Meccanica dei Fluidi

stati della materia:

- × solido [volume e forma definiti]
- × liquido [volume definito, forma no]
- × gassoso [né volume, né forma definiti]

N.B. sono definizioni artificiose:

lo stato di una sostanza può cambiare con temperatura e pressione

tempo necessario ad una sostanza a variare la sua forma in risposta a forza esterna determina lo stato della sostanza [solido, liquido, gassoso]

[es. la **pece** è un **fluido**: impiega molto tempo ad assumere la forma del contenitore, ma lo fa]

fluido: insieme di molecole

- × sistemate casualmente
- legate da deboli forze di coesione e forze esercitate da pareti del contenitore

liquidi e gas sono fluidi

Densità

[massa volumica]

massa per unità di volume

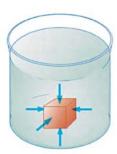
$$\rho = \frac{m}{V}$$

$$\rho = \frac{m}{V}$$
 unità di misura:

$$[\rho] = M/L^3 \Rightarrow kg/m^3$$

Sostanza od oggetto	Massa volumica (kg/m ³)
Spazio interstellare	10 ⁻²⁰
Massimo «vuoto» raggiungibile in laboratorio	10^{-17}
Aria: a 20 °C e 1 bar	1.21
a 20 °C e 50 bar	60.5
Polistirolo espanso	$3 \cdot 10^{1}$
Acqua: a 20 °C e 1 bar	$0.998 \cdot 10^3$
a 20 °C e 50 bar	$1.000 \cdot 10^3$
Acqua del mare: a 20 °C e 1 bar	$1.024 \cdot 10^3$
Sangue	$1.060 \cdot 10^3$
Ghiaccio	0.917 · 10³ ≈40 ordini
Ferro	$7.9 \cdot 10^3$ di grandezza
Mercurio	$13.6 \cdot 10^3$
Terra: valor medio	$5.5 \cdot 10^3$
nucleo	$9.5 \cdot 10^3$
crosta	$2.8 \cdot 10^3$
Sole: valor medio	$1.4 \cdot 10^3$
nucleo	$1.6 \cdot 10^5$
Stella nana bianca (nucleo centrale)	10 10
Nucleo dell'uranio	$3 \cdot 10^{17}$
Stella di neutroni (nucleo centrale)	10 18
Buco nero (1 massa solare)	10 ¹⁹

in condizioni standard (0° C)

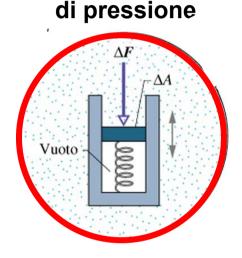

$$\rho_{gas} \approx \frac{1}{1000} \rho_{solido, liquido}$$
 \Rightarrow spazio molecolare di un gas

10 volte spazio molecolare

di un liquido o solido

Pressione

- × i fluidi non reagiscono a forze di taglio
- forza esercitata da un fluido: sempre perpendicolare a superficie oggetto


$$p = \frac{\Delta F}{\Delta A}$$

forza per unità di area

$$p = \frac{F}{A}$$

pressione su
area piana
dovuta a
forza uniforme

$$p = \lim_{\delta A \to 0} \frac{F}{\delta A} = \frac{dF}{dA}$$

pressione su

specifico punto $[\delta A = \text{area contenente il punto}]$

unità di misura:

$$[p]=[F]/[A] \Rightarrow N/m^2$$

$$1 \text{ N/m}^2 = 1 \text{ Pascal (Pa)}$$

$$1 \text{ atm} = 1.013 \ 10^5 \text{ Pa} = 760 \text{ torr}$$

[pressione atmosferica al livello del mare]

[pressione esercitata da 1 mm Hg]

Ordini di grandezza

pressione		
Centro del Sole	2 10 ¹⁶ Pa	
Centro della Terra	4 10 ¹¹ Pa	
Massima pressione in laboratorio	1.5 10 ¹⁰ Pa	
Fossa oceanica (sul fondo)	1.1 10 ⁸ Pa	
Tacchi a spillo	1 10 ⁶ Pa	
Pneumatici auto	2 10 ⁵ Pa	
Pressione atmosferica a livello del mare	1 10⁵ Pa	
Pressione sanguigna (in eccesso a quella atmostefrica)	1.6 10 ⁴ Pa	
Massimo vuoto in laboratorio	10 ⁻¹² Pa	

applicazioni

$$p = \frac{F}{A}$$

ago ipodermico

area punta ago è piccolissima

⇒ F piccola produce p elevata [ago penetra nella pelle]

racchette da sci

evitano che la persona **affondi** nella neve
distribuiscono peso su superficie grande

⇒ A grande produce p piccola

fachiro

distribuisce il peso su centinaia di chiodi

⇒ A = area totale dei chiodi

esercitando una piccola pressione questo uccello riesce a camminare sull'acqua:

peso del corpo ridistribuito su grande area attraverso lunghe dita!!!

pressione atmosferica

$$1 \text{ atm} = 1.01 \times 10^5 \text{ N/m}^2 = 10^5 \text{ Pascal (Pa)}$$

= 1.01 × 10⁴ (1 kg × 9.8 m/s²)/ m² Pa
= 1 kg_P/cm²

l'aria attorno a noi esercita una forza di 1 kg_p su ogni cm² del nostro corpo

NON ce ne accorgiamo:

