
 
 

Real-time gait detection based on Hidden Markov 
Model: is it possible to avoid training procedure? 

 

Juri Taborri1, Emilia Scalona1, Stefano Rossi2, Eduardo Palermo1,4, Fabrizio Patanè3 and Paolo Cappa1,5 

Email: juri.taborri@uniroma1.it., emilia.scalona@uniroma1.it,stefano.rossi@unitus.it, ep1674@nyu.edu, 
fabrizio.patane@unicusano.it and paolo.cappa@uniroma1.it. 

1 Department of Mechanical and Aerospace Engineering, “Sapienza” University of Rome, Roma, Italy 
2 Department of Economics and Management-Industrial Engineering (DEIM), University of Tuscia, Viterbo, Italy 

3 School of Mechanical Engineering, “Niccolò Cusano” University, Roma, Italy 
4 Deparment of Mechanical and Aerospace Engineering, New York University School of Engineering, Brooklyn, NY, 

USA 
5 Movement Analysis and Robotics Laboratory (MARLab), Neurorehabilitation Division, IRCCS Children’s Hospital 

“Bambino Gesù”, Roma, Italy 
 
 

Abstract — In this paper we present and validate a 
methodology to avoid the training procedure of a classifier based 
on an Hidden Markov Model (HMM) for a real-time gait 
recognition of two or four phases, implemented to control 
pediatric active orthoses of lower limb. The new methodology 
consists in the identification of a set of standardized parameters, 
obtained by a data set of angular velocities of healthy subjects 
age-matched. Sagittal angular velocities of lower limbs of ten 
typically developed children (TD) and ten children with 
hemiplegia (HC) were acquired by means of the tri-axial 
gyroscope embedded into Magnetic Inertial Measurement Units 
(MIMU). The actual sequence of gait phases was captured 
through a set of four foot switches. The experimental protocol 
consists in two walking tasks on a treadmill set at 1.0 and 1.5 
km/h. We used the Goodness (G) as parameter, computed from 
Receiver Operating Characteristic (ROC) space, to compare the 
results obtained by the new methodology with the ones obtained 
by the subject-specific training of HMM via the Baum-Welch 
Algorithm. Paired-sample t-tests have shown no significant 
statistically differences between the two procedures when the gait 
phase detection was performed with the gyroscopes placed on the 
foot. Conversely, significant differences were found in data 
gathered by means of gyroscopes placed on shank. Actually, data 
relative to both groups presented G values in the range of 
good/optimum classifier (i.e. G ≤ 0.3), with better performance for 
the two-phase classifier model. In conclusion, the novel 
methodology here proposed guarantees the possibility to omit the 
off-line subject-specific training procedure for gait phase 
detection and it can be easily implemented in the control 
algorithm of active orthoses. 

Keywords — Hidden Markov Model, training procedure, active 
orthoses, IMUs system, real-time gait detection. 

LIST OF ABBREVIATIONS 
2P: detection of 2 Phases 
4P: detection of 4 Phases 
A: Matrix of state transition 

cHMM: continuous Hidden Markov Model 

FF: 
FSR: 

Flat Foot 
Foot switches 

G: Goodness 
HC: Children with Hemiplegia 
HO: Heel Off 
HS: Heel Strike 
L1: Level walking at 1 km/h 

L1.5: 
ROC 

Level walking at 1.5 km/h 
Receiver Operating Characteristic 

SPT: Standardized Parameters Training  
SST: 
SW: 

Subject-Specific Training 
SWing 

TNR: True Negative Rate 
TPR: True Positive Rate 

wjk: Vector of mixture coefficient 
µ: Vector of mean values 
π: Vector of initial state distribution 
σ: Vector of standard deviations 
ft: 
j: 
k: 
S: 

gyroscope place on FooT 
j-th hidden state 
k-th multivariate normal distributions 
Standardized 

sh: gyroscope placed on SHank 
tr: trained 

 

I.  INTRODUCTION  
Since the incidence increase of Cerebral Palsy (CP) in 
childhood [1], several studies in robot mediated therapy have 
been proposed in the last decades to reduce the effect of 
physical disabilities. In this prospective, the design of lower 
limb active orthoses achieved a relevant development to assist 
pathological gait [2]–[4]. In particular, it is possible to classify 
the lower limb wearable exoskeletons into two minor 
categories: ankle and knee orthoses. The first one is designed to 
provide assistance at the beginning of propulsion phase, also 
addressed as flat-foot, and to support the foot during swing 
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phase to avoid the drop-foot [5], [6]; while the knee orthosis 
assists patient blocking the rotation of knee during flat-foot and 
allowing free motion during swing [7]. 

