SAPIENZA
Università di Roma

International Medical School
 Course of Chemistry and Introduction to Biochemistry
 Academic Year 2016-2017

Buffer solutions

1. A solution of a weak acid HA with $\mathrm{Ka}=10^{-4} \mathrm{M}$ is titrated with NaOH . After having added 0.05 equivalents of base, the measured pH is 4.0 . Calculate the concentration of HA at the beginning.
2. Calculate the pH of the solution obtained by mixing 75 ml of $\mathrm{CH}_{3} \mathrm{COOH} 0.01 \mathrm{~N}$ with 50 ml $\mathrm{NaOH} 0.01 \mathrm{M}\left(\mathrm{Ka}=1.8 \cdot 10^{-5} \mathrm{M}\right.$ at $\left.25^{\circ} \mathrm{C}\right)$.
3. 250 ml of ethanoic acid 0.5 N are mixed with 250 ml of NaOH 0.2 N . Calculate the pH of the final solution ($\mathrm{Ka}=1.8 \cdot 10^{-5} \mathrm{M}$ at $25^{\circ} \mathrm{C}$).
4. 500 ml of HCN 0.2 N are mixed with 500 ml of KOH 0.2 N . Calculate the pH of the final solution ($\mathrm{Ka}=2 \cdot 10^{-4} \mathrm{M}$).
5. Calculate the pH of a solution made by dissolving 0.6 g of acetic acid and 0.82 g of sodium acetate in 1 L of water. Calculate the pH after having added 1 ml of $\mathrm{HCl} 1 \mathrm{M}\left(\mathrm{Ka}=1.8 \cdot 10^{-5}\right.$ $\mathrm{M})$.
6. Calculate how many grams of KOH should be added to 400 ml of weak acid HA 0.1 M $\left(\mathrm{Ka}=3 \cdot 10^{-6} \mathrm{M}\right)$ to obtain a solution at $\mathrm{pH}=5.3$.
7. Calculate the pH of a solution made by dissolving 2.8 g of $\mathrm{CH}_{2} \mathrm{NH}_{2}$ and 5.0 g of $\mathrm{CH}_{2} \mathrm{NH}_{3} \mathrm{Br}$ in 500 ml of water $\left(\mathrm{Kb}=4.4 \cdot 10^{-4} \mathrm{M}\right)$.
8. Which is the pH of a solution obtained after mixing 200 ml of KOH 0.1 M with 300 ml of formic acid $0.15 \mathrm{M}\left(\mathrm{Ka}=1.8 \cdot 10^{-4} \mathrm{M}\right)$.