- tale forza è uguale in tutte le direzioni
- è contrastata da uguale pressione all'interno del nostro corpo

se pompo aria fuori da recipiente sigillato pressione atmosferica produce forza non bilanciata verso l'interno:

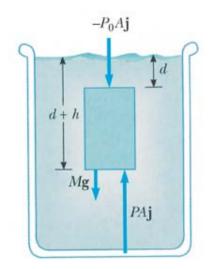
→ collasso del recipiente

stecca pneumatica:

si esercita pressione maggiore di quella atmosferica (cioè di quella interna al corpo) mediante manicotto di plastica

→ <u>si fermano emorragie</u> o si immobilizzano arti

Pressione e Profondità


[legge di Stevino]

pressione:

- × aumenta con la profondità (come nel mare, lago, piscina)
- × diminuisce con l'altitudine (come in montagna)

[esempio: gli aerei devono essere pressurizzati]

$$M_{liquido} = \rho V_{liquido} = \rho Ah$$
 equilibrio
$$\sum F_y = 0 \Longrightarrow pA - p_0 A - Mg = 0$$

$$p = p_0 + \rho gh$$

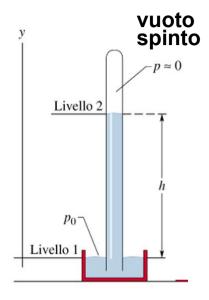
pressione **assoluta** a profondità *h* [per un liquido aperto a pressione atmosferica, d=0] è **maggiore** di pressione atmosferica di *pgh*

stessa pressione per tutti i punti a stessa profondità [indipendentemente da forma contenitore]

$$p = p_0 - \rho_{aria} g d$$

pressione ad altitudine d

Misure di Pressione


barometro a mercurio

[Torricelli 1608-1647]

tubo pieno di mercurio rovesciato in recipiente con mercurio

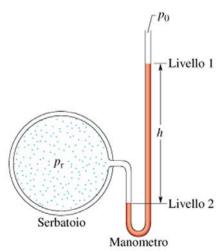
$$p_0 = \rho_{Hg} g h$$

⇒ trasformo altezza h in valore di pressione

N.B. 1 atm equivale a colonnina Hg di 0.76 m a 0^{0} C

$$p_0 = \rho_{Hg}gh = (13.595 \times 10^3 \, kg \, / \, m^3)(9.8m \, / \, s^2)(0.76m)$$
$$= 1.0013 \times 10^5 \, N \, / \, m^2 \, (Pa)$$

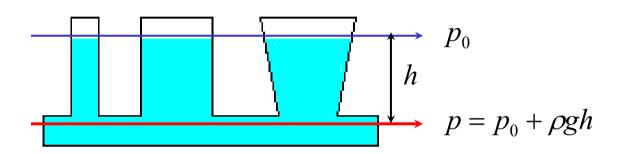
manometro a tubo aperto

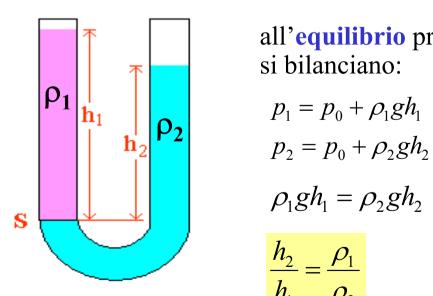

tubo aperto pieno di liquido collegato con sistema a pressione incognita *p*

$$p = p_0 + \rho g h$$

pressione assoluta

$$p_r = p - p_0 = \rho g h$$


pressione relativa


Applicazione legge di Stevino

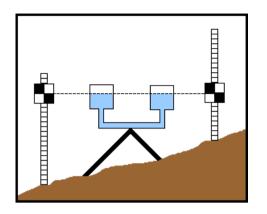
vasi comunicanti

in un sistema di vasi comunicanti il fluido contenuto raggiunge la stessa quota indipendentemente dalla forma dei recipienti

liquidi non miscelabili

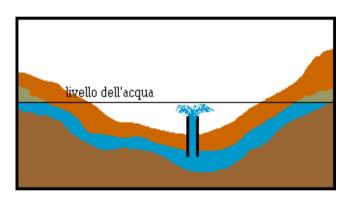
all'equilibrio pressioni in S si bilanciano:

$$p_{1} = p_{0} + \rho_{1}gh_{1}$$


$$p_{2} = p_{0} + \rho_{2}gh$$

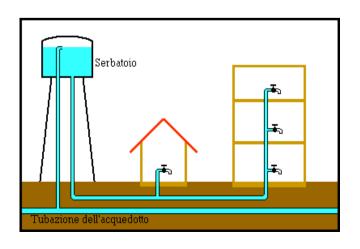
$$\rho_{1}gh_{1} = \rho_{2}gh_{2}$$

$$h_{2} = \rho_{1}$$


[N.B. per $\rho_1 = \rho_2 \implies h_1 = h_2$ principio dei vasi comunicanti]

livella ad acqua

i due vasi di vetro, contenenti acqua, collegati tramite un tubo, sfruttano la proprietà dei vasi comunicanti per evidenziare i dislivelli del terreno


pozzo artesiano

per il principio dei vasi comunicanti

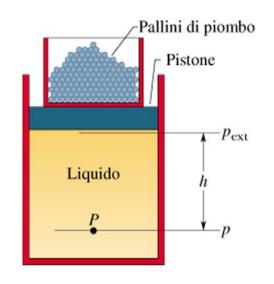
l'acqua tende a risalire nel pozzo fino al livello dell'acqua nel terreno

acquedotto

sistema di distribuzione dell' acqua potabile:

il fluido è sollevato all'altezza necessaria nelle varie abitazioni perché esso tende a portarsi alla quota del serbatoio

