

Initial Results of Tissue Injury

- damaged tissue activates plasma enzyme systems
- broken or damaged blood vessels clot
- · activated cells release proinflammatory mediators
 - preformed: histamine, serotonin, lysosomal enzymes
 - newly synthesized: cytokines, lipid products, nitric oxide
- neurological responses (pain)
 - pressure, damaged nerves, prostaglandins, bradykinin

Other clinical signs associated with inflammation

- mucus production
 - (mast cells-histamine-mucus glands)
- smooth muscle contraction (spasmogens), e.g. bronchoconstriction
- systemic acute phase reactions
 - elevated ESR (erythrocyte sedimentation rate)
 - iron is sequestered ("anemia of inflammation")
 - fever (cytokines)

- 1. Alter biological membranes to cause direct cell lysis or enhanced susceptibility to phagocytosis.
- 2. Promote the inflammatory response.

CD91, initiates macropinocytosis and phagocytosis of apoptotic cells

_____ 29

Virus	Genome RNA	Host cytosolic PRR
Vesicular stomatitis virus	Nonsegmented negative-sense, single strand	RIG-I
Respiratory syncytial virus	Nonsegmented negative-sense, single strand	RIG-I
Influenza A virus	Eight RNA segments, negative-sense, single strand	RIG-I
Ebola virus	Nonsegmented negative-sense, single strand	RIG-I
Reovirus	Ten double-stranded segments	RIG-I and MDA5
Hepattis C virus	Nonsegmented positive-sense, single strand	RIG-I
Dengue virus	Nonsegmented positive-sense, single strand	RIG-I and MDA5
West Nile virus	Nonsegmented positive-sense, single strand	RIG-I and MDA5
Polio virus	Nonsegmented positive-sense, single strand	MDA5
Summarized from Ref. [11].		

Activation of Endothelium: Morphology

Endothelium enters a "Procoagulant State"

- reduced levels of factors to discourage platelet aggregation and adhesion create a "procoagulant state" for the endothelium
 - No longer releases factors PGI2, NO; thrombomodulin decreases, procoagulant tissue factor increases.
- Retraction leaves the subendothelial matrix exposed, to which platelets may pavement
 - $-\,$ onto the collagen/ vWF as does Hageman Factor (Factor XII).
- Aggregated platelets release proinflammatory factors.
 PAF, ADP; serotonin...

Blood Clot Terminology

- **Hemostasis** is a response to vascular injury, and leading to arrest of the hemorrhage, involving vasoconstriction, tissue swelling, the coagulation cascade, and thrombosis.
- **Coagulation** is the conversion of soluble plasma fibrinogen to insoluble fibrin polymer as catalyzed by the protease thrombin, and resulting from a cascade of reactions.
- Thrombosis, a blood clot in the circulation, is an aggregate of coagulated blood containing platelets, fibrin, erythrocytes, and leukocytes.

Arachidonic Acid Metabolites

Phospholipase A₂ releases arachidonic acid from membrane phospholipids (inhibited by steroids), and goes into:

- lipoxygenase pathway
 - 5-HETE (chemotactic)
 - LTB4: chemotactic for granulocytes and macrophage
 - LTC4, LTD4, LTE4: potent vasopermeability and bronchial spasm
 - cyclooxygenase pathway (inhibited by aspirin, indomethacin)
 - PGI2: vasodilation, inhibits platelet aggregation
 - TXA2: vasoconstriction, promotes platelet aggregation
 - PGD2, PGE2, PGF2 α : vasodilation
- lipoxins (platelet 12-lipoxygenase on neutrophil LTA4)
 - LXA4 vasodilation, reduces LTC4 vasoconstriction

Inhibition of Arachidonic Acid Metabolism

- glucocorticoids: inhibit genetic expression of cyclooxygenase, cytokines e.g. (IL-1 and TNF-α), and iNOS, and upregulate anti-inflammatory proteins e.g., lipocortin 1, an inhibitor of PLA2
- dietary fish oil, linoleic acid, makes less potent mediators than those from AA.
- specific COX-2 inhibitors
 - COX: aspirin, indomethacin, etc.
 - COX-1 (homeostatic) and COX-2 (inflammatory)

<section-header><text>

Lipid Mediators from Mast Cells

PAF platelet activating factor: aggregates platelets, histamine release, bronchial spasm, vascular permeability, vascular dilatation, chemotactic for eosinophils and neutrophils

Arachidonic acid products

- lipoxygenase pathway
 - LTC4, LTD4: potent vasoactive and spasmogenic
 - LTB4: chemotactic for granulocytes and macrophage
- cyclooxygenase pathway
 - PD2: vasoactive, mucus production

Molecules involved in Vasodilation

- smooth muscle relaxes
 - rapid: histamine, serotonin;
 - slower: nitric oxide, kallikrein, PGE2, PGI2, PGD2 (mast cells)
- opening of precapillary arteriole sphincters causes more flow and pooling of blood (hyperemia) in post capillary venules (creates flare on skin)
 - Prostaglandins, histamine
- (veinules relax as well)

A neutrophil-dominated infiltrate develops

- · Mediators initiate neutrophil activation and chemotaxis
- <u>neutrophils</u> become the <u>hallmark cell of the early acute inflammatory</u> <u>infiltrate.</u>
- Neutrophils are attracted mainly by:
 - C5a, LTB4; and later by chemokines, TNF- α
 - Bacterial infections provide n-formyl peptides e.g. FMLP.
- **Neutrophil infiltration** peaks at 6-24 hours, often release contents of lysozomes and secrete lipid mediators, which contribute to the clinical "late phase reaction (4hrs.+)" along with mast cells .

Products from Neutrophils and Macrophage

• Eicosanoids

- 5-lipoxygenase:LTB4 (chemotactic), LTC4, LTD4, LTE4 (vasoconstriction, bronchospasm, and vascular permeability)
- from Lysosomes
 - PLA2, proteases, myeloperoxidase, defensins, cationic proteins

91

- kill microbes, damage endothelial, rbc, and parenchymal cells; inactivate antiproteases (which can lead to destruction of the ECM).
- A respiratory burst of oxygen consumption and HMP shunt support NADPH oxidase generation of superoxide (O2-), which is converted to H2O2 by superoxide dismutase.
- H2O2 reacts with myeloperoxidase plus halide (Chloride) to form <u>hypochlorous acid</u> (HOCl), the <u>major bactericidal agent</u> made by phagocytes (neutrophils, not monocytes).
- Enhanced by Fe2+, H2O2 forms the potent hydroxyl radical (• OH).
- Nitric oxide (NO) reacts with oxidants to form a variety of toxic NO derivatives.
- Oxygen derived radicals are **detoxified** by ceruloplasmin, transferrin, superoxide dismutase, catalase & glutathione peroxidase (H2O2), produced by various cells.

What are the "The Five Cardinal Signs of Acute Inflammation" ?

- heat (Calor)
 - dilatation causes hyperemia, which raises extremities to core body temperature
- redness (Rubor)

hyperemia pools rbc in capillaries

- pain (Dolor)
 - pressure and mediators (bradykinins, PG--) stimulate nerves
- swelling (Tumor)
 - exudate causes edema in interstitial tissues
- loss of function (Functio Laesa)
 - changes in microenvironment interfere with function

