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Universality in Protein Residue Networks
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ABSTRACT Residue networks representing 595 nonhomologous proteins are studied. These networks exhibit universal topo-
logical characteristics as they belong to the topological class of modular networks formed by several highly interconnected
clusters separated by topological cavities. There are some networks that tend to deviate from this universality. These networks
represent small-size proteins having <200 residues. This article explains such differences in terms of the domain structure of
these proteins. On the other hand, the topological cavities characterizing proteins residue networks match very well with protein
binding sites. This study investigates the effect of the cutoff value used in building the residue network. For small cutoff
values, <5 A, the cavities found are very large corresponding almost to the whole protein surface. On the contrary, for large cutoff
value, >10.0 A, only very large cavities are detected and the networks look very homogeneous. These findings are useful for
practical purposes as well as for identifying protein-like complex networks. Finally, this article shows that the main topological
class of residue networks is not reproduced by random networks growing according to Erdés-Rényi model or the preferential
attachment method of Barabasi-Albert. However, the Watts-Strogatz model reproduces very well the topological class as well
as other topological properties of residue network. A more biologically appealing modification of the Watts-Strogatz model to

describe residue networks is proposed.

INTRODUCTION

Complex networks are ubiquitous in many fields of science,
studying systems that range from biology to social sciences
(1-3). In a complex network the elements of the system are
represented by nodes and the interactions between these
elements are represented by links. Several characteristic
features have been observed in these systems, such as
small-worldness (4), scale-freeness (5), fractality (6), charac-
teristic motifs (7), and mixing patterns (8).

These concepts of network theory have been applied to the
study of protein structure with promising results (9). In a
seminal article Vendruscolo et al. (10) constructed networks
corresponding to protein structures and showed by the first
time that they display small-world features. The nodes corre-
sponding to key residues were observed to play the role of
hubs in the network of interactions stabilizing the structure
of the transition states. In a further work Atilgan et al. (11)
proposed to represent proteins as residue networks, showing
that residues in folded proteins display small-world topology.
In these networks, the nodes represent C, or Cz atoms of the
amino acids and two nodes are connected if they are separated
at a geometric distance lower than certain cutoff value. Atil-
gan et al. (11) found that their results are independent of the
use of different cutoff values. In another work, Bagler and
Sinha (12) used the same representation of Atilgan et al.
(11) and found that proteins, regardless of their structure class,
show small-world properties. They also gave some insights
about the modular structure of proteins by using various
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network parameters. On the other hand, Brinda and Vishvesh-
wara (13) used a parametrized measure of the strength of
interaction to decide whether two nodes representing protein
residues are connected in the network. They observed that
these networks exhibit a complex degree distribution with
combinations of Gaussian-like, sigmoidal, and exponential/
power-law decay for different interaction cutoffs (13). In a
variation of these representation methods, Greene and Hig-
man (14) considered each amino acid as a node, and the links
were established between two nodes, if any two atoms of the
amino acids are separated at <5 A of each other. They found
again that these networks exhibit small-world, single-scale,
and at some degree, scale-free properties.

Concerning the representation of proteins as networks, da
Silveira et al. (15) have carried out a comparative analysis
between the cutoff-dependent and cutoff-free methods used
to represent protein networks. They have found that the
cutoff value of 7 A emerges as an important distance param-
eter (15), because at this distance “‘all contacts are complete
and legitimate (not occluded).” Consequently, they con-
cluded that in the strict range up to 7 A, the cutoff-dependent
approach “‘revealed to be simpler, more complete, and reli-
able technique” than the other approaches in use. It is also
important that they have shown that representing amino
acids by C, atoms may introduce bias for cutoffs <6.8 A,
which supports the use of the cutoff value of 7 A.

On the other hand, Bartoli et al. (16) have analyzed 1753
nonredundant protein structures and have shown that the
small-world behavior of interresidue contact graphs is condi-
tioned by the backbone connectivity. They have concluded
that the characteristic path length L and clustering coefficient
C in which the small-world concept is based, are not useful
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quantities for protein fingerprinting. Bartoli et al. (16) have
used a randomization procedure from which L and C are
indistinguishable from those of real proteins. They have veri-
fied that these results are independent of the selected protein
representations, residue composition, and protein secondary
structures.

The main objective of this study is to explore beyond
general statistical properties of complex protein networks,
such as small-worldness or scale-freeness. This study shows
that proteins represented as residue networks belong to a
universal topological class that can be unambiguously charac-
terized from a mathematical point of view. This universal class
corresponds to modular networks in which some highly inter-
connected nodes are separated from each other by topological
cavities. This article shows that these cavities are potential
binding sites in proteins and that the domain structure of
proteins plays an important role in this structural organization.