Principio di Pascal

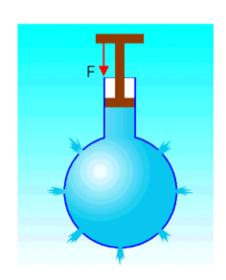

ogni variazione di pressione in liquido chiuso si trasmette

- × a tutti i punti del liquido
- × alle pareti del contenitore
- × liquido incomprimibile [ρ = costante]

$$p = p_{ext} + \rho g h$$

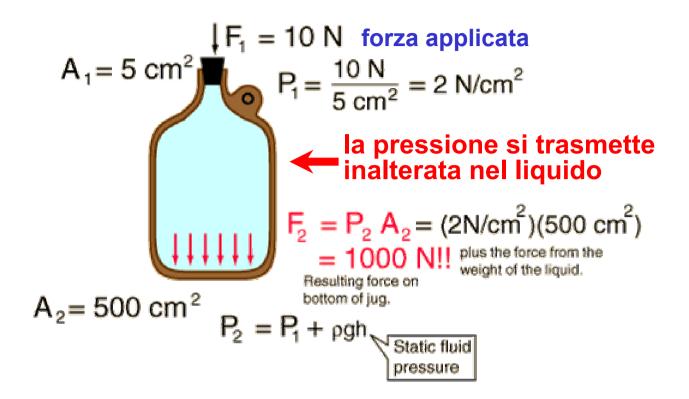
× aggiungo pallini di piombo[⇒ aumento pressione esterna]

$$\Delta p = \Delta p_{ext}$$



cambiamento di pressione **indipendente** da h

⇒ vale in **tutti i punti** del liquido


verifica:

forza applicata sul pistone si trasmette in **ogni punto** del fluido e in **tutte** le **direzioni**

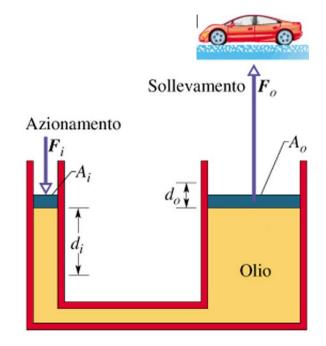
conseguenze:

moltiplico intensità di F applicata

Leva idraulica: cambiando area nel fluido moltiplico le forze !!!

esempio:

colpendo il **tappo** bottiglia piena di liquido rompo **fondo** della bottiglia


http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html

Applicazione principio di Pascal [leva idraulica]

liquido incomprimibile [ρ = costante]

$$p = \frac{F_i}{A_i} = \frac{F_0}{A_0}$$

$$F_0 = F_i \, \frac{A_0}{A_i}$$

$$F_0 > F_i$$
 per $A_0 > A_i$

se **muovo** pistone sinistro di tratto **d**_i

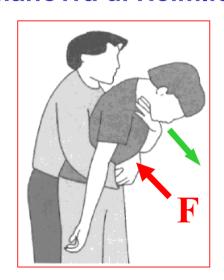
⇒ pistone destro si muove di tratto **d**₀

[conservazione del volume spostato]

$$V = A_i d_i = A_0 d_0$$
$$d_0 = \frac{A_i}{A_0} d_i$$

$$d_0 < d_i \quad per \quad A_0 > A_i$$

$$L = F_0 d_0 = \left(F_i \frac{A_0}{A_i} \right) \left(d_i \frac{A_0}{A_i} \right) = F_i d_i$$

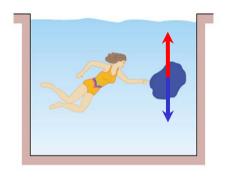

una data forza su una certa distanza si trasforma in **forza maggiore** su **distanza minore**

Applicazioni principio di Pascal

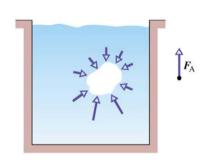
in medicina:

pressione sull'addome si trasmette alla gola permettendo fuoriuscita di corpi estranei dalla trachea

manovra di Heimlich

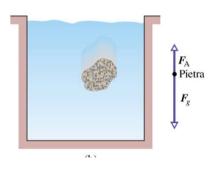


dentifricio esce dal tappo schiacciando fondo del tubetto


esercizi pressione e profondità

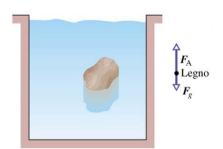
Principio di Archimede

sottile palloncino di plastica pieno d'acqua in equilibrio statico nella piscina


$$\mathbf{F_g} = \mathbf{m_f} \mathbf{g} = \mathbf{F_A}$$
 spinta di galleggiamento [spinta di Archimede]

× la pressione aumenta con la profondità pressione > pressione cima palloncino fondo

rimuovo palloncino d'acqua $\sum F = F_A$


$$\sum F = F_A$$

× riempio spazio con pietra:

