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Small-world view of the amino acids that play a key role in protein folding
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We use geometrical considerations to provide a different perspective on the fact that a few selected amino

s

acids, the so-called “key residues,’

act as nucleation centers for protein folding. By constructing graphs

corresponding to protein structures we show that they have the “small-world” feature of having a limited set
of vertices with large connectivity. These vertices correspond to the key residues that play the role of “hubs™
in the network of interactions that stabilize the structure of the transition state.
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Although proteins are complex systems, experiments |1

and theory [2.3] suggest that at least for some of them the
folding mechanism is simpler than expected. One aspect of
this is the finding that a small number of amino acids play an
essential role in folding [4—8]. By applying the small-world
network paradigm [9], we obtain a different perspective on
this result and obtain a method for identifying the key amino
acids.

Small-world networks [9-16] have recently been shown
to be suitable for describing systems as diverse as chemical
reaction networks [13], neural networks [9], food webs [14],
social networks [9], scientific collaborations [12], disease
spreading [15], and the World Wide Web [10,16]. In general,
network topologies are random, if each vertex is connected
randomly to other vertices, or they are regular, if each vertex
is connected with a fixed number of vertices; two vertices are
neighbors if they are connected by an edge. Watts and Stro-
gatz [9] have shown that there exists a third possibility, cor-
responding to another regime of connectivity, which they
called a small-world network. The networks:that they de=
scribe are the result of the random replacement of a fraction
p of the edges of a d-dimensional regular lattice with new
random edges. This results in connections between vertices
that are distant on the lattice. The latter dramatically reduce
the average path length L, where L is equal to the number of
vertices that must be traversed to reach any other vertex from
a given one. Watts and Strogatz [9] characterized the small-

world networks with two numbers, the average path length L
and the clustering coefficient C, which is the average fraction

of pairs of neighbors that are also neighbors of each other. A
vertex k is connected to N, other vertices and the distribution
P(N}) of the number of connections is either exponential, as
in the original Watts and Strogatz model [9], or obeys a
power law, as for example in the World Wide Web [16].
Regular networks have large L and large C whereas random
networks have small L and small C. Small-world networks
have small L and large C [9]. In what follows we show that
protein structures form small-world networks and use this
result to identify key residues for the folding process [6]. The
existence of key residues is in accord with the nucleation-
condensation model of protein folding [4,5,8,17], in that they
play an essential role in the folding nuclei [6,18]. The small-
world character of networks in protein structures is shown to
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arise from the presence of a relatively small number of ver-
tices with many connections [19,20].

To apply the small-world concept to an ensemble of pro-
tein structures we represent the latter as a weighted graph
[21]. In order to do so, we first construct the adjacency ma-
trix A. The element A;; of A is given by the number of
structures in which residues i and j are in contact divided by
the total number of structures in the ensemble. For a particu-
lar structure, two residues are defined to be in contact if their
C, atoms are closer than a cutoff distance R, [6]. From the
adjacency matrix A we construct the matrix of the distances
w by defining its elements as w;;= 1/A;;. For an individual
structure, w;;=1 if i and j are in contact and % otherwise. In
the general case, 1<w;;<c. Each protein residue corre-
sponds to a vertex of the graph and each element w;; corre-
sponds to a weighted edge between two vertices. The graph
path length L is defined as

1
L:_E Nijs (1)

N, i=i

where, in a graph of N vertices, the sum runs over all the
N,=N(N—1)/2 pairs of vertices and \;; is the minimal path
between vertices i and j. The minimal path \;; is the mini-
mum over all the paths between i and j of the sum of the
weights of the edges traversed along each path. For graphs
corresponding to individual structures we also defined the
clustering coefficient C, as follows. If the vertex k has N,
neighbors, the maximal number of edges between the N
neighbors is N (N,—1)/2. The clustering coefficient is

1 ny

€=y ; NN —1)12°

2

where 7, is denoted by the actual number of edges that exist
among the neighbors of k.