MATERIALS AND METHODS
Proteins as residue networks

Spatial residue networks are built by using the Cartesian coordinates of the
protein reported in the protein data bank (PDB) (17). Here, the data set used
was prepared by Atilgan et al. (11), who studied 595 proteins with <25% of
sequence homology. This data set was selected previously by Fariselli and
Casadio (18). The data set of these 595 proteins were represented as residue
networks.

The nodes of these residue networks represent the amino acids of the
protein, centered at their Cz atoms, with the exception of glycine for which
C, is used. To connect the nodes of the network it is considered a cutoff
radius r¢, which represents an upper limit for the separation between two
residues in contact. The distance between two residues is measured by taking
the distance between Cg atoms of both residues. Then, when the interresidue
distance is <rc both residues are considered to be interacting. In this case,
the corresponding nodes in the residue network are connected.

The elements of adjacency matrix of the residue network are obtained by

H (r c— T ij) i# j

0 i=j’

A

ij =

where H(x > 0) = 1 and H(x < 0) = 0. Then, a protein is represented by the
graph G = (V, E), where V represents the set of amino acids and E represents
the set of interactions between then. The residue networks studied here were
constructed by using a cutoff of 7 A. Atilgan et al. (11) have verified that the
general conclusions concerning the topology of these networks are not
affected when a cutoff value of 8.5 A is used instead. As a matter of example,
the residue network of the protein with PDB code 1ash is represented in Fig. 1.

Topological classification of networks

Let us consider a subset of amino acids S SV. The number of interactions
between an amino acid in this subset § with another amino acid that is not
in this set, is named the boundary of § and is denoted by |dS|. A subset of
amino acids S was selected to be at most half the number of residues in
the protein. The following measure can be used to account for how effi-
ciently connected the residue network is (19):

v
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which is known as the expansion or isoperimetric constant of the network.
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FIGURE 1 Construction of the residue network for protein with PDB
code lash. The network is represented by using the 3D vector display
program MAGE, (http://www.analytictech.com/downloaduc6.htm). The
nodes are colored in the same way as the secondary structure elements given
in the cartoon representation.

The higher the expansion constant ¢(G) the better the connectivity of the
network (20), which means that the number of interactions that must be
removed to separate the protein into isolated parts is relatively high in
comparison with the number of amino acids in the protein. These networks
are said to have good expansion (GE) properties. It is known that a network
has GE if the gap between the first and second eigenvalues of the adjacency
matrix (AA = A, — A ) is sufficiently large (20). When ¢(G) = o(1) this
means that the number of links inside the subset S is approximately the
same as the number of links going out from it. This means that high expan-
sion implies high homogeneity of the network. This study explains spectral
scaling, a method that permits the classification of networks into universal
classes according to their structural homogeneity (21,22).

Let EE,qq(i) be the subgraph centrality of the amino acid i (23). The
subgraph centrality represents the weighted participation of a node in
subgraphs containing at least one cycle of odd length (23). It has the
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following spectral formula EEqqq (i) = Z[¢j(i)]zsinh(lj), where ¢;(i) is the
=

entry of the /™ eigenvector of the adjacency matrix corresponding to the i™
amino acid and J; is the corresponding eigenvalue. The subgraph centrality
can be expressed as follows (21):

EEoq(i) = [EC(i)]*sinh(%,) + Z[yj(i)]zsinh(zj), ©)

where I have written EC(i) for the principal eigenvector ¢;(i) and A, corre-
sponds to the principal (Perron-Frobenius) eigenvalue of the network.

Let us assume that the network has GE properties such that 4, > > 1,
(20). Then, it can be considered that

[EC(i)]*sinh(};) > Z [7;()] *sinh ().

Consequently, the odd-subgraph centrality can be approximated as,
EEyqq(i) = [EC()]? sinh(2,) (3). This means that the principal eigenvector
of the network is directly related to the subgraph centrality in good expansion
networks according to the following spectral power-law scaling relationship:

EC(i) x A[EE4q(1)]". “4)

Here, A = [sinh(1,)] "% and = 0.5. This expression can be written in a
log-log scale as (21,22):

log[EC(i)] = log A + nlog[EEou(i)]- (5)

Consequently, in a homogeneous network a log-log plot of EC(i) versus
EE44(i) displays a perfect straight line fit with slope 7 = 0.5 and intercept
logA. Topologically nonhomogeneous networks will display large devia-
tions from this perfect fit as a consequence of their modularity.