F_A è uguale [non ho cambiato F_A Prietra F_g F_g F_g è maggiore forma spazio]

pietra affonda

× riempio spazio con legno:

F_A è uguale [non ho cambiato $\oint_{F_g}^{F_A} F_g \quad \text{è minore}$ forma spazio]

legno risale in superficie

Principio di Archimede

un corpo **immerso** in un fluido [interamente o parzialmente] è soggetto ad una **spinta di galleggiamento** verso l'alto, pari al peso di fluido spostato

$$F_A = m_f g$$

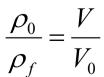
oggetto completamente immerso

$$F_A = m_f g = \rho_f V_0 g$$
$$F_g = Mg = \rho_0 V_0 g$$

risultante forze

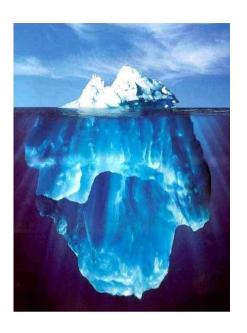
$$F_A - F_g = (\rho_f - \rho_0) V_0 g$$

$$= 0 \qquad \rho_f = \rho_0 \qquad \text{corpo in equilibrio}$$


$$> 0 \qquad \rho_f > \rho_0 \qquad \text{corpo accelera verso alto [legno]}$$

$$< 0 \qquad \rho_f < \rho_0 \qquad \text{corpo affonda [pietra]}$$

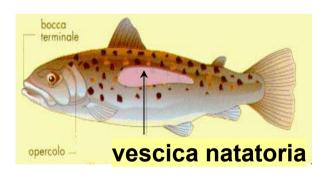
oggetto galleggiante [parzialmente immerso]


V₀= volume corpo, V=volume liquido spostato

$$F_A = m_f g = \rho_f V g \bigcirc F_g = Mg = \rho_0 V_0 g$$

per un corpo **galleggiante**modulo forza gravitazionale =
peso fluido spostato

Applicazioni principio di Archimede


iceberg galleggia:

$$\rho_{ghiaccio} = \rho_0 = 900 \, kg \, / \, m^3$$

$$\rho_{acqua-mare} = \rho_f = 1025 \, kg \, / \, m^3$$

$$\frac{\rho_0}{\rho_f} = \frac{V}{V_0} \approx 9/10$$

solo 1/10 emerge dall'acqua!!!

vescica natatoria

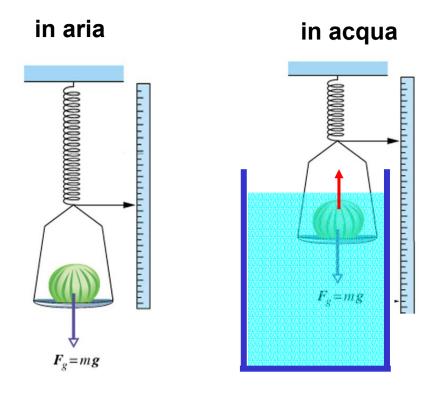
organo a forma di **sacco** riempiendosi/svuotandosi d'**aria** consente al pesce di salire/scendere a minore o maggiore profondità

sommergibile
[camere stagne funzionano
tipo vescica natatoria]

mongolfiera
[aria calda meno densa di aria fredda genera forza verso l'alto]

galleggiamento di oggetti più densi dell'acqua

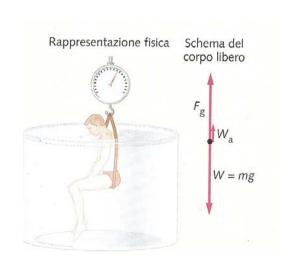
un corpo galleggia se sposta una quantità di fluido pari al suo peso


forgiando un metallo a forma di scodella si sposta quantità di acqua maggiore del volume del metallo

→ il metallo galleggia

linea di Plimsoll: indica la <u>linea di galleggiamento</u> della nave caricata al massimo consentito !!!

Peso apparente in un fluido


il peso in acqua è minore a causa della spinta di galleggiamento

$$P_{app} = P - F_A$$
 peso apparente

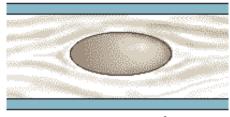
in fisilogia:

pesata idrostatica

metodo per eccellenza usato per determinare percentuale nel corpo umano di massa grassa ($\rho_{grasso}^{T} = 0.901 \text{ kg/l}$) e massa magra ($\rho_{magra}^{T} = 1.1 \text{ kg/l}$)

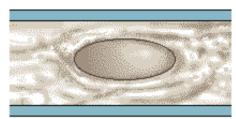
esercizi spinta idrostatica

Fluidi in Movimento


caratteristiche del flusso

× flusso stazionario:

cammini seguiti da ogni particella scorrevoli, non si intersecano velocità di ogni punto del fluido NON varia nel tempo [es. acqua in un ruscello tranquillo]


× flusso turbolento:

flusso irregolare con regioni simili a vortici [es. acqua in prossimità di rocce e strettoie, formazione di rapide]

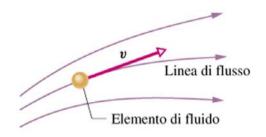
Bassa velocità

Alta velocità con turbolenza

× viscosità:

