مخطط الموضوع
-
-
يُفتح: الأحد، 15 ديسمبر 2024، 9:50 PMيُغلق: السبت، 1 مارس 2025، 9:50 PM
-
Teoria statistica delle decisioni (TSdD, 9 cfu)
Laboratorio di decisioni statistiche (LDS, 3 cfu)
Docente: Fulvio De Santis
- email: fulvio.desantis@uniroma1.it
- ufficio: stanza n. 20, 4° piano Dipartimento Scienze Statistiche edificio CU002 (Città Universitaria)
- ricevimento: con appuntamento per email
Orario delle lezioni/esercitazioni/laboratorio
- TSdD - sempre Aula 14 (edificio ex Tumminelli, CU007) -
Lezioni ed esercitazioni
lunedì 10-12
martedì 12-14
mercoledì 16-18
venerdì 12-14
- LDS
mercoledì 10-12, Aula 16 (via Tiburtina 205)
IMP: frequenza obbligatoria -
Per affrontare i contenuti dell’insegnamento TSdD e del Laboratorio LDS è indispensabile possedere le nozioni di base di:
- Analisi matematica 1 (in particolare: tutti gli strumenti analitici per lo studio di una funzione reale di variabile reale; derivate e integrali per funzioni reali di variabili reali)
- Probabilità (in particolare: variabili aleatorie discrete e assolutamente continue, distribuzioni di probabilità, momenti, convergenza di successioni di variabili aleatorie)
- Inferenza statistica (in particolare: teoria della verosimiglianza e metodi inferenziali frequentisti).
IMPORTANTE: per gli studenti con laurea triennale di classe diversa dalla classe L-41 (Statistica) che non abbiano sostenuto un corso di Inferenza statistica e un corso di Probabilità di livelli equivalenti a quelli delle lauree triennali del Dipartimento di Scienze Statistiche è previsto un percorso didattico concordato con il presidente del corso di laurea (prof. Alfò) e che verrà discusso con gli studenti stessi a inizio semestre.
Si consiglia, in particolare, il corso Probabilità e Statistica (proff. Scalas e Alfò) -
TSdD
L'esame prevede una prova scritta e una orale
- prova scritta: esercizi, nelle date degli appelli
- prova orale: dopo il superamento delle prova scritta
IMP: le prove scritte superate valgono fino a settembre 2025
LDS
frequenza obbligatoria
una prova di laboratorio a fine semestre oppure a gennaio e febbraio 2025 (tre possibilità)
Non sono previste prove dopo febbraio 2025 -
Testi:
1) De Santis F. (2024). Basic Bayes (dispense a breve disponibili nel sito Moodle del corso)
2) Piccinato L. (2009). Metodi per la decisioni statistiche. Springer
3) Lesaffre E. Lawson B.L. (2012). Bayesian Biostatistics. WileyEsercizi:
Dispense sul sito Moodle -
TEORIA STATISTICA DELLE DECISIONI
Fulvio De Santis - a.a. 2024-2025
PROGRAMMA (provvisorio)1. Prerequisiti: richiami dei prerequisiti di inferenza statistica. Basi dell'inferenza statistica: modelli statistici parametrici. Statistiche e distribuzioni campionarie. Funzione di verosimiglianza. Sufficienza. Schema dei principali problemi inferenziali: ipotetici, predittivi, scelta dell'esperimento. Logiche inferenziali: Principio di verosimiglianza e Principio del campionamento ripetuto. Metodi inferenziali basati sulla funzione di verosimiglianza. Appprossimazioni di Monte Carlo per l'inferenza frequentista.
2. Inferenza statistica bayesiana. Teorema di Bayes. Distribuzioni a priori e distribuzioni a posteriori. Analisi coniugata. Analisi non informativa. Approssimazioni della distribuzione a posteriori. Stima puntuale di parametri incogniti. Stime mediante intervalli. Verifica di ipotesi. Inferenza predittiva: distribuzioni predittive a priori e a posteriori. Approssimazioni di Monte Carlo per problemi ipotetici e predittivi bayesiani. Scelta della numerosità campionaria in ottica decisionale.
3. Decisioni in condizioni di incertezza. Analisi delle decisioni: elementi dei problemi decisionali; analisi preottimale (completezza e ammissibilità); criteri di ottimalità; rappresentazione geometrica; casualizzazione; reazioni tra ottimalità e ammissibilità; decisioni bayesiane.
4. Decisioni statistiche. Quadro generale: problemi ipotetici e predittivi. Analisi in forma estensiva. Analisi in forma normale. Relazioni tra le due analisi. Analisi in forma estensiva: stima puntuale e mediante insiemi di parametri; test; fattore di Bayes; problemi predittivi. Analisi in forma estensiva per i problemi ipotetici. Stima puntuale (ammissibilità, completezza, ottimalità, non distorsione); stimatori di massima verosimiglianza. Teoria dei test (Lemma di Neyman-Pearson, test UMP, teorema di Karlin-Rubin, test asintotici di Wald); relazioni con i test bayesiani. Insiemi di confidenza (quantità pivotali e inversione dei test); probabilità di falsa copertura e insiemi uniformemente pù accurati. Scelta della numerosità campionaria in ottica decisionale. -
- Lezione 23-09-2024 (pwd: Zx.sQ^C8)
- Lezione 24-09-2024 (pwd: pAlH&8MA)
- Lezione 25-09-2024 (pwd: #Qa0c#W3)
- Lezione 30-09-2024 (pwd: 357*LiSX)
- Lezione 01-10-2024 (pwd: WJj1&+nH)IMP: tra il 1° e il 18 ottobre la rete non ha sempre funzionato e non è stato possibile registrare tutte le lezioni
- Lezione 11-10-2024 (pwd: Av?iZw2L)
- Lezione 18-10-2024 (pwd: jhj7@PgE)
- Lezione 21-10-2024 (pwd: nPk4&!wZ)
- Lezione 22-10-2024 (pwd: phVF5vS%)
- Lezione 25-10-2024 (pwd: m&@2LSy^)
- Lezione 28-10-2024 (pwd: y%3m8wfc)
- Lezione 29-10-2024 (pwd: 2ar6#2B@)
- Lezione 04-11-2024 (pwd: =%B=%S@6)
- Lezione 05-11-2024 (pwd: vT*7CgWD)
- Lezione 06-11-2024 (pwd: !S?7UqM=)
- Lezione 08-11-2024 (pwd: &#APcS$8)
- Lezione 11-11-2024 (pwd:F7#D#WP7)
- Lezione 12-11-2024 (pwd:TUw&CiT5)
- Lezione 15-11-2024 (pwd:uey3yK?i)
- Lezione 18-11-2024 (pwd:4*LrYj5^)
- Lezione 19-11-2024 (pwd:32J*$R=5)