Computing Methods for Physics (Condensed Matter) 2019-2020

The main objective of Computing Methods for Physics is that of providing an introduction to up-to-date computational methods that are used in research areas of current interest. Three different courses (channels) are offered. This channel is intended for students enrolled in the Condensed-Matter track. Its goal is to provide the students with both the theoretical background and the hands-on experience of two state-of-the-art numerical approaches within the field of condensed matter physics: a) the density-functional theory and the pseudopotential theory, two crucial ingredients for first-principles predictions of electronic states, structural energies and interatomic forces in real molecules and solids; b) the quantum (variational, diffusion, path-integral) Monte Carlo methods, their applicability and the motivations of their use in the numerical study of quantum many-body systems (solid or liquid helium, the electron gas, electrons in atoms and molecules).