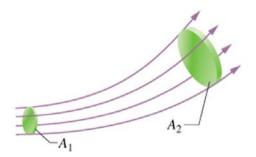
grado di **attrito interno** del fluido resistenza fra strati adiacenti di liquido in moto relativo

⇒ conversione energia cinetica in energia termica


evidenzio flusso di un fluido usando **tracciante** [colorante o particelle di fumo] fluido reale: complicato e non del tutto conosciuto

fluido ideale: descrivo le proprietà in ciascun punto in funzione del tempo

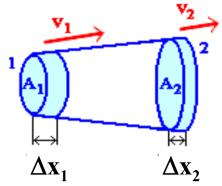
proprietà fluido ideale


- × non viscoso [trascuro attriti interni; oggetto in moto nel fluido non risente di attriti]
- × incompressibile [densità costante nel tempo]
- × flusso stazionario [velocità di ogni punto costante nel tempo]
- × flusso irrotazionale [non ci sono vortici, turbolenze]

Rappresentazione grafica

linee di corrente:

- × tangenti alla velocità
- non si intersecano mai [il fluido non sarebbe stazionario]



tubo di flusso:

x insieme di linee di corrente [particelle confinate all'interno]

Equazione di Continuità

tubo di sezione variabile

nell' intervallo di tempo Δt

$$\Delta x_1 = v_1 \Delta t$$
 $\Rightarrow \Delta m_1 = \rho_1 A_1 \Delta x_1 = \rho_1 A_1 v_1 \Delta t$

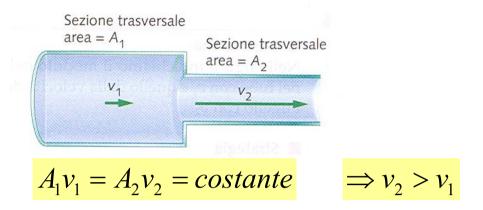
$$\Delta x_2 = v_2 \Delta t$$
 $\Rightarrow \Delta m_2 = \rho_2 A_2 \Delta x_2 = \rho_2 A_2 v_2 \Delta t$

la massa si conserva [fluido stazionario]

$$\Delta m_1 = \Delta m_2$$

$$\rho_1 A_1 v_1 \Delta t = \rho_2 A_2 v_2 \Delta t$$

ρè costante [fluido stazionario, incompressibile]


$$A_1 v_1 = A_2 v_2 = costante$$

 $A_1v_1 = A_2v_2 = costante$ equazione di continuità

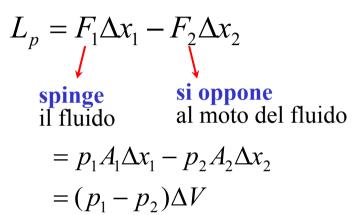
N.B. A v = [Volume]/[tempo] = portata

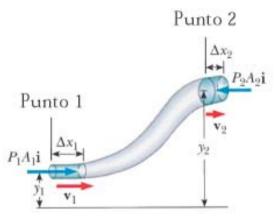
quantità di fluido che entra da una estremità del tubo è uguale alla quantità di fluido che esce nello stesso intervallo di tempo [in assenza di perdite]

applicazioni equazione di continuità

se un fluido scorre da un condotto **largo** ad uno **stretto:** il modulo della **velocità** nel tubo stretto è maggiore che nel tubo largo

esempio: canna dell'acqua


stringendo l'apertura del tubo con le dita aumenta la velocità del flusso



Feorema di Bernoulli

pressione varia in fluido in movimento in tubo di sezione variabile

× <u>lavoro forze di pressione</u>

$$\Delta V = A_1 \Delta x_1 = A_2 \Delta x_2 = \frac{\Delta m}{\rho}$$
 la massa si conserva
$$\rho \text{ è costante}$$

× lavoro forza peso

$$L_g = -\Delta mg(y_2 - y_1) = -\rho \Delta Vg(y_2 - y_1)$$

$$L = L_p + L_g = \Delta K$$

 $L = L_p + L_g = \Delta K$ <u>teorema dell'energia</u>: lavoro **netto** è pari a variazione energia cinetica

$$(p_1 - p_2)\Delta V - \rho \Delta V g(y_2 - y_1) = \frac{1}{2} \Delta m v_2^2 - \frac{1}{2} \Delta m v_1^2$$
$$p_1 + \frac{1}{2} \rho v_1^2 + \rho g y_1 = p_2 + \frac{1}{2} \rho v_2^2 + \rho g y_2$$

$$p + \frac{1}{2}\rho v^2 + \rho gy = costante$$

conservazione energia meccanica per un fluido ideale

teorema di Bernoulli

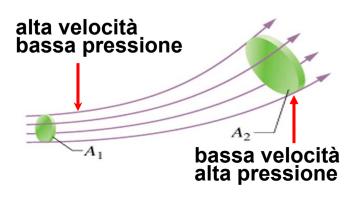
in una linea di corrente è costante la somma di **pressione** (p)

energia cinetica per unità di volume $(1/2\rho v^2)$ energia potenziale gravitazionale per unità di voulme (ρgh)

$$p + \frac{1}{2}\rho v^2 + \rho gy = costante$$

N.B. equazione di Bernoulli non è un risultato nuovo:

