Introduction
Motivations:
- flexible density;
- non parametric estimation of a mixing distribution; - unsupervised classification.
Maximum likelihood estimation
EM algorithm;
“Fuzzy” interpretation of EM;
ML estimation of a mixture of Gaussians.
Mixture of linear regression models
Omitted variables; Random effects; Heterogeneity; EM algorithm.
Latent class analysis
Latent variables models;
Latent class models for binary variables.
How to choose the number of components?
LR test;
Bootstrap;
Automatic selection criteria.
Principal Stratification for casual inference
Model;
ML estimation; Examples.
References
Frangakis, C. E., Rubin, D. B. (2002). Principal stratification in causal inference. Biometrics, 58 21– 29.
Frühwirth-Schnatter, S. (2006). Finite Mixture and Markov Switching Models. Springer, New York. McLachlan , G.J., Peel. D. (2000). Finite Mixture Models. New York: Wiley.