We determine the distribution of values of the path length
L and the clustering index C for 978 representative protein
structures from the Protein Data Bank (PDB) [22] whose
sizes ranged from N=50 to N=1021. The result is shown in
Fig. 1. The average value in the distribution for L is 4.1
*0.9 and the average in the distribution of C is 0.58=0.04.
If N is the number of vertices and K is the average number of
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FIG. 1. Distribution of the values of the path length and clus-
tering index for 978 representative proteins; for each one, a single
structure from the PDB was used. Error bars represent the standard
deviations of the distributions. For comparison, we also plot data
points for random graphs, regular graphs, homopolymers, and
atomic clusters. The conformations for homopolymers are obtained
with the contact map dynamics of Ref. [27] and those of atomic
clusters with Lennard-Jones interactions by a Monte Carlo method
[28]. In the latter two cases, we considered sizes from N=350 to
N=1021, a range comparable to that of single domain proteins.

neighbors in the graph, L, ,4,,~InN/InK (2.4%£0.3) and
Crandom™~KI/N (0.08£0.06) for random graphs while for
regular graphs (1 lattices, Ref. [23]), L,,oui0r=N(N+K
—2)/[2K(N—=1)]  (104x70) and  C,guqr=3(K
—2)/[4(K—1)] (0.67%0.04). The differences between the
proteins and the random or regular lattices in Fig. 1 are sta-
tistically significant—according to the Kolmogorov-Smirnov
test [24] the probability to observe the differences by chance
is close to zero. These results show that the native protein
structures are characterized by intermediate values of L and
C, and therefore, belong to the class of small-world graphs.
Interestingly, individual collapsed structures of homopoly-
mers and of clusters, for which the results are also shown in
Fig. 1, have values of L and C that are similar to those of
native protein structures. The differences in L and C between
homopolymers, clusters, and proteins are probably not sig-
nificant and may be due to the fact that somewhat different
energy functions were used to model the various systems.
To determine the amino acid residues that make the most

important contribution to generating the small-world net-

work, we use the “betweenness” B, , [25], defined as the

number of pairs (i,j) of vertices such that the shortest path

between i and j passes through k, normalized by the total

number of pairs. Figure 2 shows the B, values as a function

of residue number k for the native states and the transition
state ensemble of six proteins. The former are based on x-ray
or nuclear magnetic resonance structures and the latter are
obtained by a Monte Carlo sampling procedure of Ref. [6].
In this method residue-specific protein engineering experi-
mental results (¢ values) [17] are interpreted in terms of the
fraction of native contacts that each residue forms in the
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transition state and this information is used to bias the sam-
pling of conformational space towards the region of the tran-
sition state. There is a correlation between B, and the square
of the number of contacts of k; for R.=8.5 A, the value
used here, the correlation coefficient is about 0.8. Thus, B
measures the centrality of a residue and provides a correction
to the use of the number of contacts for describing the struc-
tural relevance of a residue; i.e., the key residues are not
necessarily the residues with the largest number of contacts
[6].

For the transition states of all six proteins it is evident that
there is a small number (between 2 and 4) of residues (or
regions) that have large B, values and that outside these
regions, the values are 0.1 or less. Analysis of the transition
states of these proteins have shown that there are certain
residues, called key residues, which are critical for forming
the nucleus that encodes the overall native structure [6]. The
key residues are indicated by small squares in Fig. 2. In all
cases, they involve residues with large B, . For five out of six
proteins, they correspond to residues with the largest By . In
the sixth (1aps), there are three key residues, all of which
have large B, . Two of them (11 and 94) are the largest B in
the given region and the third is in a region of large B
(residues 45—54) but is not the largest in that region. There is
an additional region (residues 37-39) with B, greater than
0.15, which does not contain a key residue. It corresponds to
strand B3, (see Fig. 3), which is the most buried one in the
native state. Experiments and the results of Ref. [6] indicate
that this strand is partially formed in the transition state,
although the interactions made by the residues in 3, are not
crucial for the nucleation process. It is likely that the chain
can form the folding nucleus only if B3, is near its native
position. However, since it does not contain a key residue,
the high B, value in the region 37—-39 must be regarded as a
false positive.