Let us consider the homogeneous case, in which a network displays
perfect spectral scaling, such that one can calculate the eigenvector centrality
by using the following expression:

log ECP™ (i) = 0.5 log EE,aa(i) — 0.5 log[sinh(2,)]. (6)

Network Model Spectral Scaling

A Alog EC(i)=0,Vi eV = [EC(i)f sinh(4,)= EE, , (i).
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Now, let us consider the deviations from this perfect fit. These deviations
from perfect homogeneity can be accounted for by measuring the departure
of the points from the straight line respect to log ECT™(i) (21):

EC() |
ECHomo(l')

Alog EC(i) = log %

@)

Using Alog EC(i) any network can be classified into any of four possible
topological classes. The first class corresponds to the case when
A log EC(i) =0 for all nodes in the network and it corresponds to the homo-
geneous networks. In the second class Alog EC(i) < 0 for all nodes, which
indicates that the network contains cavities in its structure (see further
explanation). In class IIT Alog EC(i) > 0 for all nodes, which indicate the
existence of a core-periphery structure of the network. Finally, the class
IV occurs when Alog EC(i) < 0 for some nodes and Alog EC(i) > 0 for
the rest. In Fig. 2 four model networks are shown that represent these
universal topological classes of networks together with their respective
spectral scaling plots.

In a previous report (24), the authors studied real-world complex networks
and quantified the degree of deviation of the nodes from the ideal spectral
scaling by accounting for the mean-square error of all points with positive
and negative deviations in the spectral scaling, respectively:

N% > <log7¥1/%£i()i)> and

= i X ety

where >, and ) _ are the sums carried out for the N, points having Alog
v1(@0) > 0 and for the N_ having Alog v;(i) < 0, respectively. In a previous
work (24), the authors plotted the values of these deviations for 60 real-
world networks representing biological, ecological, socioeconomical, tech-
nological, and informational systems, where it was observed that the four
topological classes are populated by real-world networks (24).

£ =

Cc Alog EC(i)> 0= [EC(i)} sinh(4,)> EE, (i), VieV.

o7
o0s|

0.1
H,ICIS” o -0-25 ---0.75 ) i 500 N ) -25.00
EE(i)
D Alog EC(p)<0,peV and Alog EC(q)>0,q €V .

045 i T ’ - T - . ,
0.35
025

=

Qois

005 ]
2 6 10 14 18 22

EE(i)

FIGURE 2 (A-D) The four topological classes of networks that are theoretically possible according to the spectral scaling method. A model graph for each

class (left) and the spectral scaling (right) are given for each model.
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RESULTS AND DISCUSSION
Topological classes of residue networks

This study investigates the spectral scaling for the 595 residue
networks. As a warming up example, the protein lash was
studied. In this case, all residues deviate negatively from the
perfect spectral scaling. The value of the mean-square error
of negative deviations for this protein is £~ = 0.498 and that
for positive deviations is exactly zero. It was found that 95%
of the proteins studied exhibit negative and no positive devia-
tions from the perfect spectral scaling. This means that 564 of
595 proteins have £* exactly equally to zero. However, the
average of the mean-square error of negative deviations for
these proteins is (6~ ) = 0.996. The other 31 proteins has small
positive deviations from the perfect scaling, having
(ET) =0.0011 and negative deviations (£7) = 1.550.
Fig. 3, plots the logarithms of values of £ and £~ of these
595 residue networks. Sixty complex networks representing
a variety of biological, ecological, informational, social, and
technological systems were incorporated and each network
was classified into one of the four topological classes accord-
ing to our previous report (24). The following cutoff values
have been used for classification purposes, class I: £~ < 0.02
and £ < 0.02; class II: £~ < 0.02 and 1 < 0.02; class III:
£7<0.02and £ < 0.02; class IV: £~ < 0.02 and £ < 0.02.
Fig. 3 demonstrates that 99.5% of the proteins represented
by their residues networks are in the class II. There are only
three proteins that are classified in the class IV. These find-
ings mean that most of the 595 proteins studied, which
have between 54 and 1021 residues and <25% of homology
in their sequences, can be modeled as networks in which
several highly connected clusters are separated from each
other by forming structural cavities, as represented by the
model graph B given in Fig. 2. In other words, protein residue
networks exhibit universal topological characteristics.
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FIGURE 3 Classification of real-world networks in the topological
classes illustrated in Fig. 2. Networks representing a variety of complex bio-
logical, ecological, informational, social, and technological systems are rep-
resented by circles. Protein residues networks are represented by triangles.
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To explain why protein residue networks are in class II let
us consider a residue located in one of the highly dense
modules, e.g., a node in one of the external corners of the
grid represented by the model graph B given in Fig. 2. If
one walks around this node one observes a high density of
connections in its neighborhood. However, if one enlarges
one’s walk to traverse the whole network one observes that
this high connectivity is not kept as soon as one arrives at
the central cavity in the network (21,22). The measurement
of local connectivity is the subgraph centrality, which is
larger than expected from the homogeneity line of the spec-
tral scaling. This means that the points representing the
amino acids of the residue network are placed to the right
of the line representing the perfect scaling. An equivalent
view is obtained by considering the eigenvector centrality,
which is the global measure of connectivity in this study.
In this case the global connectivity is lower than expected
from the homogeneity line placing the points below the
straight line of the spectral scaling (21,22). A discussion
about the use of other local and global measures in biological
networks can be found in Gonzélez-Diaz et al. (25).

