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A B S T R A C T

A puzzling observation in the study of autism spectrum disorder (ASD) in mouse models has been the dereg-
ulation of long-term synaptic depression (LTD), a form of experience-dependent synaptic plasticity, across brain
areas and across syndromic and non-syndromic forms of autism. This review attempts to approach this phe-
nomenon from a largely, but not exclusively, cerebellar perspective. Three potential consequences of LTD de-
regulation are discussed that are relevant for ASD phenotypes: resulting impairment of proper developmental
synaptic pruning, impairment of motor coordination and motor learning, and impairment of the processing of
sensory input.

1. Introduction

Synaptopathies play an important role in brain developmental dis-
orders such as autism [1–3]. While various abnormalities in basal sy-
naptic transmission and in plasticity have been described in ASD mouse
models, deregulation of LTD is a recurring finding [4]. This is parti-
cularly evident in syndromic forms of autism. LTD deregulation has
been found in mouse models for Fragile X syndrome (Fmr1 knockout;
hippocampus: [5]; cerebellum: [6]) as well as mouse models for Tu-
berous Sclerosis (Tsc2+/−, hippocampus, [7]). Moreover, impaired
cerebellar LTD has been found in a mouse model for the human 15q11-
13 duplication (Dup15q syndrome, patDp/+ mice; [8]). LTD dereg-
ulation has also been observed for non-syndromic autism, in neuroligin-
3 knockout mice (cerebellum, [9]), although the case for non-syn-
dromic autism is weaker as cerebellar LTD was described as intact in
neuroligin 1, 2, 3 triple knockouts [10], and cerebellar LTD is intact in
Shank2 knockout mice [11,12]. In all cases listed, LTD is enhanced or
saturated, with the exception of Tsc2+/− mice [7] and patDp/+ mice
[8], where LTD is reduced/prevented. As will be discussed below, under
some circumstances LTD reduction and saturation can have similar
consequences as even the latter will affect the dynamic range of plas-
ticity, while in other conditions specific consequences can be described.

An inspection of genetic aberrations in syndromic forms of autism
reveals a remarkable convergence on signaling pathways involved in
protein translation, which are triggered by the activation of group I
metabotropic glutamate receptors (mGluRs) and the subsequent acti-
vation of mammalian target of rapamycin (mTOR) signaling (for re-
view, see [13–15]). Group I mGluRs (mGluR1 and mGluR5) initiate
local mRNA translation [16]. The molecular pathway triggered by
group I mGluRs that leads to enhanced cap-dependent translation is

regulated by several proteins affected in various forms of syndromic
autism, including TSC1/2 and FMRP (Fragile X Mental Retardation
Protein; see ‘mGluR theory of Fragile X syndrome’, [17,18]). Together
with its binding partner CYFIP1 (Cytoplasmic FMRP interacting protein
1) FMRP regulates the ability of the cap-binding translation factor
eIF4E to initiate translation. CYFIP1 is located in the proximal BP1-BP2
interval on chromosome 15q11-13, and has been shown to be upregu-
lated in postmortem tissue from Dup15q syndrome patients [19].
Overexpression of eIF4E in transgenic mice causes ASD-like beha-
vioural phenotypes as well as enhanced LTD in the hippocampus and
striatum [20]. These findings suggest that altered translation can cause
synaptic abnormalities associated with autism, including LTD dereg-
ulation. Mutations affecting TSC1/2 and FMRP signaling seem to have
opposing effects on translation of synaptic (incl. LTD-relevant) proteins,
but both cause autism and intellectual disability [7]. Similarly, it has
recently been shown that both up- and downregulation of mTOR sig-
naling impairs the learning of tutor songs in songbirds [21], which
shows resemblance to vocal communication in humans. These findings
indicate that mRNA translation, particularly that controlling local,
dendritic synthesis of synaptic proteins, needs to be properly regulated
and balanced, and that all deviations from this balance can have cata-
strophic consequences for synapse and circuit function. It is likely that
LTD-regulating proteins only provide a small subgroup of important
proteins that are affected, but LTD deregulation is consistently found in
ASD mouse models and is therefore at the core of these considerations.