× fluido a riposo


$$v_1 = v_2 = 0$$

 $p_1 = p_2 + \rho g(y_1 - y_2)$

× fluido in moto ad altezza costante

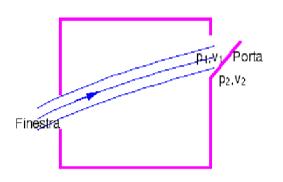
$$y_1 = y_2 = 0$$

 $p_1 + \frac{1}{2}\rho v_1^2 = p_2 + \frac{1}{2}\rho v_2^2$

lungo una linea di flusso orizzontale se aumenta la velocità diminuisce la pressione

⇒ linee di flusso vicine: alta velocità bassa pressione

Applicazioni teorema di Bernoulli


porte che sbattono

per fluido che scorre a quota fissa

$$p_1 - p_2 = \frac{1}{2} \rho v_2^2 - \frac{1}{2} \rho v_1^2$$

p minore per v maggiore

 $v_1 > v_2$ quindi $p_1 < p_2 \implies$ la porta sbatte

flusso da un rubinetto

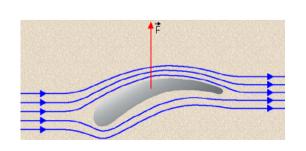
flusso d'acqua si restringe mentre cade

$$p_1 + \frac{1}{2}\rho v_1^2 + \rho g y_1 = p_2 + \frac{1}{2}\rho v_2^2 + \rho g y_2$$

per $p_1 = p_2 = pressione atmosferica$

$$\rho g(y_2 - y_1) = \frac{1}{2} \rho(v_1^2 - v_2^2)$$

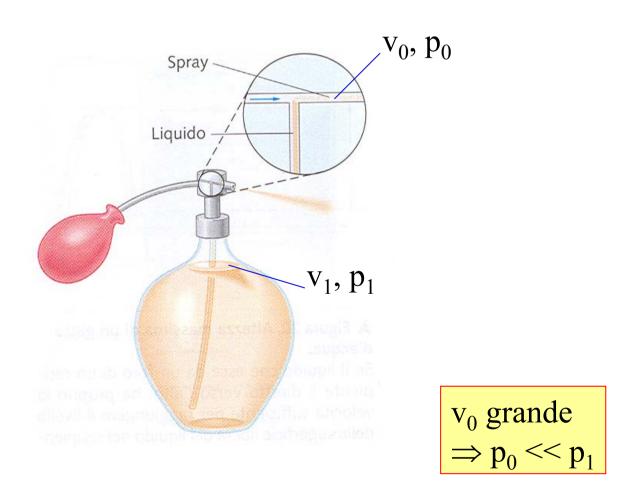
$$gh = \frac{1}{2} (v_1^2 - v_2^2) > 0 \qquad \Rightarrow v_1 > v_2 \quad \text{e A}_2 > A_1$$
[da eq. continuità $(A_2 v_2 = A_1 v_1)$]


ala aereoplano

velocità corrente maggiore sopra ala

⇒ pressione minore sopra ala

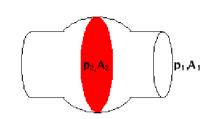
pressione maggiore sotto ala


si genera forza (spinta) verso l'alto

nebulizzatore

immetto **aria ad alta velocità** alla **sommità** di un tubo verticale di un nebulizzatore si produce un **calo di pressione** rispetto alla **pressione** alla **superficie** del liquido nella bottiglia

⇒ liquido spinto in alto causa ridotta pressione alla sommità


Applicazioni teorema di Bernoulli in medicina

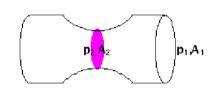
aneurisma

[rigonfiamento arteria/vena]

$$p_2 - p_1 = \frac{1}{2} \rho v_1^2 - \frac{1}{2} \rho v_2^2$$
 Bernoulli (a parità di quota)

$$A_1 v_1 = A_2 v_2$$
 eq. continuità

$$p_{2} - p_{1} = \frac{1}{2} \rho v_{1}^{2} (1 - \frac{A_{1}^{2}}{A_{2}^{2}})$$


$$\approx \frac{1}{2} \rho v_{1}^{2} > 0 \qquad per \quad A_{2} >> A_{1}$$

 \Rightarrow $p_2 > p_1$ sovrapressione in corrispondenza del rigonfiamento [può causare rottura del vaso, emoraggia, ...]

stenosi

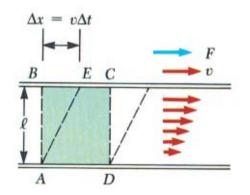
[restringimento arteria/vena]

$$p_2 - p_1 = \frac{1}{2} \rho v_2^2 (1 - \frac{A_1^2}{A_2^2}) < 0$$
 per $A_2 < A_1$

 \Rightarrow $p_2 < p_1$ sottopressione in corrispondenza del restringimento [può causare, unita al restringimento,

occlusione del vaso]

esercizi Bernoulli


Viscosità [attrito interno del fluido]

viscosità nasce da forza di attrito fra strati adiacenti di fluido

esempio: catrame è più viscoso di olio.