In order to ensure synchrony between the patients' intent 
and the assistance provided by the device, a real-time 
gait-phase detection is a fundamental step in the design of an 
effective control system [8], [9]. In the last years, several 
research groups have conducted studies on the sensors choice 
and/or algorithms to be implemented in the classifier, that are 
the core of the control system. Gyroscopes [9]–[11] and inertial 
measurement unit systems (IMUs) [12] are the mainly utilized 
sensors to detect gait-phases analyzing angular velocities with 
respect to other kinematic variables [10], for example linear 
acceleration. In the field of computational methodologies, 
Hidden Markov Model (HMM) have shown better performance 
[9], [11] with respect to other matching learning schemes [13].  

A crucial and critical issue, related to the classification of 
gait phases with the use of matching learning schemes, is the 
training of the chosen classifier. The training phase permits the 
optimization of the model by adapting parameters to the 
experimental data in a recursive manner [14]. However, the 
training phase implies a relevant computational load and it has 
to be repeated for each patient prior to the current use of active 
orthoses. 

In a larger research goal, we have developed the alpha-
prototype of a Wearable Ankle-Knee Exoskeleton, addressed 
as WAKE-up! [15], for children with CP. Briefly, WAKE-up! 
is a modular lower limb unilateral active orthosis composed by 
an ankle module and a knee one, which can be used in a 
standalone scenario as well as coupled. The alpha-prototype 
uses, for the identification of the gait phases, angular velocities 
of foot and/or shank measured by gyroscopes and a reference 
sequence of gait phases provided by foot switches placed on 
the sole to train the classifier [9], [11]. 

Thus, considering the design constraint of real-time gait 
phase detection, the goal of this study is to identify a set of 
standardized model parameters to be applied in the HMM, 
avoiding the time consuming subject-specific training. We 
hypothesize that, by identifying a set of standardized model 
parameters from a data set of angular velocities of age-matched 
healthy subjects [16], it is possible to skip the training phase at 
the first use of active orthoses on the patient. In this way, it will 
possible to increase the usability of active orthoses and, by 
removing the foot switches, to simplify the sensorial system 
implemented in the WAKE-up!.  

II. MATERIAL & METHODS 

A. Theoretical Approach 
We applied a decision rule based on scalar continuous 

Hidden Markov Model (cHMM) [9] for the gait-phase 
detection. In order to construct a cHMM, the number of hidden 
states, the probability distribution matrix of state transition (A) 
and the initial state vector distribution (π) have been chosen. In 
particular, we examined two types of cHMM, varying the 
number of hidden states. Firstly, we selected four phases: Flat 
Foot (FF), Heel Off (HO), Swing (SW), and Heel Strike (HS), 
as the hidden states of cHMM. Secondly, we simplified the 
state by analyzing only FF and SW. In both models, A is 

chosen as a left-right model, while π is chosen giving the same 
probability to all states, since the initial state of model is 
unknown. Both the previously mentioned choices are identical 
to the ones already examined in Taborri et al.[9]. The cHMM 
analysis consists in two procedures: training and test. The first 
one was conducted by applying Baum-Welch algorithm 
assumed as the gold standard [14], while the latter by using an 
only forward algorithm [11]. Outputs of training procedure 
were: 

• The trained probability distribution matrix of state 
transition Atr; 

• The trained vector of mean values µtr; 

• The trained vector of standard deviations σtr; 

• The trained vector of mixture coefficient wjk
tr; 

where µ and σ indicate the mean and the standard deviation of 
the signal used as input of cHMM. The mixture coefficient wjk, 
for each hidden state j and for k multivariate normal 
distributions, is the weight used to extract the estimate 
sequence of states. The outputs of test procedure were the most 
likely sequence of states.  

 For more details on the HMM theory see Refs. [9], [14]. 