2. LTD and developmental synaptic pruning

Autism is not primarily considered as a learning disorder, because
intellectual disability (with the exception of high-functioning autism)
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and behavioural abnormalities dominate the clinically relevant symp-
toms. Nevertheless, learning-related phenotypes can provide important
leads to synapse and circuit alterations that affect brain function. The
possibly most important way that learning-related synaptic abnormal-
ities show in autism is in developmental synapse pruning. As described
by Peter Huttenlocher at the University of Chicago in the early ‘90s,
early brain development is characterized by dramatic changes in sy-
naptic connectivity. In the human cortex synaptic density rises during
the first 1–2 years after birth, followed by competitive and activity-
dependent elimination of synapses that reduces the density of synaptic
connections by about 50% [22]. This prolonged pruning process is
crucial for proper development of brain circuits and cognitive func-
tions. In autism, synapse/spine pruning is impaired [23], a process that
is related to altered mTOR signaling [24]. Impaired synaptic pruning
might well play a key role in autism as it might lead to changes in the
excitation-inhibition balance and hyperexcitability (“Intense World
Syndrome”; [25]) and cognitive impairment [26]. As we have recently
pointed out, the molecular pathways involved in synaptic pruning are
largely identical to those needed for the induction of LTD [4]. At cer-
ebellar synapses both processes require the activation of an mGluR1/
Gαq/PLCβ4/PKC signaling cascade as well as the activation of CaMKII.
An overlap in molecular machinery can similarly be demonstrated at
retinogeniculate synapses [27], at the neuromuscular junction and in
the visual cortex [4]. In addition, it has been shown that LTD can be
followed by synapse elimination, demonstrating temporal continuity
and overlap [28,29]. Together, these observations suggest that LTD-like
processes are involved in synaptic pruning. Thus, LTD deregulation in
autism may primarily manifest as deficits in developmental synaptic
pruning and the optimization of connectivity in the cerebral cortex and
other areas of the brain. As synaptic plasticity is often followed by
morphological changes affecting the shape or density of spines [30],
abnormalities in spine pruning can be associated with deficits in sy-
naptic pruning. However, it needs to be pointed out that synaptic and
spine plasticity are not the same, and can occur independently from
each other [31].

3. LTD and motor coordination/learning

ASD patients show abnormalities in delay eyeblink conditioning
[32–34], a form of motor learning that requires an intact cerebellum
[35]. A partial impairment of classical conditioning has also been de-
scribed in ASD mouse models, including mouse models of Fragile X
syndrome [6], Dup15q syndrome [8] as well as mouse models for Tu-
berous Sclerosis and Rett Syndrome [36], although the specific nature
of the impairment may vary. When tested in the same studies, LTD at
cerebellar parallel fiber (PF) to Purkinje cell synapses was described as
abnormal [6,8]. LTD is seen as one of several plasticity mechanisms
involved in this form of motor learning [37–39]. It is thus plausible to
explain the impairment of delay eyeblink conditioning by LTD dereg-
ulation. A causal relationship is particularly supported by the finding in
patDp/+ mice that re-acquisition of conditioned responses (CRs) is
normal after successful CR extinction, and that LTD induction is normal
after prior induction of long-term potentiation (LTP) [8]. This finding is
in line with the interpretation that bidirectional synaptic plasticity at PF
synapses – controlled by CF-evoked calcium transients in dendritic
spines [40] – provides an important cellular correlate of some aspects of
CR acquisition and extinction [41, see also 42]. It has to be noted,
however, that delay eyeblink conditioning can be affected without an
obvious deregulation of LTD (in Shank2 knock-out mice; [12]). In this
study, LTD was intact, but LTP and Purkinje cell intrinsic plasticity [43]
were impaired. These results suggest that general disturbances of bi-
directional plasticity may affect motor learning, as well as impairment
of the ability to intrinsically modulate excitability in the dendrites [44]
and/or neuronal spike output patterns, such as spike pauses [45, see
also 46, 47].

