/NA
(4), DOPAC/DA (B), and 5-HIAAS-HT (C) in the
striaturm of male GF and SPF mice. Asterisks denote
where GF mice differ significantly (P < 0.01) from
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Fig. 8. GF mice show higher expression of synaptic-
related proteirs in the striatum compared with SPF
mice. Representative Western blot films for syn-
aptophysin (A) and PSD-95 (B) protein expression in
the frontal cortex, striatum, and hippocampus of
two male GF, SPF, and CON mice (for further details,
see Table 1).
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RESCUE?

Maternal high-fat diet alters offspring

@(:9 gut microbiome, social behavior, PVN

oxytocin levels, and VTA plasticity
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Maternal High-Fat Diet

(MHFD) Offspring Dysbiosis Impaired Impaired
recision microbial reconstitution in
@(:9 MHFD offspring restores social behavior,
\/\/ oxytocin levels, and VTA plasticity
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& ® 0 W
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* Lack of microbiota and elevated pro-
inflammatory cytokines is seen in

schizophrenic patients compared to controls.
(Francesconi et al., 2011, and Song et al., 2013)

Side effects associated with Schizophrenia
such as metabolic syndrome and autoimmune
disorders could be attributed to changes in
microbiota. However no theories are proven.
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least significant difference post hoc test for group-wise
comparisons.

Across the total SGZ, cell proliferation (Figure 1A) was
increased in GF and GF-C mice, although the effect did not
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THE MICROGLIAL SIDE OF THE MICROBIOTA-GUT—-BRAIN AXIS

Microglia: brain macrophages
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THE MICROGLIAL SIDE OF THE MICROBIOTA-GUT—-BRAIN AXIS

Germ-free Conventionally raised ~ GF animals display global defects in microglia:

* Increased expression of maturation and
activation marker in GF microglia.

« M1- and M2-related genes were only

marginally = changed, whereas most

\ ¢ differently regulated genes were found to

Mouse @) Proximal colon localize in the MO cluster, indicating that

‘ | = microglia steady-state condition was

severely altered in the absence of

microbiota.
@ Enterocyte absortive d opp aE
@ Enteroendocrine cell
@= Goblet cell
@ Paneth cell
@= Stem cell
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LACK OF MICROBES IMPAIRS MICROGLIA
MORPHOLOGY
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Increased microglia cell numbers with significantly longer

processes and increased numbers of segments, branching
and terminal points.




ANTIBIOTIC TREATMENT INDUCES IMMATURE AND
MALFORMED MICROGLIA THAT CAN BE RESTORED

BY SCFA ADMINISTRATION
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MICROGLIAL CONTROL OF SYNAPTIC DEVELOPMENT

Microglia change synapse number
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DEVELOPING CX3CR1 KO MICE DISPLAY IMMATURE
SYNAPTIC FEATURES
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DEFECTIVE MICROGLIAL DEVELOPMENT IN CX3CR1 KO
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MICROBIOTA AND BRAIN DEVELOPMENT

(Weeks) (Years)
i i t t } t i i i i i
23 32 40 2 Old age
o D
= 6 . Microbiota stability é Q&{j@ i
Prenatal Infancy

Neuronal complexity through the lifespan

+ 9

Synaptic density

==_ -

Stages of brain development

['Neuronal migration
["Axonal and dendritic growth
Programmed cell death
Synaptogenesis

| [ [ — e —— o
Age of onset of mental disorders
. ADHD =
Impulse-control disorders
Myelination

Process modeling/synaptic refinement

TRENDS in Molecular Medicine




Ll

ﬂ.