B. Experimental procedure 
The experimental protocol involved twenty participants, 

divided into two groups: a control group with 10 typically 
developed children (TD, 9.5 ± 2.0 years) and an experimental 
group with 10 children with hemiplegia (HC, 7.8 ± 2.8 years). 
The inclusion criteria for TD was no known pathologies 
affecting walking pattern, while for HC was the ability to 
perform a walking trial without devices assistance. The 
protocol was approved by the Ethics and Medical Board of the 
Children's Hospital "Bambino Gesù", Rome, Italy. The 
procedure was explained to the parents’ participants, oral 
informed consent was obtained from children and written 
consent was obtained from their parents. 

Angular velocities, in the sagittal plane, of participants' foot 
and shank were acquired by means of gyroscopes embedded in 
two MIMUs (XBus Master MTx, Xsens Technologies, The 
Netherlands). Moreover, to extract a reference sequence of gait 
phases, the contact between foot and ground was recorded by 
four foot switches FSRs (Wave, Cometa, Italy); they were 
positioned on heel, toe, first and fifth metatarsophalangeal 
articulations. In particular, TD were equipped only on the right 
lower limb, while HC only on the more affected limb. 

Protocol was composed of two walking tasks on a treadmill 
with inclination 0% (level walking) for at least 60 seconds at 
two speeds, respectively 1.0 (L1) and 1.5 km/h (L1.5). The full 
set of tasks was completed by all participants. All tasks were 
repeated two times. Instrumentation phase and walking tasks 
were finished in about half an hour: TD did not express fatigue, 
while HC rested between each task. 

C. Data processing 
Unfiltered data were acquired at 200 Hz from the FSRs and 

50 Hz from the MIMUs; the gyroscope data were further 
interpolated to match the FSR acquisition rate. 



 
 

All data were analyzed off-line by using MATLAB 
software (2012b, MathWorks, USA). The first step of the data 
processing consisted in the gait partitioning by means of the 
FSRs output. In Tab. I the logic of partition, based on pressed 
foot switches, is shown respectively for the case of four phase 
model (4P) and two phases model (2P). The FSR outputs were 
used as a reference for the two scalar cHMM [9], [11]. 

TABLE I.  LOGIC OF PARTITIONING FOR FOUR PHASES AND TWO PHASE. 
X INDICATES THAT FSRS ARE PRESSED AT THE SAME TIME,* THAT AT LEAST 

ONE OF FOUR FSRS ARE PRESSED. 

 
Four Phases 

4P 
Two Phases 

2P 
 FF HO SW HS FF SW 

Heel x   x 

* 

 
Toe x x    

1st Metatarsus x x    
5th Metatarsus x x    

 
The output of gyroscopes was filtered with a low-pass 

Butterworth with 15 Hz cut-off frequency; then was partitioned 
into the gait phases by means of the foot switch data. After the 
normalization of the time length of each phase, mean and 
standard deviation of the angular velocities were calculated. 

Two approaches were used to perform the training phase. In 
the first approach, identical for TD and HC groups, the first 
trial was used to train cHMM and the second one to test it with 
an "only forward" algorithm [9], [11]. We addressed this type 
of training as Subject-Specific Training (SST). 

In the second approach, we introduce a novel methodology, 
addressed as Standardized Parameters Training (SPT), for 
which the validation method was specialized for TD and HC 
groups. Actually, as regards the TD group, a leave-one-out 
cross validation analysis was applied, using the average of the 
gyroscope outputs of the first trial of nine subjects to train 
cHMM. Then, the second trial of the remaining one was used 
for the validation. The procedure was repeated in a recursive 
manner, leaving one subject for validation in turn. Instead, as 
concerns HC group, a cross-validation was applied using the 
average of the gyroscope outputs of the first trial of all subjects 
of TD group to train cHMM. Then, the second trial of each 
subject in HC group was tested with "only forward" algorithm. 
The SPT permits the evaluation of: AS, µS, σS and wjk

S, where S 
means standardized. 

Both procedures,  SST and SPT, were replicated: (i) on foot 
gyroscope outputs and on shank gyroscope outputs; and (ii) for 
the 4P and 2P models. 

D. Data analysis 
Since we used two sensors (gyroscope placed on the foot, 

ft, and the shank, sh), two models of gait discrimination (four 
phases, 4P, and two phases, 2P), and two types of training 
(Subject-Specific Training, SST, and Standardized Parameters 
Training, SPT), a cluster of eight classifiers was obtained for 
each of the twenty subjects and for the two tasks (L1 and L1.5), 

addressed as: ft
4PSST , ft

4PSPT , ft
2PSST , ft

2PSPT , sh
4PSST ,

sh
4PSPT , sh

2PSST and sh
2PSPT .  