The eigenvectors corresponding to positive eigenvalues of
the adjacency matrix of a network give a partition of the
network into clusters of tightly connected nodes. On the
contrary, the eigenvectors corresponding to negative eigen-
values make partitions in which nodes are not close to those
which they are linked, but rather with those with which they
are not linked. In other words, the nodes will be close to
other nodes that have similar patterns of connections with
other sets of nodes, i.e., nodes to which they are structurally
equivalent. In the case of the eigenvectors corresponding to
positive eigenvalues the nodes corresponding to larger
components tend to form quasi-cliques. That is, clusters in
which every two nodes tend to interact with each other. On
the contrary, for eigenvectors corresponding to negative
eigenvalues, nodes tend to form quasi-bipartites, i.e., nodes
are partitioned into disjoint subsets with high connectivity
between sets but low internal connectivity. It has been shown
analytically (24) that for class II networks

>~ [#5(i)) *sinh (%)

+

> Z [qﬁj(i)] *sinh (A)]

where ) and ) designate the sums corresponding to
positive and negative eigenvalues for j > 2. This means
that the networks of class II are dominated by partitions
into quasi-cliques more than into quasi-bipartites. In words,
these networks are characterized by two or more clusters of
highly interconnected nodes that display a low intercluster
connectivity.

The tiny fraction of residue networks in class IV displays a
mixture of positive and negative deviations. They are charac-
terized by a combination of both quasi-cliques and quasi-
bipartites, without the predominance of either structure
over the other. On the one hand, the central nodes connecting
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the highly interconnected clusters display larger connectivity
to all other nodes in the network than the one expected from
their local cliquishness, i.e., they display positive deviations
from the perfect scaling. On the other hand, the nodes on one
side of the graph are not well-connected to the nodes on the
other side despite they are internally highly connected.
Consequently, these nodes display negative deviations
from the perfect scaling.

Topological analysis of protein classes

Despite the fact that 99.5% of the protein residue networks
are classified in the class II it can be seen in Fig. 4 A that there
is a continuous transition between classes II and I'V. In other
words, there is not a clear gap separating proteins in class II
from those in class IV. However, 95% of all proteins are
clearly in class II having negative deviations from the perfect
scaling and £* = 0. The other fraction of proteins can be
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FIGURE 4 (A) Spectral scaling of 595 protein residue networks as a func-
tion of the number of residues in the protein. All proteins that have £~ # 0
(5% of the total) are shown in the box. (B) Plot of the negative deviations
from perfect scaling versus the number of residues in the proteins studied.
The lower bound has been plotted by hand as an eye-guide.
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considered as borderline cases between both classes (see
Fig. 3).

The most significant difference between these two groups
of proteins is given by the size of the proteins contained in
each class. The proteins studied here have between 54 and
1021 amino acids, with an average size of 254 residues.
The average size of protein networks in class II having
£t = 0 is 261 residues. However, those protein networks
for which £* # 0 have average size of 126 residues, which
is significantly lower than the average size for the whole data
set of proteins. When the values of £ and £~ of all proteins
are plotted versus the number of residues in Fig. 4 A a clear
illustration of the size dependence of the topologies found for
proteins is obtained.

As can be seen in Fig. 4 A, most proteins for which &+ = 0
have <200 residues. The only one exception is the protein
with PDB code 1aa6, which has 697 amino acids. The prob-
ability of finding a protein having é* # 0 is 63.6% (7 of 11)
for proteins with <75 residues. This probability drops to
29.5% (13 of 44) for proteins with <100 residues and to
14.2% (25 of 176) for proteins with <150 amino acids.
This probability is only 0.4% for proteins having >240
residues.