About 80 percent of children with autism show motor impairment,

including general clumsiness and problems with eye movement control
[48–51]. In contrast to some of these motor problems impairment of
eyeblink conditioning is a deficit that only shows when experimentally
tested, and thus does not represent a daily life burden. The value of this
motor learning test lies elsewhere: first, eyeblink conditioning may
serve as an early biomarker for autism, allowing for quantitative ana-
lyses at ages where this is difficult to achieve based solely on social
communication skills [34]. Second, eyeblink conditioning is conserved
throughout mammalian evolution [52], thus allowing for direct com-
parisons between ASD-related behavioural symptoms/phenotypes in
human patients and experimental animals.

4. LTD and processing of sensory information

Delay eyeblink conditioning is a prototype of learning of the asso-
ciation between two sensory stimuli, such as a light or auditory signal
on the one hand and typically a periocular airpuff on the other. It seems
plausible that such associative learning does not only occur in the
context of protective motor behaviors, but can be used to form spatial
and temporal associations between any two kinds of sensory input. In
case of cerebellar forms of associative learning, the enormously large
number of granule cell inputs (granule cells provide 50–80% of all
neurons in the brain) and of PF – Purkinje cell synapses (up to 250,000
PF synaptic inputs target each Purkinje cell) provides a neural network
that is well-suited for the storage of large numbers of associative
‘memories’. In this scenario, the cerebellum indeed becomes a brain
area for sensory processing, and functions in motor control become one
of several consequences of cerebellar computation, solely depending on
the anatomical organization of cerebellar output structures [53]. Sev-
eral lines of evidence support the view that cerebellar associative
learning – and thus underlying plasticity mechanisms including LTD –
plays a role in associative learning beyond motor control. First, Purkinje
cells respond to a wide range of sensory modalities. Next to the visual
and auditory stimuli used in eyeblink conditioning, they respond to
tactile body and whisker stimulation [54,55] and, in electric fish,
Purkinje-like cells in the electrosensory lobe (ELL) respond to electric
signals [56]. Thus, the cerebellar cortex receives and processes sensory
information from multiple modalities, which can be related in a con-
text-dependent manner in associative learning. Second, the known
functions of the cerebellum and cerebellum-like structures in the
weakening of predicted sensory input (involving LTD as an underlying
mechanism; [57–60]) as well as in the perception of time intervals
[61,62] provide examples of primarily non-motor, learning-related
computations in the cerebellar cortex. It is likely that cerebellar dys-
function contributes to specific ASD symptoms/phenotypes by affecting
cortical maturation during development (‘developmental diaschisis’;
[63]), but also because such cerebellar computations play some role in
cognitive functions throughout lifetime. Whether cerebellar deficits in
autism affect mental functions [64–66], non-motor language control
[67] and/or social behaviors [68, see also 69] remains to be de-
termined.

5. Conclusion

LTD deregulation in autism is a phenomenon, whose relevance for
ASD phenotypes is not immediately obvious. It is well established that
LTD is crucial for synaptic weight regulation and ‘synaptic memories’
[70], which is a process that – similar to synaptic connectivity changes
during development – is essential for ‘wiring plasticity’ (it now seems
that activity-dependent changes in intrinsic excitability provide the
mechanism for the integration of neurons into memory engrams; [71]).
In this review, I argue that it is the role of LTD in wiring plasticity that
explains its relevance in autism. LTD deregulation prevents proper as-
sociative learning, which is most evident in the impairment of motor
learning in autistic patients and ASD mouse models, and might similarly
prevent proper processing of sensory inputs. However, the most
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devastating effect of abnormal LTD pathways is the consequence for
developmental synaptic pruning, a process that relies on a largely
identical molecular machinery as LTD, and will therefore be co-im-
paired with LTD in the cerebellum, the cerebral cortex and likely in
additional brain areas [4].
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