Skip to main content
If you continue browsing this website, you agree to our policies:
  • Privacy Policy
Accept
x
Moodle Sapienza Moodle Sapienza

Moodle Sapienza

  • Home
  • Corsi
    I miei corsi
    Categorie Corsi
    Cerca
    Informazioni utili
  • More
English ‎(en)‎
Deutsch ‎(de)‎ English ‎(en)‎ Español - Internacional ‎(es)‎ Italiano ‎(it)‎ العربية ‎(ar)‎
You are currently using guest access
Log in
Moodle Sapienza
Home Corsi Collapse Expand
I miei corsi Categorie Corsi Cerca Informazioni utili

Blocks

Skip Informazione sull'utilizzo dei materiali didattici

Informazione sull'utilizzo dei materiali didattici

Tutti i diritti relativi ai materiali didattici e ai contenuti presenti in piattaforma sono riservati a Sapienza e ai suoi autori.
È consentito l'uso personale dello stesso da parte degli studenti e del personale Sapienza ai fini di formazione o studio.
Ne è vietata nel modo più assoluto la diffusione, duplicazione, cessione, trasmissione, distribuzione a terzi o al pubblico pena le sanzioni applicabili per legge.

Skip SUPPORTO

SUPPORTO

Per essere supportati nella manutenzione dei corsi e per qualsiasi chiarimento sul funzionamento di Moodle i docenti possono inviare una mail a: supportoelearningsapienza@mtouch.it

Documentazione Moodle

IIT - Project SEED: ITINERE

IIT - Project SEED: ITINERE

  1. Home
  2. Courses
  3. Lauree triennali, magistrali, a ciclo unico
  4. Ingegneria civile e industriale
  5. Ingegneria Meccanica
  6. Lauree Magistrali
  7. IIT-ITINERE
  8. Journal papers
  9. FOCUS OF THE PAPER: SENSORIAL SYSTEM OF THE EXOSKELETON, GAIT PARTITIONING

FOCUS OF THE PAPER: SENSORIAL SYSTEM OF THE EXOSKELETON, GAIT PARTITIONING

Completion requirements

In this paper we present and validate a methodology to avoid the training procedure of a classifier based on an Hidden Markov Model (HMM) for a real-time gait recognition of two or four phases, implemented to control pediatric active orthoses of lower limb. The new methodology consists in the identification of a set of standardized parameters, obtained by a data set of angular velocities of healthy subjects age-matched. Sagittal angular velocities of lower limbs of ten typically developed children (TD) and ten children with hemiplegia (HC) were acquired by means of the tri-axial gyroscope embedded into Magnetic Inertial Measurement Units (MIMU). The actual sequence of gait phases was captured through a set of four foot switches. The experimental protocol consists in two walking tasks on a treadmill set at 1.0 and 1.5 km/h. We used the Goodness (G) as parameter, computed from Receiver Operating Characteristic (ROC) space, to compare the results obtained by the new methodology with the ones obtained by the subject-specific training of HMM via the Baum-Welch Algorithm. Paired-sample t-tests have shown no significant statistically differences between the two procedures when the gait phase detection was performed with the gyroscopes placed on the foot. Conversely, significant differences were found in data gathered by means of gyroscopes placed on shank. Actually, data relative to both groups presented G values in the range of good/optimum classifier (i.e. G ≤ 0.3), with better performance for the two-phase classifier model. In conclusion, the novel methodology here proposed guarantees the possibility to omit the off-line subject-specific training procedure for gait phase detection and it can be easily implemented in the control algorithm of active orthoses.


IEEE International Symposium on Medical Measurements and Applications

Click IEEE International Symposium on Medical Measurements and Applications.pdf link to view the file.
◄ FOCUS OF THE PAPER: SENSORIAL SYSTEM OF THE EXOSKELETON, GAIT PARTITIONING
FOCUS OF THE PAPER: SENSORIAL SYSTEM OF THE EXOSKELETON, GAIT PARTITIONING ►
You are currently using guest access (Log in)
Policies
Get the mobile app
Powered by Moodle

Informazioni

  • Portale Sapienza
  • Moodle community
  • Moodle Docs
  •  

Contatti

Help desk

Sapienza Università di Roma
Piazzale Aldo Moro 5, 00185 Roma

Seguici
  •  
  •