To understand these results, consider the domain structure
of proteins. A domain is a part of the protein that has a
compact three-dimensional structure and can often be inde-
pendently stable and folded. In a residue network, those
amino acids that are in the same domain tend to form highly
interconnected clusters, such as the ones represented by the
corners of the model network B in Fig. 2. However, the
number of interactions between two different domains in a
multidomain protein is relatively low compared to the intra-
domain interactions. Thus, it can be thought that most of the
structure of class II residue networks can be explained by the
multidomain organization that these proteins have. This
hypothesis is supported by the findings that most of domains
found in proteins have between 50 and 150 residues (26).
Most small proteins have only one domain, whereas larger
proteins tend to be combinations of such domains (26).
This explains why practically all residue networks with
>240 amino acids are clearly in class II. The structure of
those proteins having £ 0 can be explained by consid-
ering the organization of the different elements of their
secondary structure, e.g., helices and sheets. These elements
can form small clusters, which are then interconnected in the
form given by the graph D in Fig. 2 with more or less pre-
dominance of the quasi-cliques or quasi-bipartite structures.

Fig. 4 B plots the negative deviations from perfect scaling
&~ versus the number of residues in the proteins studied.
There are two characteristics of this plot that can also be
related to the domain structure of proteins. The first is that
the variability in the values of £ is significantly larger for
small proteins than for larger ones. For instance, for proteins
having <200 residues the deviations range from zero to
almost 6, 0 < £~ < 6. However, for proteins >500 amino
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acids the deviations are concentrated in the range 1 < £~ < 3.
The larger variability in the deviations of small proteins
could be due to the before mentioned fact that most of
protein domains have between 50 to 150 residues. Small
proteins are then formed by one domain only. Because the
data set studied contains <25% similarity in the sequence
of proteins, it is expected that two small proteins are formed
by different domains with high probability. For instance,
some of these small proteins are mainly «, whereas others
are mainly #. The differences in the structures of these
domains are reflected in the spectral scaling of their residue
networks giving rise to the observed variability.

In the case of larger proteins, it has also been reported that
64.3% of proteins having >200 residues are formed by more
than one domain (27). It has been reported previously that
some of these multidomain proteins display degree of folding
that are average of the folding of the different domains form-
ing the protein (28). Multidomain proteins can be considered
as combinations of the small ones in such a way that their
topological properties are the average of the ones observed
for one-domain proteins.

The second characteristic of the plot given in Fig. 4 B is
the existence of a lower bound in the negative deviations
from perfect scaling. This lower bound is a function of the
protein size. For instance, for proteins having <100 residues
there are no negative deviations below £~ = 0.25. This
bound is &~ = 0.45 for proteins with 200 residues and it
is >1 for proteins with >800 amino acids. This threshold
can be approximated by a straight line as can be seen in
Fig. 4 B. The existence of this lower bound can be explained
by the fact that the number of domains per protein steadily
increases with the size of the proteins. For instance, 42.9%
of proteins with >350 residues have >2 domains and
38.5% of those with >500 amino acids have >3 domains
(27). 1t is intuitive to think that the deviation from homoge-
neity in the residue networks increases with the number of
domains due to the larger interdomain cavities created.

In graph theory a hole is defined as a chordless cycle,
which is a cycle of length at least four cycles such that there
is not link between two nonconsecutive nodes (29). It is easy
to check that any of the four universal topological classes of
networks contains holes in their structures. In Fig. 2, it is
easily recognizable that model networks in class II, III, and
IV contain chordless cycles of length four. Therefore, a cavity
in networks of class II cannot be identified with a network
hole. Instead I propose a topological cavity be defined as a
hole, i.e., a chordless cycle of length at least four, which
separates at least two highly connected clusters in the
network.

The problem of determining whether a network has a
chordless cycle of length k is NP-complete (30). The prob-
lem has been solved for fixed k£ in O(nk) (31) and some
improvement exists that solves the problem in O(n*~°T),
where T = n>37¢ (32). In addition, for the identification
of a topological cavity these holes should separate two or
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more highly connected clusters in the network. This article
is not concerned with the development and/or application
of these algorithms to detect holes or topological cavities
in residue networks. Instead, this study illustrates the exis-
tence of such cavities in a residue network and its possible
implications for the study of protein structures. The study’s
aim is to stimulate other researchers in the search for algo-
rithms to detect topological cavities and holes in residue
networks.