-
¥ o
B 101 e
i o .:r_'—
L}
3 5-
E;
[a]
E‘mw-pupnm

L

1§
s

I
!

e
| lll:‘rl
| |“_+|I
BREE
3
}

—2
g MO phenoype-assooaiod ganas

15,000 W 5FF

OoF

|:||Il:1
5 00
. nin I1 ln "'l_“lﬂlllull'l m

Mufrdial of faids

Sl i
G4

Pory13
AlpSei
PAndd
Adiedil S
TemarsiiQ

Spare

SRR
m

Saipdne
Sooddd

Figure 1 Altered microglial gene profile and immatuwrity in GF animals. (al Left, photograph of caeca from SPF (control) and GF mice.
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Figure 3 Lack of microbes impairs microglia 2000 -
morphalogy and disturbs cellular nebwork. #F oo
(a) CNS histology of several brain ragions iz 1:.:.]-
that ware stained with hematoeylin and E
epsin {H&E) or subjactad to immunohistochamistng “'

for |ba-1 to datect microglia. Scale bars reprasent

200 pm (H&E, cortex and corpus callosum, 500 pm (H&E, hippocampus and olfactory bulb), 1 mm (H&E, cereballvm) and 50 pm (lba-1).
Represantative pictures from nine mice per group are displayed. (b) Number of |ba-1+ ramified parenchymal microglia in diffarent localizations of tha
CMZ. Each symbol represants data from one mousa, with nine mice per group. Three o four sections per mousa ware axamined. Data are presented as
mean t s.e.m. Data are representative of two independent experiments. Significant differences were determined by an unpaired § tast [* P < 0.05,
**P«0.0L, ***P<0001). Pvalues: cortex, 0.0024; corpus callosum, 0.0008; hippocampus, 0.0073; olfactory bulb, 0.0092; cereballum, 0.024&.
(c) Expression of Dditd mRMA measured by gRT-PCR in microglia isolated from SPF (black bar) or GF {white bar) mice. Data are presented as

mean + s.e.m. with fiva =amples in each group. Significant diffarences were determined by an unpaired § test (***F= 0.0002]1. Data are representative
of two independent exparimants. {d) Quantification of proliferating |ba-1+ Ki&7* doubla-positive parenchymal microglia was performed on cortical

brain slices. Each symbol reprasents one mousa, with three mice per group. Three to four sections per mousa ware examined. Data are presented as
mean + s.e.m. Significant differences were determined by an wnpaired f test (** F= 0.0033). {e) Fluorescance microscopy of lba-1* (red) microglia,
the proliferation marker Ki&F (green} and DAPI (4" &-diamidine-2-phenylindole, bluel. Overview and magnification are shown. Scale bars represent

100 wm (owardiew) and 20 prm {inset). (F g) Threa-dimensional reconstruction (scale bars represent 15 pri, §] and Imaris-based automatic quantification
of cell morphameatry (g) of cortical Iba-1+ microglia. Each symbol represents one mouse with at least three measured cells per mouse. Five mice par
group were analyzed. Data are prasented 2= mean + s.e.m. Significant differences were detarmined by an unpaired ¢ test (**F < 0.01). Pyvalues: dendrita
length, 0.0035; number of segmants, 0.0012; number of branch points, 0.0012; number of tarminal points, 0.0012; wolume, 0.0011.
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Figure 4 Diminished microglia response o infection under

GF conditions. {a) Yenn diagram depicting the different regulated
and overlapping ganes betwean sorted microglia from GF and

SPF animals (P« 0.01) & h after LPS treatment compared

with PB3-treated controls of the same housing conditions
(GFI3PF). {b) Heat map of the mean centared and =.d. scaled
expression values for genes that wera significantly and at least
twofold up- or downragulated in GF compared with SPF microglia

& h after i.c. treatment with LP5S. Only genes that were also
significantly up- or downregulated by LPS treatment compared with
PBS-treated controls of the =ame housing conditions (GF and SPF,
respectively) were included to account for differances in basal gene
regulation. Expression levels axceeding the maan valua are colored
in rad and expression levals below the maan are colored in green
(standardized and scaled to linear expression). Values close to tha
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median are calored black. Random varnance two-sample | test as

implemented in BRB-Tools was performed to test significance at F< 0.01. (c} gRT-PCR in
microglia & h after i.c. LPS exposwra. Data are expressad as the ratio of the mRMA axpression
comparad with endogenous Actb relative to SPF controls and are presented as mean + s.e.m.
At least threa mice per group were analyzed. Data are representative of two independent
experimants. Significant differences ware examinad by an unpaired ¢ test (*F < 0,05,
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