We choose two statistical parameters to evaluate the 
performance of the eight classifiers, in particular True Positive 
Rate (TPR) or sensitivity, and True Negative Rate (TNR) or 
specificity. Both parameters TPR and TNR were calculated by 
using FSR signals as reference and with a tolerance window of 
60 ms centered at each time step [9], [11]. In particular, the 
similar transition detected by FSRs and estimated by cHMM 
was considered as true positive, while the similar non-transition 
as true negative. By means of TPR and the complement of 
TNR, we performed a Receiver Operating Characteristic 
(ROC) curve analysis [17]. 
In order to evaluate the overall capability of a classifier to 
individuate correctly gait phases both in terms of transitions 
and in terms of non-transitions, we computed the Goodness (G) 
of the each classifier from ROC space. Similar to the approach 
of Perkins and colleagues to individuate the optimal cut-off of 
classifier [18], G was evaluated as the complement of 
Youdness parameter, see Eq.1. Thus, for each classifier, G 
represents the Euclidean distance between the evaluated point 
in the ROC space and the point [0 1], which represents the 
optimum classifier in the ROC space. 

 
2 2G (1 TPR) (1 TNR)= − + −  (1) 

 
G can assume values between 0 and √2, and a classifier can be 
considered: (i) optimum when G ≤ 0.25; (ii) good when 
0.25 < G ≤ 0.7; (iii) random if G > 0.7 [17]. Finally, for each 
classifier mean and standard deviation of G were calculated.  

G data were tested for normality with the Shapiro-Wilk test. 
Then, paired-sample t-tests were applied on G values, in order 
to find significant differences between the two types of training 
procedures SST and SPT. Statistical significance was set at 
0.05. Since the effectiveness of active orthoses, as WAKE-up!, 
depends on the simultaneous correct discrimination of 
transitions and non-transitions between gait phases, we decided 
to conduct the statistical analysis on G data, and not separately 
on TPR and TNR. The software package SPSS (IBM-SPSS 
Inc., USA) was used. 

III. RESULTS AND DISCUSSIONS 
The values of Goodness were reported in Fig.1. From an 

exam of this figure it emerges that all classifiers achieved an 
optimum G value (0.08 ≤ G ≤ 0.25), with the exception of the 
ones applied on shank angular velocity in HC group for the 
discrimination of four phases ( sh

4PSST  and sh
4PSPT ), which 

assumed a value in the range of good classifiers (G ≈ 0.3). The 
standard deviations were always ≤ 0.1 in the TD group and 
always ≤ 0.2 in HC group. The greater values of standard 
deviations in HC group indicate, as expected, an angular 
velocity waveform with a greater variability among patients 
with neuromotor disorders.  

 



 
 

 

 

Fig.1 Goodness for typically developed children TD and children with 
hemiplegia HC, in both trials (L1, L1.5), for foot and shank, for the two 

training procedures (SST and SPT) and for the two types of gait 
discrimination (4P and 2P). 

 
As concerns the qualitative comparison of the mean G 

values reported in Fig.1 for 4P and 2P, classifiers showed 
better performance when the recognition of two phases is 
required. In particular, for both body segments, G achieved in 
2P values lower of 0.08 with respect to 4P. This finding 
confirmed the expectation that the discrimination of two 
phases is easier than the discrimination of four phases. 
Actually, the similar pattern in the signal shape of sagittal 
angular velocity in HS and FF causes an increase of incorrect 
gait-phase classification and, consequently, an increase in G 
values. As reported in the Introduction section, the knee 
module of the WAKE-up! is conceived to give assistance to 
patient only at the start of FF and at the start of SW. Thus, for 
the knee module the recognition of HS and HO is redundant 
and our findings can be useful in order to implement a 
classifier for the control system of knee module with a 
consequent decrease of computational load. 

As regards the two tasks L1 and L1.5, better qualitative 
results of G (lower than 0.03) are achieved with the second 
task (L1.5) with respect to first one (L1). Evidently, the 
increase of walk velocity with an equal time length of the task 
implies an increase in the number of gait cycles gathered and 
then, more information are available to train the classifier. 
Furthermore, amplitude of angular velocity waveform 
increases with the increase of velocity, thus, the different 
patterns of the waveform between the gait phases are more 
distinguishable. 