For the sake of illustration, the residue network for the
protein with PDB code lash was studied. The presence
of a hole with a length of 15 inches was found in this network
formed by the residues 27, 30, 33, 40, 43, 59, 60, 62, 64, 67,
71,92, 95, 96, and 101. These residues form a cycle with a
length of 15 nodes where no two residues are joined by a link
that does not belong to the cycle. This hole is separating
several highly connected regions of the residue network
and can be considered as a network cavity according to the
definition given here. It should be recognized that no quan-
titative method whatsoever has been developed for the iden-
tification of these structures in complex networks in general
or in residue networks in particular. Thus, the identification
of this particular cavity for illustration purposes has been
carried out using a brute-force search.

When this topological cavity is placed on the three-dimen-
sional structure of the protein, it practically corresponds to
the binding site of this protein. According to the information
provided by the database PDBSum (33) the residues having
contact with the ligand are 30, 33, 40, 43, 44, 60, 64, 67, 68,
71, 95, 96, 101, 103, 108, and 140. This means that there is
71% of overlapping between this list of residues in the
binding site and the topological cavity found in the residue
network. The overlapping is calculated as twice the number
of residues in the interception of the two lists divided by the
number of residues in the union of both lists. This example
illustrates clearly the relationship between topological cavi-
ties and potential binding sites in proteins.

This study is not aimed, however, to the development of
mathematical or computational methods for identifying
binding sites in proteins, for which excellent methods
already exist (34,35). As stated previously, this study
attempts to identify the topological properties that residue
networks share in a universal way, such as the organization
of their nodes/links in class II type of structure. This
universal topological property adds to other properties like
the small-worldness and Poisson degree distributions re-
ported previously (11) for residue networks. Together, they
allow us to understand the organizational principles of pro-
tein architectures. However, because the cavities are impor-
tant characteristics of class II networks, some of their general
features are analyzed here. The nomenclature of voids,
pockets, and depressions for the three types of cavities
studied previously in Liang et al. (34) will be adopted
here. In a residue network representation of a protein, a
void can be identified by the current approach as
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a topological cavity if, and only if, the distance r; between
pairs of atoms in the interior of the cavity is larger than the
cutoff value used, r; > rc. For pockets and depressions being
recognized as topological cavities, the distance r,, between
the two atoms forming the mouth of the site should be
smaller than the cutoff value used (r,, < rc) as well as r;
> rc for internal atoms. There are obvious situations in
which the current approach is not able to identify some kinds
of binding sites. The situation is not different, however, to
other methods used for this purpose. For instance, in the
case of small binding sites, such as those for metals,
a network representation with a relatively large cutoff value
does not identify the corresponding binding pockets. What is
interesting is that the topological cavities defined in this
study are present as a universal characteristic of residue
networks for the cutoff value and network definition used
in this study.

This study analyzed the influence of the cutoff value in the
topological structure of residue networks. In particular, the
protein with PDB code lash for cutoff values 5.0 A, 7.0 A,
10.0 A, and 15.0 A was studied. The cutoff value 7.0 A is the
one used in the current work for all residue networks. When
avalue 5.0 A is used, only Cg atoms of the different residues
that are separated no more than 5.0 A apart, are connected.
This includes only 146 links connecting nearest-neighbor
residues in the protein backbone plus 40 other interresidue
interactions. Consequently, the resulting residue network
displays very low density (the average degree is only
2.68). The spectral scaling of this version of the residue
network is characteristic of class IV networks in which there
are holes together with some core-periphery structures. The
holes in this version of the network are quite large. For
instance, there is a 53-nodes hole formed by residues 32—
34, 55-58, 60-78, 85-96, 101-103, and 107-118. Fig. 5 A
displays the spectral scaling for this network and a visualiza-
tion of the hole mentioned previously as a surface in the
protein structure. As can be seen, this hole corresponds to
practically the whole external surface of the protein. This
result confirms our previous statement relating cutoff values
and the size of probe spheres to explore proteins. If only the
total surface of a protein was studied, it is recommended to
use very small cutoff values, e.g., rc < 5.0 A. For the sake
of comparison, this study illustrates the spectral scaling
and surface of the 15-nodes hole in the same protein obtained
for a cutoff value of 7.0 A (Fig. 5 B).