If we now examine the B, results for the native state (Fig.
2), it is clear that there is a significantly larger number of
residues with high B, values. This is not surprising because
only a portion of the native structure (i.e., the folding
nucleus) is essentially formed in the transition state en-
semble, so that the variations in the rest of the structure
average out the high B, present in individual members of the
ensemble (see also below). In the native state, fluctuations in
the number of neighbors are small and such averaging does
not occur. This leads to a larger number of high B, values.
For example, in the protein AcP [6] (see Fig. 3), all of the
five B strands and the two « helices have a few residues that
are central in the native state graph. However, the residues
belonging to the « helices and those belonging to the 34
strand lose their importance in the transition state graph
(shown in Fig. 3), in accordance with the description of the
transition state structure given in Ref. [6], where it was
found that only strands 8,, B3, and B5 are relevant for the
nucleation process.

Comparison of the native state and transition state results
shows that it is possible to predict the key residues from a
knowledge of the B values of the latter, but not the former.
The information is partially masked in the native state by the
formation of the rest of the network that has both key and
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FIG. 2. “Betweenness” B in
the transition state for six proteins
(thick lines). Vertices with large
B, are the most connected ones.
Key residues (obtained indepen-
dently by the method presented in
Ref. [6]) are indicated by squares.
The B, values in the native state
(thin lines) are shown for com-
parison. In the plot for protein 2ptl
we show the B profile for a ho-
mopolymer of the same length at
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non-key interactions. As a consequence, the small-world
analysis of native states can be used to identify the regions in
which key residues are expected to be found. However, the
native state also identifies “‘false positives,” namely, regions
that are highly connected in the native state but not in the
transition state. For example, in the case of AcP discussed
above there are five candidate regions of which only three
actually contain the key residues.

Individual compact structures of homopolymers and of
atomic clusters have B profiles similar to those of proteins of
comparable size and their graphs have L and C values typical
of small-world networks. This is due to the fact that we are
dealing with systems of intrinsically finite size, so that in a
collapsed polymer, a cluster or a globular protein, a relatively
small number of residues are buried in the core and most are
on the surface. Since the B profiles are a measure of the
average system connectivity, they are not very sensitive to

20

0 . 60
residue index

the exact definition of contact. The similarity of the behavior
of homopolymers and clusters suggests that chain connectiv-
ity, per se, plays only a minor role in this respect. The crucial
difference between proteins and compact polymers is that the
energy function of a protein selects one structure, that of the
native state, with a non-negligible Boltzmann weight under
native conditions. Instead for most homopolymers and clus-
ters, a large number of compact conformations have similar
probabilities. As a consequence, the B profiles for homopoly-
mers and clusters show no peaks when statistical averages
are taken. This difference is found also when one compares
the 6 point for homopolymers and the transition states for
proteins. As an example, we show in Fig. 2 the average B
profile for a homopolymer of the same length (N=62) as
protein L (2ptl). This difference is due to the fact protein
folding takes place by a specific mechanism that involves
few key residues selected by evolution. In this sense the
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FIG. 3. Structure of the native state (left) and of the transition
state (right) of the protein 1aps [6]. The contact network is shown in
the transition state. The three key residues are indicated by spheres.
Secondary structures (« helices and B sheets) are indicated for the
native state.

different order of the transition for protein folding and ho-
mopolymer collapse plays only a minor role. The difference
between proteins and homopolymers is analogous to that be-
tween magic and nonmagic clusters. Magic clusters [26] are
characterized by a single energy minimum whereas non-
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magic clusters have a highly degenerate ground state. At low
temperatures, therefore, there are geometrical key positions
in a magic cluster. Due to symmetry under permutation,
however, the identity of the atoms occupying them is not
conserved. This situation is similar to that of homologous
sequences with the same fold. The position in the structure is
important, but the identity of the residues may change during
evolution.

We have shown that structures of native proteins and of
their transition states can be conveniently analyzed by using
the small-world networks approach. Since this feature is also
observed in collapsed homopolymers and in compact atomic
clusters, it suggests that the small-world character arises pri-
marily from the overall geometry (surface to volume ratio).
What is special about proteins is that they have an essentially
unique native structure and a structurally restricted ensemble
representing the transition state. The betweenness in the tran-
sition state ensembles is highest for the key residues in-
volved in formation of the nucleus for the folding reaction. It
will be of interest to investigate whether the key residues
identified in this way also play an energetic role in selecting
the unique structure of the native state.
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