è più faticoso fare scivolare una superficie di vetro su strato catrame che su olio.

metodo per definire viscosità

fluido racchiuso fra due lamine

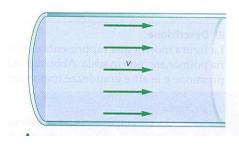
- superiore in moto
- inferiore ferma
- ⇒ fluido a contatto con superfici è legato da forza adesiva molecole liquido-lamina

si ottiene variazione velocità strati successivi: da 0 a v, quando ci si sposta da superficie ferma a superficie in moto

fluido subisce una deformazione dovuta allo scorrimento

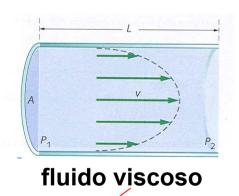
$$F = \eta \frac{Av}{l}$$
 \Rightarrow F aumenta all'aumentare di η

coefficiente di viscosità


$$\eta = \frac{carico \, di \, scorrimento}{velocit\`{a} \, di \, deform. relativa} = \frac{F \, / \, A}{v \, / \, l} = \frac{Fl}{Av}$$

dimensioni: $[\eta]=[FL]/[L^2v]=[F][T]/[L^2] \Rightarrow Ns/m^2=Pas$

Viscosità di alcuni fluidi				
	T (°C)	η (Ns/m²)		
aria	20	1.82 10 ⁻⁵		
acqua	20	1.0 10 ⁻³		
acqua	100	0.3 10 ⁻³		
sangue	37	2.7 10 ⁻³		
glicerina	20	830 10 ⁻³		
olio per motore	30	250 10 ⁻³		


Moto di fluido viscoso in un tubo

la **forza** necessaria per mantenere un **fluido in movimento** è causata dalla differenza di pressione in una data lunghezza L

fluido ideale

scorre n un tubo con velocità uguale in ogni punto

modulo della velocità

- va a 0 alle pareti
- valore massimo al centro

legge di Poiseuille
$$p_1 - p_2 = 8\pi \eta \frac{vL}{A}$$

esempio: velocità del sangue nell'arteria polmonare [arteria di collegamento cuore polmoni]

$$L = 8.5 \, cm$$


$$p_1 - p_2 = 450 \, Pa$$

$$r = 2.4 \, mm$$

$$v = \frac{(P_1 - P_2)A}{8\pi\eta L}$$

$$v = \frac{(P_1 - P_2)r^2}{8\eta L}$$

$$v = \frac{(450 \text{ Pa})(0,0024 \text{ m})^2}{8(0,0027 \text{ N} \cdot \text{s/m}^2)(0,085 \text{ m})} = 1.4 \text{ m/s}$$

$$p_1 - p_2 = 8\pi\eta \frac{vL}{A}$$

nel **SANGUE**:

- viscosità aumenta con ematocrito (concentrazione globuli rossi nel sangue)
- sangue denso (con ematocrito alto) richiede maggiore differenza di pressione
 - ⇒ maggior affaticamento del cuore

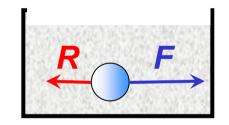
in presenza di artereosclerosi/colesterolo:

- sezione dei vasi diminuisce
- aumento di pressione per mantenere stesso flusso sanguigno
 - ⇒ maggior affaticamento del cuore

Forza ritardante in un fluido

la **forza ritardante** (frenante) che agisce su un corpo che cade in un fluido dipende dalla **velocità** e dalla **viscosità**

$$\vec{R} = -b\vec{v} = -\gamma\eta\vec{v}$$
 $\eta = \text{coefficiente viscosità}$
 $\gamma = \text{coefficiente forma corpo}$


per corpi **sferici** di raggio **r**, si ha $\gamma = 6\pi r$

$$\vec{R} = -b\vec{v} = -6\pi r \eta \vec{v}$$
 legge di Stokes

equazione di moto in un fluido sotto azione di forza **F**

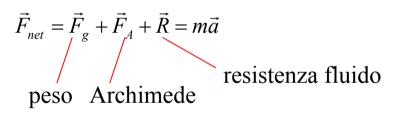
$$\vec{F}_{net} = \vec{F} + \vec{R} = m\vec{a} = md\vec{v} / dt$$

$$F - bv = mdv / dt$$

per a=0 si ottiene la <u>velocità limite</u>:

$$v = v_L = \frac{F}{b}$$
 $\Rightarrow F_{net} = 0$ moto rett. uniforme
 $v < v_L$ $\Rightarrow F_{net} > 0$ moto accelerato
 $v > v_L$ $\Rightarrow F_{net} < 0$ moto ritardato

Applicazione legge di Stokes [in medicina]


calcolo della VES

[velocità di caduta dei globuli rossi in vitro]

la <u>parte globulare</u> del sangue ha peso specifico superiore a quello del plasma, per cui avviene sedimentazione

<u>alta velocità</u> di caduta dei globuli rossi: infezione, tumore, allergia, ... <u>bassa velocità</u> di caduta dei globuli rossi: cardiopatia, shock anafilattico ...