When the cutoff value is augmented to 10.0 A only large
holes are detected. The residue network display a class II
topological structure, but the spectral scaling displays
considerable less dispersion than for the case of 7.0 A
(Fig. 5 C). In this case, the 15-nodes hole detected previously
for 7.0 A shrinks to a 9-node hole (formed by residues 30,
33,40,43,34,37,71,95, and 101). Fig. 5 C shows that these
residues are located in the wider part of the binding site for
lash. The same trend is observed when the network built
by using cutoff 15.0 A was studied (Fig. 5 D). In this case

Biophysical Journal 98(5) 890-900

Estrada

the spectral scaling corresponds to a class I network due to
the high density observed in the network. In this case all
Cg atoms separated at <15.0 A are connected. Conse-
quently, only very large holes are detected. The holes in
this case are of a small size, such as the one formed by resi-
dues 40, 60, 62, 71, and 96. This approach of using very
large cutoff values is recommended only when very large
cavities need to be detected in the protein. These results
confirm the previous report of da Silveira et al. (15) about
the use of a cutoff value equal to 7.0 A to represent proteins
as residue networks.

Random models and protein topological classes

It has been shown previously that proteins represented by
residue networks belong mainly to a universal topological
class. Only 5% of proteins primarily of small size are in a
different topological class. Ravasz et al. (37) have modeled
hierarchical networks by replicating a core set of nodes
and links. However, as Bagler and Sinha have remarked
(12), “proteins grow linearly first, and then this polypeptide
chain organizes itself in a modular way at different levels”.
It was already mentioned that Bartoli et al. (13) have found
that the small-world properties of these residue networks
are well replicated by random models, which excludes the
use of the average path length and clustering as protein
fingerprints. What, then, is the situation with the current
universal property found for residue networks? Is the
universal class of proteins reproduced by some of the best
known models of network growing? These questions are
analyzed below.

This study investigated whether the random network
growing models of Erdos-Rényi (ER) (38) and Barabdsi-
Albert (BA) model (5) are able to reproduce the structural
classes populated by protein residue networks. In both
models each random network starts with m nodes and new
nodes are added consecutively in such a way that a new
node is connected to exactly m of the already existing nodes,
which are chosen randomly. The new edges are attached ac-
cording to the probability distribution used, e.g., Poisson
distribution for the ER and the preferential attachment mech-
anism, power-law degree distribution, in the BA model. This
article studied random networks generated by these two
growing mechanisms having » = 1000 nodes by changing
systematically the value of m from 2 to 8, giving rise to
networks with average degrees, (k) between 4 and 16. For
every value of m present 100 random networks were gener-
ated. Then, the values of £~ and £ for every value of m were
averaged. Fig. 6 A plots the values of In(~ + 10~°) versus
In(5" + 107°) for the random networks generated using
both growing models. In the same plot the values corre-
sponding to 595 proteins studied in this work were placed.

As can be seen in Fig. 6 A, neither ER nor BA growing
mechanisms are able to reproduce the topological properties
of residue networks. None of these random networks
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replicate, even partially, the structure of 99.5% of proteins in
which highly interconnected clusters are separated by topo-
logical cavities. The characteristic of class IV protein residue
networks, in which a tiny fraction of small-size proteins
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FIGURE 5 Effect of the cutoff value on the topological
structure of the residue network with PDB code lash.
Left: Spectral scaling for networks obtained with cutoff
values (4) 5.0 A, (B) 7.0 A, (C) 10.0 A, and (D) 15.0 A.
Right: Three-dimensional structure of the protein in which
the amino acids forming some topological cavities are rep-
resented by their surface. In the case of (A) 5.0 A the cavity
illustrated contains 53 residues. The cavity illustrated for
(B) 7.0 A is the one reported in the main text. In the cases
of cutoff values (C) 10.0 A and (D) 15.0 A. This study
investigates only the effects of the cutoff value on the
15-nodes cavity found for 7.0 A. The molecular structure
and surface are drawn by using AISMIG (36).

appears, are only partially reproduced by random networks
at low average degree regimes. It is clear from Fig. 6 A
that as the average degree grows both kinds of random
networks exhibit good expansion properties typical of
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FIGURE 6 (A) Plot of the positive and negative deviations from perfect
scaling for 595 protein residue networks together with the corresponding
values for the random networks with 1000 nodes generated by using ER
and BA models. (B) Average shortest path length L(p), clustering coefficient
C(p) and topological classes for the WS networks having 300 nodes.

class I networks. These results are supported by previous
theoretical findings indicating that for (k) >3 these random
networks are expanders with high probability (39,40). In
summary, the topological organization exhibited by protein
residue networks is of more complex nature than the ones
reproduced by random growing mechanisms, such as ER
and preferential attachment. This finding should be added
to the well-known fact that these two models do not repro-
duce important structural properties of residue networks.
For instance, networks created with the ER model lacks
internal structures reflected by its very poor clustering and
the BA model does not reproduce the Poisson distribution
of these networks (11).