Moreover, from a comparative exam of the application of 
cHMM, for foot and shank, in healthy adults [9] with the here 
discussed results obtained with healthy children and children 
with cerebral palsy, it emerges that ftSST  and shSST  do not 
exhibit relevant differences (in average G ≤ 0.03). We 
comment this finding reporting the results of Hausdorff et al. 
[19], in which the Authors discussed the maturation of gait 

dynamics and affirmed that children ankle reaches a complete 
maturation in terms of gait control approximately at 11 years. 
In the prospective of the control implementation of the 
WAKE-up! for pediatric use, this finding implies that the 
gyroscope on the foot is not necessary for an effective gait 
recognition. In the SPT procedure, sh

4PSPT  and sh
2PSPT  

achieved worse results in terms of Goodness (< 0.12) with 
respect to ft

4PSPT  and ft
2PSPT . Such a result indicates that the 

peak-to-peak variation observed during gait phases of foot 
angular velocity waveform provides a better set of 
standardized parameters to train the classifiers.   

Taking into account only the two procedures of training 
SST and SPT as independent variables, the results of paired-
sample t-test are shown in Tab. II. 
 

TABLE II.  P-VALUE OF PAIRED T-TEST BETWEEN TWO TYPES OF 
TRAINING PROCEDURES. STATISTICAL SIGNIFICANCE WAS SET AT 0.05.* 

INDICATES THE SIGNIFICANT DIFFERENCES FOUND. 

 Typically developed 
children TD 

Children with 
Hemiplegia HC 

 L1 L1.5 L1 L1.5 
ft
4PSST - ft

4PSPT  0.66 0.88 0.62 0.92 

ft
2PSST - ft

2PSPT  0.99 0.75 0.32 0.40 

sh
4PSST - sh

4PSPT  0.02* 0.01* 0.02* 0.81 

sh
2PSST - sh

2PSPT  0.001* 0.02* 0.0001* 0.001* 

 
As regards the classifiers trained by angular velocity of 

foot, the results of statistical analysis indicate that for both 
groups (TD and HC) and both tasks (L1 and L1.5), SST and 
SPT exhibit no significant differences in terms of Goodness. 
While, as regard classifiers trained by shank data, only for 
level walking at 1.5 km/h and for HC group in the four phases 
model, the two types of training procedures do not show 
statistical differences. However, in the remaining cases, 
although paired-sample t-tests are significant, the classifiers 
trained with standardized parameters achieved good results in 
terms of Goodness. The significant differences found could be 
related to the observed data spread. 

The previously indicated statistical findings suggest that it 
is possible to avoid the off-line subject-specific training phase 
of cHMM, when a set of standardized parameters is obtained 
from data gathered via an one-axis gyroscope placed on the 
foot.  

Moreover, although statistical differences were found, G 
values allow the possibility to omit SST also with a set of 
standardized parameters obtained via an one-axis gyroscope 
placed on the shank. Actually, the performance in this case, 
even if worse than SST one, can be considered good enough to 
correctly control active orthoses.  

IV. CONCLUSION 
In this paper we presented a study on the viability of 

omitting the preliminary training procedure of a Hidden 



 
 

Markov Model for real-time gait detection, useful to control 
lower limb active orthoses. The new procedure, addressed as 
Standardized Parameters Training, is based on the 
identification of a parameter set obtained by angular velocity 
data relative to age-matched healthy subjects. Our findings 
show that all here examined classifiers achieved a value of 
Goodness in the range of good/optimum classifiers in the ROC 
space (G ≤ 0.3). Moreover, the here proposed method can 
successfully replace the more used Subject-Specific Training 
method, when the classifiers applied on foot angular velocity. 
As regards classifiers applied on the angular velocity of shank, 
significant differences were found between two training 
procedures. However, the performance reached by classifiers 
trained with the here proposed and validated method ensure the 
possibility to correctly control an active orthosis designed for 
pediatric use. 

 In conclusion, we report the better performance achieved 
by the classification of an only two gait phases model with 
respect to four phases one. This represents a relevant result 
since it allows the control of knee module of an active orthosis 
by a classifier able to recognize only flat foot and swing 
phases.  
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