Bilancio delle forze:

la velocità limite si ottiene quando le forze di bilanciano

$$-m_{globulo}g + m_{plasma}g + bv = 0$$

$$v = \frac{(m_{globulo} - m_{plasma})g}{b}$$

$$= \frac{(\rho_{globuli} - \rho_{plasma})}{6\pi\eta r} \frac{4}{3}\pi r^{3}g$$

$$= \frac{2}{9}r^{2}g(\rho_{globuli} - \rho_{plasma}) \frac{1}{\eta} \approx 3 \times 10^{-4} cm/s$$

$$\rho_{globuli} = 1.10g / cm^{3}$$

$$\rho_{plasma} = 1.03g / cm^{3}$$

$$r_{globulo} = 10^{-3} cm$$

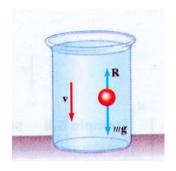
$$\eta_{plasma} = 0.04 poise$$

N.B. la velocità di sedimentazione per <u>effetto della gravità</u> è <u>molto piccola</u> \Rightarrow richiede tempi lunghissimi. comunemente si usano altre tecniche, tipo centrifugazione

Forze ritardanti [dipendenti dalla velocità]

studio interazione tra corpo e mezzo nel quale si muove:

il mezzo (liquido o gas) esercita una forza ritardante R sul corpo che si muove attraverso di esso

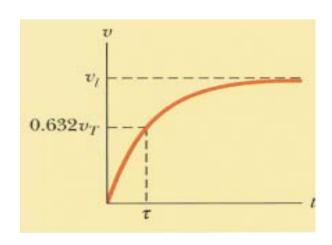

modulo di R: funzione complessa di velocità **v**

X direzione e verso: opposti al moto

Caso 1. $R \propto v$ Caso 2. $R \propto v^2$

Caso 1. Forza ritardante proporzionale a v

[esempio: oggetti che cadono in fluidi con bassa velocità; oggetti piccoli in aria (polvere)]



$$\vec{R} = -b\,\vec{v}$$

b = coeff. dipendente da proprietà oggetto [forma, dimensioni]

$$\Sigma F_y = mg - bv = ma = m\frac{dv}{dt}$$
 seconda legge di Newton

$$a = \frac{dv}{dt} = g - \frac{b}{m}v$$
 equazione differenziale

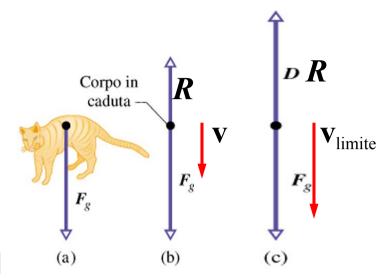
per t=
$$\tau$$
=m/b
v= 63% v_{limite}

[e≈2.72, 1/e ≈0.37]

Caso 2. Forza ritardante proporzionale a v²

[esempio: oggetti di grandi dimensioni che cadono in aria velocità elevate (aerei, paracadutisti ...)

$$R = \frac{1}{2} D\rho A v^2$$


 ρ = densità aria

A = area sezione oggetto

D = coeff. di resistenza (coeff. aerodinamico)

[≈0.5 sfera, ...

≈2 oggetto irregolare]

$$\Sigma F_y = mg - \frac{1}{2}D\rho Av^2 = ma = m\frac{dv}{dt}$$
 seconda legge di Newton

$$a = \frac{dv}{dt} = g - \frac{D\rho A}{2m}v^2$$
 equazione **differenzia**

velocità limite:

velocità limite:

$$per R = mg$$
 $a = \frac{dv}{dt} = 0$
 $g - \frac{D\rho A}{2m}v_{\text{limite}}^2 = 0 \implies v_{\text{limite}} = \sqrt{\frac{dv}{dt}}$

$$g - \frac{D\rho A}{2m} v_{\text{limite}}^2 = 0 \implies$$

$$v_{\text{limite}} = \sqrt{\frac{2mg}{D\rho A}}$$

N.B. dipende da dimensioni oggetto

Alcuni valori di velocità in aria

Velocità limite (m/s)	Distanza di regime* (m)
145	2500
60	430
42	210
31	115
20	47
9	10
7	6
5	3
	limite (m/s) 145 60 42 31 20

Distanza attraverso la quale il corpo deve cadere da fermo per raggiungere il 95% della velocità limite.

posizione a uovo:

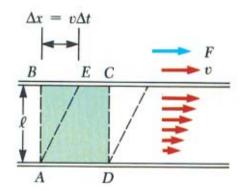
- rende minima l'area efficace della sezione trasversale
- riduce resistenza dell'aria

auto aereodinamica:

fasce laterali riducono resistenza dell'aria

posizione ad aquila ali distese:

rende massima la resistenza dell'aria


esercizi forze ritardanti

Viscosità [attrito interno del fluido]

viscosità nasce da forza di attrito fra strati adiacenti di fluido

esempio: catrame è più viscoso di olio.

è più faticoso fare scivolare una superficie di vetro su strato catrame che su olio.

variazione velocità strati successivi: cresce da 0 a v, quando ci si sposta da superficie ferma a superficie in moto

fluido subisce una deformazione dovuta allo scorrimento

$$F/A =$$
 carico di scorrimento [A = area faccia sottoposta a carico]

$$\Delta x/l = deformazione relativa$$

in un intervallo di tempo
$$\Delta t$$
: $\frac{deformazione\ relativa}{\Delta t} = \frac{\Delta x/l}{\Delta t} = \frac{v}{l}$

$$\eta = \frac{carico \, di \, scorrimento}{velocità \, di \, deform. relativa} = \frac{F \, / \, A}{v \, / \, l} = \frac{Fl}{Av}$$

dimensioni: $[\eta]=[FL]/[L^2v]=[F][T]/[L^2] \Rightarrow Ns/m^2$

$$F = \eta \frac{Av}{I}$$
 \Rightarrow F aumenta all'aumentare di η