In view of the previous findings, it should be more appro-
priate to consider other random models that reproduce better
the structural organization of residue networks. One of such
models is that of Watts and Strogatz (WS) to generate small-
world networks by starting from regular ones (4). This model
starts with a ring of n nodes in which each node is symmet-
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rically connected to its 2m nearest neighbors. Then, for every
node, each link connected to a clockwise neighbor is rewired
with probability p. This rewiring process usually creates
shortcuts between distant nodes in the ring. At the very
beginning when in the presence of the n-nodes ring there
is a central hole in the graph. Thus, the initial step in this
process is a network belonging to class II, which also has
large clustering but lacks the small average shortest path
length that characterizes small-world networks like the
protein residue ones. I next studied the spectral scaling for
networks created by using the WS model for networks
having 300 nodes and 0 < p < 1. The results are illustrated
in Fig. 6 B, which shows the networks generated by WS
model are in class II for values of p < 0.5. For probabilities
beyond this value the networks are in class IV and go to class
I when p = 1.0. As can be seen in Fig. 6 B, the networks ob-
tained for values of p = 0.01 display a large clustering coef-
ficient similar to the original ring but they have average path
length that scales as the logarithm of the number of nodes. In
addition, they display class II topological characteristics. In
other words, they are small-world class II networks that
are topological characteristics shared by protein residue
networks.

The fact that the WS networks duplicate some important
properties of residue networks should not be considered as
an indication that this model can give insights about the
way in which proteins fold into their three-dimensional
structures. For instance, the WS model starts by considering
a ring with each node symmetrically connected to its 2m
nearest neighbors. This violates the principle that “‘proteins
grow linearly first, and then this polypeptide chain organizes
itself in a modular way at different levels,” (12). The pres-
ence of this ring is the main cause for the existence of the
hole in the networks generated by this model. In the WS
model, the rewiring process takes place for any link in the
network, whereas in a protein those links representing the
protein backbone cannot be rewired. In fact, in the WS
model for large number of nodes it is usual to find discon-
nected networks, which is not ever the case in protein
folding process. A more realistic model of residue network
“formation”” is given by the following modified WS
(MWS) model:

i) starts with a linear chain of n nodes in which every link is
colored blue;

ii) connect node i of the linear chainto i + k, e.g., k = 2, and
color every of these links in red; and

iii) forevery node, each red link is rewired with probability p.

This study will not analyze this model in detail. However, the
preliminary results indicate that the networks generated by
using MWS model are both small-world and class II graphs,
which encourage us to study these networks in more detail in
further works. In addition, this growing process fulfills the
requirement of starting from a linear chain that then orga-
nizes itself in a modular way (12).
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CONCLUSIONS

Proteins represented by their cutoff-dependent residue net-
works exhibit universal topological characteristics. Residue
networks belong primarily to the topological class of
modular networks formed by several highly connected clus-
ters separated by topological cavities. This study calls
attention to the fact that not every modular network fulfills
the requirement of being a class II network. A very small
fraction of protein residue networks deviates from this
behavior and are characterized by having some central core
surrounded by a periphery of small clusters and cavities.
These networks represent mainly small-size proteins having
<200 residues. In general, small proteins display larger
variability in their deviations from homogeneity than larger
proteins. These differences can be accounted for by the
domain structure of these proteins. Finally, this study has
shown that the topological cavities characterizing proteins
residue networks are intimately related to protein binding
sites. The cutoff value for the construction of the network
has been analyzed and the spectral scaling method is appro-
priate to distinguish between protein-like and nonprotein-
like networks. In addition, different cutoff values can be
used to model different kind of characteristics in proteins,
such as molecular surface (small cutoff values) or cavities
of different sizes. Some random models for mimicking the
properties of residue networks were also analyzed. The
Watts-Strogatz model reproduces the topological class and
small-worldness observed for residue networks very well.
This article proposes a modification of this model that is
able to build protein-like networks keeping in mind the
restrictions imposed by the chemistry of proteins.

The current study has made the necessity for efficient
algorithms for detecting topological cavities in residue
networks as well as for better mathematical characterization
of these structures quite evident. I believe that this study
contributes to the search for other topological methods and
algorithms for extracting more structural information from
the topology of proteins represented as networks.
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